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COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS
CHAPTER &8: COMPLETELY BOUNDED MAPS
SOLUTIONS TO EXERCISES

JANUARY 24, 2006

Show that Re (¢n) = (Reg),, and that (¢,)* = (¢©*)n.
Solution:Let (a;;);';—; € M;(M). We have,

(@ n(aiy) = (@ (aiz) = (la;;)") = ((af;))*
= en((@f;))" = enl(aiz)™)"

= (pn)"((aiy))
Using this we get,
2(Repn) = on+ (pn)"
= ont(@)n
= (p+¢)n
= 2(Rep)n

Let ¢ : M — B, let H and K be in M, and let A be in M,,(M). Prove that ¢,(HAK) = Hp,(A)K.
Thus, ¢, : Mp(M) — M,(B) is an M,-bimodule map.

Solution: Let H = (\;j), K = (u;,j) and A = (a;;). Note that the (7,7) entry of HAK is

Z Z ik Qe L - (1)

I=1 k=1
It follows that,
on(HAK) = on || D Nigaramu, (2)
k=1 o
i,7=1
= |v Z ik, 1L, j (3)
k=1 o
1,j=1
= (D Mirplar)my) (4)
k=1
= H(p(ai ) K = Hon(A)K. (5)

Verify the claim of Theorem 8.4.

Solution: Let {Ei,j}ij:l denote the matrix units in My C M3(A). Let K = rangem(E1,1). Note
since 7 is a *-homomorphism that 71 (1) is a projection and thus K is closed. We claim that
KiZ K& K. Define U : Kp K — K1 by,

Ulxdy) =a+m(Ea)y.



It is straightforward that U is linear. We now prove that it is an isometry.

U@eyl> = (z,2)+ (11(E21)y, m1(E21)y) + 2Re (z, 1 (E2,1)y) (6)
= |=|® + (m1(E12E21)y, y) + 2Re (m1(E11)z, m1(E21)y) (7)
= |=|> + (m1(E11)y, y) + 2Re (w1 (E12F11)z,y) (8)
Iz))* + lyll* = = @yl 9)
Now let z € K1 and note that
z=1Ix,z = w(Ei1)z+7(Ey2)z (10)
= 7T(E1,1)Z+7T(E271)7T(E171)7T(E172)Z (11)
= U(?T(El,l)z@T{'(ELl)ﬂ'(ELQ)Z). (12)

This shows that U is surjective and is therefore a unitary.
Define Pj : K@ K — K by Pj(x1 ® x2) = x; and 7 : A — B(K) by

m(a) = Pimi(a)Py.

Note that P’P; = Ix. It follows that 7 is a unital, linear map and we check that it is a *-
homomorphism. Let a,b € A,

m(ab) = Fimi(ab) P = Pi(mi(a)mi (b)) B = Pymi(a) P Py () P = m(a)m(b). (13)

and,
m(a*) = Pimi(a) P = (Pim(a)P)" = m(a)” (14)

To complete the verification we must show that the (¢, j)-th entry of m((a;;)) is m(ai ;). Note that
the (4, )-th entry is P;mi((ai;))P;. Now,

2
Pmi((aig))Pf = Y Pimi(ar ® Eg)Pf
k=1

2
= Z Pimi(aky @ (ExaE11E1,)) P}
k=1
2

= Z Pimi(Eyq)m(ag; @ Evq)m(Ey)
k=1

= Pm‘l(Ei,l)ﬂ'l(ai,j X 1*71,1)7T1(El,j)P§k
= Pimi(aijEvg) Pl = m(as ).

8.4 Show that if ¢ is completely bounded, and ¢(a) = Vi*7(a)Vz is the representation of theorem 8.4 with
IVi|l = ||Vz]|, then setting ¢;(a) = V;*m(a)V;, yields the map ® of Theorem 8.3.

Solution: Note that

lelley = IVl IVall = IVilP = 11V Vill = IV (Vi < lla(D)]] - (15)



8.5

Also,

lei(a)ll = [[Vim(@)Vill < [Vl (@)l IVl < IVEIITVill el (16)

= [Vil* llall = li@lle llal (17)

Therefore ||l = [|@illw- If l@ll, = 1, then we may choose V;, i = 1,2, to be isometries. Therefore,
pi(1) = Vir(1)V; = V'V = 1

We compute,

¢*(a) = p(a”)" = (Vi'm(a")V2)" = Vym(a)V1. (18)
LetA:[Z Z]andV:[‘gl %}Wehave,
_ | ela) o(b)

o = |30 S (19

- [% 4115 0% 4]
= Vm(A)V. (22)

This shows that ® is completely positive, since 7 is a *-homomorphism
Prove that the conclusions of Theorems 8.2, 8.3 and 8.5 still hold when the range is changed from
B(H) to an arbitrary injective C*-algebra.

Solution: Throughout this solution B will denote an injective C*-algebra, which is represented on
H. By exercise 7.5 there exists a completely positive map 6 : B(H) — B such that 6(b) = b for all
be B. Theorem 8.2 Let ¢ : M — B be completely bounded. Extend ¢, by Wittstock’s theorem, to a
completely bounded map v : A — B(H). Notice that the map 6 o1 : A — B is completely bounded.
Let a € M, note that ¢(a) € B and so

0oy(a) =0op(a) = p(a).

Thus, 6 o) is a completely bounded extension of ¢. Since 6 is unital and completely positive we have
6] = /0], = 1. Using this fact we get,

1Pl <160 Dllp < N10llep [[Pllp = Nl lles - (23)

Theorem 8.8 Let A be a C*-algebra with unit, let ¢ : A — B be completely bounded. Then there exists
completely positive maps ; : A — B with ||¢;| 5 = |¥]l 5, ¢ = 1,2, such that the map ¥ : My(A) —

Ms(B) given by
o[t [0 2]

is completely positive. Moreover, if |||, = 1, then we may take 1;(1) =1, i =1,2.

We may assume that ||¢||, = 1. Let 6 : B(H) — B be a completely positive projection. Construct
with v is place of ¢ the maps ¢;, i = 1,2 and ® as in Theorem 8.3. Let 1; = 6 o ;. As 0 fixes B we



have that 8 oy = v and 0 o yp* = ¢*. It follows that and ¥ = 0y o &. As composites of completely
positive (completely bounded) maps are completely positive (completely bounded) we see that v,
i = 1,2 are completely bounded and ¥ is completely positive. # is unital and so ¥;(1) = 8(¢(1)) = 1.
Together with,

1illy = 18 0 @illy < 1611 lpillop < 1, (25)
this proves H%H =1= Hchb'

Theorem 8.5 Let A be a C*-algebra with unit, and let o : A — B be completely bounded. then there
exists a completely positive map 1 : A — B with ||[¢] < ||¢ll, such that ¢ £Rep and ¢ £Im ¢ are all
completely positive. In particular, the completely bounded maps are the linear span of the completely
positive maps.

Since B C B(H) construct as in Theorem 8.5 a map p : A — B(H) such that ||p||, < ||¢l, and set
Y =0o0p: A— B. We have

[¥lley < N0l lolley < llepllcp - (26)
As 0 is a projection onto B, 6 o ¢ = ¢. Notice that,
(00 @™)(a) =0(p(a")") = 0(p(a®)” = ((0 0 p)(a®))" = (00 p)*(a). (27)
Consequently,
fo(ptImyp)=(Bop)tIm(foyp)=1+Imey, (28)

is completely positive. Similarly, ) & Re ¢ is completely positive.

8.6 Let A, B,C be C*-algebras with unit, with C contained in both A and B, and 14 = 13 = 1¢. Let
M C A be a subspace such that ¢;Mco € M for all ¢1, ¢y in C, and set

8={|:Ci “ :| :a,bEM,Cl,CQGC}.
b C2

(i) Prove that if ¢ : M — B is a completely contractive C-bimodule map, then ® : S — Ms(B)

defined by
o(l7 2D 2
b* ¢y ) e |’
is completely positive.

(ii) Prove that if B is injective, then the conclusions of Theorems 8.2, 8.3 and 8.5 still hold with the
additonal assumption that the maps be C-bimodule maps.

Solution:
(i) Let
C(l) i
(Sij) = bﬁ;] 3 | € Mn(S) (29)
4,J 1,j

il



where H = (cl(l-)), K = (c(-Q.)), A = (b;j) and B = (b;;).Similarly after a canonical shuffle
H  pn(4)
[ en(B) K| 3!

If the matrix in (30) is positive, then A = B and H, K are positive. Let € > 0 and note that the
matrices H. = H + ¢l and K. = K + I are positive and invertible. We have,

a7 o [ H. A } o2 o B I HY2ARTY? (32)
0 K-Y?|| A K 0 K-V? K-V a2 I '
The matrix on the left of (32) is positive and by Lemma 3.1 we have that
|ov2am | < (33)

As ¢ is C-bimodule, @n(Hgl/zAKs_lﬂ) = HE_I/QQDH(A)KE_I/Z. A similar calculation to (32) shows
that ®,((S;,;)) is positive if and only if

I Hg_l/2cpn(A)K€_1/2
,1/2 % ,1/2 Z 0 (34)
| K "“on(A)"H: I |
From the assumption that ¢ is completely contractive we get
HZ P (K2 = on(H AR )| <1, (35)

which is equivalent to the matrix in (34) being positive.

We check that the maps considered in the proofs of Theorems 8.2, 8.3, and 8.5 are C-bimodule.
Theorem 8.2 Recall that ¢ was defined by

()L )

where W is the extension of ® described in part i). Being an extension of ®, ¥ fixes C & C, and
so by Exercise 4.3, ¥ is C @ C-bimodule. If ¢1,co € C, then

([ ]) - o5 0100 3]0 a)) @
s CRI AR LS

from which we get ¥(ciaca) = c19(a)cs.

o

)

Theorem 8.3 A matrix factoring similar to the one used above shows that ;, for i = 1,2, is a
C-bimodule map.

Theorem 8.5 We will prove that ¢* is C-bimodule. The claims of theorem 8.5 will then follow as
before.

v (cracy) = o((craca)’)" = p(cza™cy)” (39)
= (ap(a®)er)” = cip(a®) ez (40)
= ce(a)ca. (41)



8.7 Let A = (a;;)75_1- Prove that the following are equivalent:

(i) Sa: B(f?) — B(f?) is positive.

(ii) Sa : B(¢?) — B(f?) is completely positive.

(iii) There exists a Hilbert space H and a bounded sequence of vectors {z;} in H such that a;; =

(x]" Il)

Solution: Let P, : £2 — ¢? denote the projection onto the first n coordinates. Let A,, = P, AP, which
is the matrix equal to A in the n x n top left corner and 0 otherwise. Observe that A, —woT A as
n — oco. Note that A, T = (P,AP,) *T = P,(AxT)P, = (A+T), for any T € B(£?). By Theorem
3.7 the following three statements are equivalent

(a) Sa, is positive for all n > 1.

(b) A, >0 for all n > 1.

(c) Sa, is completely positive for all n > 1.

(i) implies (ii). If ' > 0, then
Sa,(T)=A, T =A,xT, = (AxT), = (Sa(T)), > 0. (42)

Therefore S4, is positive and by the observation above Sy, is completely positive. Assume T =
(T;;)7— > 0 and let z; € 2, j=1,...,m.

X1 X1 m
<(SA)m(Ti,j) S P > > (AT y)ag,x:) (43)

m m 2,0=1
m
= Z lim ((A*Ti,j)nmj,xﬁ (44)
n—od
i,j=1
m
= Jlim > (AxTigesa) (45)
3,7=1

] T
= nh_)rf)loz < Sa)m(Tig) |+ || ¢ >20 (46)

,j=1 Tm Tm

(ii) implies (iii). Let S : B(¢%) — B(¢?) be completely positive. Let (7, H, V) be a minimal Stinespring
representation of S4. Let B, = E;; and note that EE, = E;;. For each j € N, define x; =
m(Ey)Ver € H. Note that ||zg| < ||V]. Now,

(m(Ej)Vej, m(Ei)Vei) (47)
(Vi (i) m(E;)Vej, ei) (48)
(Vim(Eij)Vej,ei) (49)
(Sa(Eij)ej i) (50)
( (51)

(52)

<xj7'ri> -

aijEijej, ei)

= Gij



(iii) implies (i). Let [|zx]| < M forallk > 1, T = ()75, € B(¢?) and h, k € £2. It is enough to prove
that [[(Sa(T))n]l is boundedlndependent(ﬁvl(wdncheﬁtabhshesthefactthatASA( ) is an element of
B(¢%)) and A,, > 0. The latter claim implies, for a positive operator T, that

(Sa(T)h, h) = Tim ((Sa(T))nh, h) = lim (Sa,(T)h,h) = 0. (53)
Now,
((Sa(T)nhs k)| = [{(An * Tn)h, k)| (54)
= Z aiyjtmhjk:j- (55)
ij=1
= | D {ajzi)tijhiks (56)
ij=1
hll’l klxl
= <(ti,jIH) S N > (57)
hnxn knZn
n 1/2
< i)l g (lehmll ) (lek il ) (58)
i=1
= Tl (Z:Ihil2 !fEiH2> ( il |l ) (59)
=1 i=1
< |7l M Al I - (60)
Therefore, [[(S4(T))al| < || M?.
Also,
(Anh,h)p = > aijhihi (61)
ij=1
= > (wj,) hih (62)
ij=1
ij=1
hll'l hll'l
- < : , : >0 (64)
hnzn hnzn H(n)



