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13.1 Let V be a matrix normed space, let X ∈ Mn,m(V ) and let Y ∈ Mp,q(V ) be a matrix obtained from
X by introducing finitely many rows and columns of 0’s. Prove that ‖X‖m,n = ‖Y ‖p,q.

Solution: Let

A =
[

Im 0
]
∈ Mm,p, B =

[
In

0

]
∈ Mq,n. (1)

We see then that X = AY B and so ‖X‖m,n ≤ ‖A‖ ‖Y ‖p,q ‖B‖ ≤ ‖Y ‖p,q. Now setting

A =
[

Im

0

]
∈ Mp,m, B =

[
In 0

]
∈ Mn,q, (2)

we see that AXB = Y and so ‖Y ‖p,q ≤ ‖A‖ ‖X‖m,n ‖B‖ = ‖X‖m,n. Hence ‖X‖m,n = ‖Y ‖p,q.

13.2 Let V be a vector space and assume that we are given a sequence of norms, ‖·‖n on Mn(V ) satisfying:

(i) ‖AXB‖n ≤ ‖A‖ ‖X‖n ‖B‖ for X ∈ Mn(V ), A ∈ Mn and B ∈ Mn.
(ii) for X ∈ Mn(V ), ‖X ⊕ 0‖m+n = ‖X‖n, where 0 denotes an m×m matrix of 0’s.

For X ∈ Mm,n(V ) set ‖X‖m+n =
∥∥∥X̂

∥∥∥
l
where l = max{m,n} and X̂ is the matrix obtained by adding

sufficiently many rows or columns to X to make it square. Prove that (V, ‖·‖m,n) is a matrix normed
space.

These alternate axioms are often given as the axioms for a matrix normed space and, consequently,
no mention is given of the norms of rectangular matrices.

Solution: Let A ∈ Mp,m, X ∈ Mm,n and B ∈ Mn,q. Let s = max{m, n, p, q} and inflate A,B, X
by introducing rows and columns of zeros to make them s × s matrices. Let l = max{p, q} ≤ s,
k = max{m,n}. Now,

‖AXB‖p,q =
∥∥∥ÂXB

∥∥∥
l

(3)

=
∥∥∥∥[

AXB 0
0 0

]∥∥∥∥ (4)

≤
∥∥∥∥[

A 0
0 0

]∥∥∥∥∥∥∥∥[
X 0
0 0

]∥∥∥∥
s

∥∥∥∥[
B 0
0 0

]∥∥∥∥ (5)

= ‖A‖ ‖X̂ ⊕ 0‖s ‖B‖ (6)
= ‖A‖ ‖X̂‖k ‖B‖ (7)
= ‖A‖ ‖X‖m,n ‖B‖ . (8)

13.3 Let V be an operator space and let W be a closed subspace and let π : V → V/W denote the quotient
map π(v) = v + W . Prove that if we define norms on Mm,n(V/W ) by setting

‖(π(vi,j))‖m,n = inf{‖vi,j + wi,j‖m,n : wi,j ∈ W}
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then V/W is an operator space.

Solution: Let A ∈ Mp,m X ∈ Mm,n and B ∈ Mn,q. Let ε > 0 and choose Z such that ‖X‖m,n + ε >
‖Z‖m,n with πm,n(Z) = X. It is a straighforward calculation to check that πp,q(AZB) = Aπm,n(Z)B =
AXB. Therefore,

‖AXB‖p,q ≤ ‖AZB‖p,q (9)
≤ ‖A‖ ‖Z‖m,n ‖B‖ (10)
≤ ‖A‖ ‖X‖m,n ‖B‖+ ε ‖A‖ ‖B‖ . (11)

As the choice of ε was arbitrary we see that ‖AXB‖p,q ≤ ‖A‖ ‖X‖m,n ‖B‖.
We now check that this is an L∞-matrix normed space. To do this we need only check that

‖X ⊕ Y ‖m+p,n+q ≤ max{‖X‖m,n , ‖Y ‖p,q}

where X ∈ Mm,n(V/W ) and Y ∈ Mp,q(V/W ). Choose R,Z such that πm,n(R) = X, πp,q(Z) = Y and
‖X‖m,n + ε > ‖Z‖m,n, ‖Y ‖p,q + ε > ‖R‖p,q. Note that πm+p,n+q(R⊕ Z) = X ⊕ Y . We have,

‖X ⊕ Y ‖m+p,n+q ≤ ‖R⊕ Z‖m+p,n+q (12)
= max{‖R‖m,n , ‖Z‖p,q} (13)
≤ max{‖X‖m,n , ‖Y ‖p,q}+ ε. (14)

By letting ε → 0 we get our result.

13.5 Verify the claims of Proposition 13.3.

Solution: Given an a matrix ordered ∗-vector space S with an Archimedean matrix order unit e we
define

‖x‖ = inf
{

r :
[

re x
x∗ re

]
∈ C2

}
. (15)

Denote by Sx the set on the right hand side of (15). We have already seen that ‖x‖ ≥ 0 and that
‖x‖ = 0 if and only if x = 0. We will now prove that ‖λx‖ = |λ| ‖x‖, ‖x + y‖ ≤ ‖x‖ + ‖y‖ and
‖x∗‖ = ‖x‖. We may assume that λ 6= 0. Note that,[

λ1/2 0

0 λ
1/2

] [
re x
x∗ re

][
λ

1/2 0
0 λ1/2

]
=

[
|λ| re λx

λx∗ |λ| re

]
. (16)

It follows that, [
re x
x∗ re

]
∈ C2 ⇐⇒

[
|λ| re λx

λx∗ |λ| re

]
∈ C2. (17)

Hence,

‖λx‖ = inf
{

r :
[

re λx

λx∗ re

]
∈ C2

}
(18)

= inf
{

r :
[
|λ|−1 re x

x∗ |λ|−1 re

]
∈ C2

}
(19)

= inf
{
|λ| s :

[
se x
x∗ se

]
∈ C2

}
(20)

= |λ| ‖x‖ . (21)
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Let x, y ∈ S and note that if r ∈ Sx and s ∈ Sy, then r + s ∈ Sx+y. It follows that, inf Sx+y ≤ r + s
for every r ∈ Sx and s ∈ Sy. Therefore ‖x + y‖ = inf Sx+y ≤ inf Sx + inf Sy = ‖x‖+ ‖y‖.
Finally we see that [

0 1
1 0

] [
re x
x∗ re

] [
0 1
1 0

]
=

[
re x∗

x re

]
. (22)

From which we get ‖x‖ = ‖x∗‖.
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