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10.1 Let

Jλ =



λ 1 0 · · · 0

0
. . . . . . . . .

...

0
. . . . . . 0

...
. . . . . . 1

0 · · · 0 0 λ


∈ Mk

be an elementary Jordan block.

(i) Show that the (1, k) entry of Jm
λ is the (k−1)-th derivative of zm/(k−1)! evaluated at λ. Deduce

that Jλ is power bounded if and only if |λ| < 1.

(ii) Prove that if |λ| < 1 then Jλ is similar to a contraction.

(iii) Let T ∈ Mn be power bounded. Prove that T is similar to a contraction.

Solution:

(i) We write Jλ = λI + N and note that N is nilpotent of order k. Therefore,

Jm
λ = (λI + N)m (1)

=
min{k−1,m}∑

j=0

(
m

j

)
λm−jN j (2)

(3)

If m ≤ k − 1 then the (1, k) entry is 0 which is also the (k − 1)th derivative of zm/(k − 1)!. For
m ≥ k The (1, k) entry is given by,(

m

k − 1

)
λm−k+1 =

m(m− 1) . . . (m− k + 2)
(k − 1)!

λm−k+1 =
dk−1

dzk−1

∣∣∣∣
z=λ

zm

(k − 1)!
. (4)

If λ ≥ 1 then

‖Jm
λ ‖ ≥

(
m

k − 1

)
|λ|m−k+1 →∞ as m →∞. (5)

Therefore, Jλ is not power bounded. Conversely if |λ| < 1, then for m ≥ k − 1

‖Jm
λ ‖ ≤

k−1∑
j=0

(
m

j − 1

)
|λ|m−j ≤ kmk |λ|m−j → 0 as m →∞. (6)
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(ii) Let

Dr =


1 0 · · · 0
0 r . . . 0
...

...
. . .

...
0 0 . . . rk−1.


If r 6= 0, then

D−1
r JλDr =



λ r 0 · · · 0

0
. . . . . . . . .

...

0
. . . . . . 0

...
. . . . . . r

0 · · · 0 0 λ


(7)

and so
‖Dr−1JλDr‖ ≤ |λ|+ r ≤ 1, (8)

for any 0 < r ≤ 1− |λ|.
(iii) As T is power bounded there exists a constant M such that ‖Tn‖ ≤ M for all n ≥ 0. Let J

denote the Jordan form of T and suppose that J = diag(Jλ1 , . . . , Jλl
), where Jλi

is an elementary
Jordan block. Suppose that R−1TR = J . We have that,

Jn = R−1TnR = diag(Jn
λ1

, . . . , Jn
λl

) (9)

and, ∥∥Jn
λi

∥∥ ≤ ∥∥R−1TnR
∥∥ ≤ M

∥∥R−1
∥∥ ‖R‖ . (10)

Hence Jλi
is power bounded. It follows by part (i) that |λi| < 1 for i = 1, . . . , l and so by part (ii)

there exist similarities S1, . . . , Sl such that S−1
i Jλi

Si is a contraction. Let D = diag(S1, . . . , Sl),
S = RD and note that∥∥S−1TS

∥∥ =
∥∥D−1R−1TRD

∥∥ =
∥∥D−1JD

∥∥ = max
i=1,...,l

∥∥S−1
i Jλi

Si

∥∥ ≤ 1. (11)

10.3 i) Show that g1, f1, p1, q1 satisfy 1)-4) of Theorem 10.8.

ii) Show that if gm, fm, pm, qm satisfy 1)-4), then gm+1, fm+1, pm+1, qm+1 satisfy 1)-4).

Solution:

i) We have g1 ≡ q1 ≡ 1, p1(z) = −h1z
k1 which has degree at most k1 and f1(z) = h1z

k1 which
implies Γ(f1) = (h1, 0, . . .).

ii) We compute

Fm+1(eiθ) = Fm(eiθ)Bm+1(eiθ) (12)

=
[

gm(eiθ) pm(e−iθ)
fm(eiθ) qm(e−iθ)

] [
1 −hm+1e

−ikm+1θ
hm+1e

ikm+1θ 1

]
(13)

=

 gm(eiθ) + hm+1e
ikm+1θpm(e−iθ) pm(e−iθ)− hm+1e

−ikm+1θgm(eiθ)

fm(eiθ) + hm+1e
ikm+1θqm(e−iθ) qm(e−iθ)− hm+1e

−ikm+1θfm(eiθ)

(14)
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We will deduce properties 1) and 4), the remaining deductions are similar. We have,

gm+1(eiθ) = gm(eiθ) + hm+1e
ikm+1θpm(e−iθ). (15)

By assumption the degree of gm and pm is at most km but pm(eiθ) is a polynomial in negative
powers of eiθ and so the degree of the second term in (15) is at most km+1. The only contribution
to the constant term in gm+1 is from gm, since km+1 > km. It follows that gm(0) = 1. Now
consider

fm+1(eiθ) = fm(eiθ) + hm+1e
ikm+1θqm(e−iθ). (16)

Since km+1 > 2km + 1 the smallest exponent that appears in hm+1e
ikm+1θqm(e−iθ) is at least

km+1 − km > km + 1. In addition the constant term of qm is 1 and so the coefficient of zkm+1

is hm+1. Therefore, the coefficients of zk, k = 0, . . . , km, in fm and fm+1 are the same and the
coefficient of zkm+1 in fm+1 is hm+1. Hence, Γ(fm+1) = (h1, . . . , hm, hm+1, 0, . . .).

10.4 Let Γ be the map of Theorem 10.8. Prove that Γ̇ : A(D)/ker Γ → `2 is a Banach space isomorphism
with ‖Γ̇‖ ≤ 1, ‖Γ̇−1‖ ≤

√
e.

Solution: By standard results on quotient spaces and using the fact that Γ is contractive and onto we
have that Γ̇ is a bijective, contractive map. From the proof of Theorem 10.8 we see that given h ∈ `2

there exists a f ∈ A(D) such that Γ(f) = h and ‖f‖ ≤
√

e ‖h‖. Thus,

‖Γ̇−1(h)‖ = ‖f + ker Γ‖ ≤ ‖f‖ ≤
√

e ‖h‖ , (17)

and so ‖Γ̇−1‖ ≤
√

e

10.5 Let C1, . . . , Cn denote the 2n × 2n CAR matrices, let E1,1, . . . , En,1 be the standard matrix units in
Mn and let Φ(λ1E1,1 + . . . + λnEn,1) = λ1C1 + . . . + λnCn, so that Φ is an isometry. Prove that
‖Φ‖cb ≥

√
n/2.

Solution: Let C = λ1C1 + . . . + λnCn. Let P = CC∗ and Q = C∗C. Note that

C2 =
∑

1≤i<j≤n

λiλj(CiCj + CjCi) +
n∑

j=1

λ2
jC

2
j = 0. (18)

From this we get QP = C∗C2C∗ = 0. Moreover,

P + Q = CC∗ + C∗C =
n∑

i,j=1

λiλj(CiC
∗
j + C∗

i Cj) =
n∑

i=1

|λi|2 I. (19)

It follows that ‖P‖ = ‖Q‖ = ‖P + Q‖ =
∑n

i=1 |λi|2. Therefore Φ is an isometry.

Recall that CiC
∗
i = I

⊗(i−1)
2 ⊗ E2,2 ⊗ I

⊗(n−i)
2 , i = 1, . . . , n. Therefore CiC

∗
i is a diagonal matrix with

ones and zeroes on the diagonal. Inspection reveals that the pattern of ones and zeros is 2i−1 zeroes
followed by 2i−1 ones and so on down the diagonal. Therefore the matrix

∑n
i=1 CiC

∗
i is diagonal with

n being the largest diagonal entry. Hence, ‖
∑n

i=1 CiC
∗
i ‖ = n.

Let A ∈ Mn(Mn) be the matrix.  E1,1 . . . En,1
...

...
0 . . . 0

 . (20)
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By permuting the columns of A we see that A is unitarily equivalent to the matrix which has 1’s in
the first n diagonal entries and is zero otherwise. Therefore ‖A‖ = 1. Now,

‖Φn(A)Φn(A)∗‖ =

∥∥∥∥∥∥∥
 C1 . . . Cn

...
...

0 . . . 0


 C∗

1 . . . 0
...

...
C∗

n . . . 0


∥∥∥∥∥∥∥ (21)

=

∥∥∥∥∥
n∑

i=1

CiC
∗
i

∥∥∥∥∥ = n. (22)

Hence ‖Φ‖cb ≥ ‖Φn‖ ≥
√

n.
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