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COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS
CHAPTER 14: AN OPERATOR SPACE BESTIARY
SOLUTIONS

JUNE 8, 2006

Let V' be a normed space, X an operator space and let ¢ : X — MIN(V), ¢ : MAX(V) — X be
linear maps. Prove that ||¢]| = ||¢|, and ||¢| = ||¢|,. Deduce that MIN(V) and MAX(V) are
homogeneous.

Solution: Let (z;;) € My (X) with ||(z;;)|| < 1. Recall that if g is a linear functional on an operator
space, then g is completely bounded and ||g||, = ||g||. Consider,

len((@ig)ll = sup{ll(fle(zig)Il = f eV} (1)

= sup{[I(f o @In((@ig))ll : feVI'} (2)

< sup [[(f o)l (3)

= [[feell (4)

< £ el ()

< el (6)

We may assume that [[¢)|| < 1. We begin by noting that

1)l ag, iaxcryy = L)l 5 0V — BEH), ol < 1. 7

To prove this, note that the equation in (7) defines an operator space norm on V' which is larger than
[llniax(v)- These must be equal, since |[||l\jox (1) is the largest operator space norm on V. By Ruan’s
theorem there exists a complete isometry p : X — B(H) for some Hilbert space H. Note that the map
pot :V — B(H) is contractive. Therefore,

[(Wwig)llx = llen(@(vig))l (8)
= [[((poy)(vis)l (9)
< ||(vi7j)HMn(MAx(V)) . (10)

Hence |1, || < 1 and [|9]| = [|¢] 4

Let V be a normed space, X an operator space and let ¢ : MIN(V)) — X. Prove that ||¢||, < a(V) |l¢].

Solution: We may assume a(V) < oo. Define j : MIN(V) — MAX(V) by j(v) = v, and ¥ :
MAX(V) — X by ¢(z) = ¢(x). Note,

[ ()] = lle@) < llell vllvney < Il lvlhax) - (11)

Therefore, 1 is bounded and ||| < ||¢]|. By Exercise 14.1 1) is completely bounded and |[|9|| ., = ||¢].
Since ¢ = 1 o j we see that ¢ is completely bounded. Now,

1elley = ¥ 0 llepy < M[llep 71l = (V) [N < a(V) llel] - (12)



14.3 (Zhang) Let F,, denote the free group on n generators
(™, (13)

Prove that the maps ¢ : MAX(£L) — C*(F,,) and v : MAX(£L) — C(F,_1) given by

O((As- ) = Mad™ + LA™, (14)
and
(s An) =A™ 4+ A um Y T (15)

are complete isometries.

Solution: Let e1,...,e, € £} denote the standard basis, let A = (A1,...,A,) € £} and let (v;;) =
Sh_ Ak ®er, € My (MAX(6L)). We have ¢y, ((vi ) = Y peq Ak ® u,(cn). Assume that p : £L — B(H).

From,
oI =1 Aepler) | < X el llpCer)ll (16)
k=1 k=1
it follows that p is contractive if and only if p(ey) is a contraction on H for k = 1,...,n. By definition,
and the observation just made, we have,
S Ay e = sup {3 A @ plex) Lpilh— B, pll <1y (17)
k=1 MAX(e}) k=1 B(H(™)
= supq (D Ar Tk P Ty, T € BOH), TRl <1 (18)
k=1 B(H(m))
Now,
Y A ul@ = sup { > A, @Uy|| : Un,..., Uy € U(H), H a Hilbert space} (19)
k=1 C*(Fy) k=1

where U(H) denotes the unitary group of B(H). If p : £} — B(H) then p(e) is a contraction and so
the supremum on the right side of (19) is smaller than the right side of (17).

By exercise 5.4, given any n contractions 11,...,7T, on ‘H we can dilate T1,...,T, to n unitaries
Ui,...,U, on K. Therefore,

<
B(H™)

(20)

Z A @ Ty Z A @ Uy
k=1 k=1

B(K(™)
Hence, (17) and (19) are equal.

If (vij) = S0 Ak ® e € My (MAX(£L)), then ¢y, (i) = Y72 A @ ul" ™V + A, ® I. The norm
of v, is given by,

n—1

S arou VA, 01
k=1

(21)

C*(Frn-1)



14.4

By the universal property of C*(F,) there is a *-homomorphism = : C*(F,) — C*(FF,,—1) such that

u,g") — u,(f__ll) for k=1,...,n—1 and u 1. Similarly there is a *-homomorphism o : C*(IF,,—1)

to C*(F,) such thatu,(cnfl) — u%n)*u,gn). We have,
(mo 0)(u,(€n_1) = W(uﬁl”)*u,(cn)) = u,(cn_l). (22)

Therefore o is one-one and a *-isomorphism. Now,

n—1 n—1
S apou V4,01 = Y Ao uul + A, @ uPuy, (23)
k=1 C*(Fp_1) k=1 C*(Fn)
= | Xt e u) (Ao ) (24)
k=1 C*(Fy,)
= || 2ul™) > Ap @ up” (25)
k=1 C*(Fy)
k=1 C*(Fp)
(26) is due to the fact that I, ® W' is a unitary in M, (C*(FF,,)).
Prove that the maps ¢ : MIN(£L) — C(T") and v : MIN(£L) — C(T""1) given by
O((A1y oy An)) = A1z + oo+ Az (27)
and
7/’(()\17---7)%)) :)\121 +...+)\n—lzn—1 +)‘n (28>

are complete isomteries.
Solution: Let (v; ;) € My, (L), a = (au,...,an),8=(B1,...,0n) € 2, and 2z = (z1,...,2,) € T If

p= (1, .., n) € £ then
[l = sup |uizi+ ..o+ pnzn| (29)

21,20 €

It is a consequence of the triangle inequality that the right hand side of (29) is smaller than the left
hand side. To prove the reverse inequality we simply choose z; € T, j = 1,...,n such that p;z; = [\



for j =1,...,n. To see that ¢ is a complete isometry we compute,

Doy = 52 120, (30)
zeTn
= sup  sup  [{(p(vij)2)e B)] (31)
z€T™ ||all,<1,[|8]l,<1
m
= sup  sup > wlvig)(2)ais; (32)
Z€T™ |lall,<1,]I8,<1 ij=1
m
= sup  sup | > @(vig)(2)eif; (33)
€T ||, <1[I81,<1 |52

= sup Z Z ;A (34)

el <1, ||ﬁ||z<1zl: vZHET k=1

t,5=1
= Z a;0;,j5; (35)
Ha||2§1 ||6||2<1 i,j=1 21
= i)l ag,, arnger ) - )

To establish that 1 is a complete isometry we need only prove the following analogue of (29):

H:U’HE}L = sup lp1z1 + -+ pn—12n-1 + pnl - (37)

Z1,--,2n—1€

If we choose w € T such that wp, = |u,| and for j = 1,...,n—1, pick z; € T such that z;u; = w™! |y,

then
HMHQ = |zniwps + ...+ zp_1 W1 (38)
= |w||zip + . F Zno1pn—1 + fin] (39)
= ’21/1,1 + .o+ Zn—1pin-1+ Mn‘ . (40)

This implies (37).

14.5 Prove Proposition 14.7.
Solution: We endow M,, ,(CB(E,F)) with the norm it inherits through its identification with
CB(E, My n(F)). Let ® = (¢;j) € Mymn(CB(E,F)) and let X = (xy,) € M,(E). Let A € My, and
B € M, 4.We have,

(ADB),((w,)) = ((A®B)(w)) (41)
= (A®(x1)B) (42)
= (A®..0A) P ((z4y))(B®...®B). (43)
7 times 7 times
Hence,
(A2 B), ) ((zr) || < 1Al |2 ((zr)I] 1B - (44)
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It follows,

||A‘I’BHCB(E,F) = [[A®B], (45)
= sup||(A®B),|| (46)
r>1
= sup[|A[ [ [|B]] (47)
r>1
= [l @l 1B (48)
= lAllI®lepsr) 1B (49)

Let ® € My, n,(CB(E, F)) and ¥ € M, ,(CB(E, F)). Now,

(@@ V) ((zr1) = (2@ ¥)(2r)) (50)
@($kl) 0 ])
= ’ . ol
([ 0 W(wk) (51
A permutation of the rows of this last matrix shows that it has the same norm as
O, ((w,)) 0 ]
: . 52
RS 2
Hence,
2@ Ycppr = 26 Y], (53)
= sup[|(®® V), (54)
r>1
= Sglfmax{ll‘br\l SN (55)
= max{sup || @[ ,sup ¥, [[} (56)
r>1 r>1
= maX{H(I)HCB(E,F) ) ||‘I’||CB(E,F)}~ (57)

Thus, CB(FE, F) is an operator space.

Let v : C,, — R, be the map v(3;; MiEi1) = >.iq NiE1;. Prove that v is an isometry and
Ve = [[77] = V7

Solution:As 7 is the transpose map v is an isometry. Let C = (C; ;) € M,,(Cy) where

Ayd)
Cij=1 +: |o]|- (58)
bet [\ (@.3) (4,9)
DRI W
Rij=7(Cij) = |——— (59)
By a canonical shuffle we see that
Ay
ICl =] -0 || (60)
Ap




where (Ay);; = /\g’j) and Ay € M,,. Similarly

Il = | [

Now,
A 2 A T A
. lo — 1o .. lo
Ay, Ay, Ay,
_ Z?:1A2Ai 0
- 0 0
= ID_ArA,
=1
and,
H[Al An:| 2 |:A1 An] Aj
0 0 o

(=)

n

= Z A AL
=1

9

Since || ApAg | < [y AiA7 ]| we see that,

zn: AT A;
=1

< 34
i=1
DN
=1
ZR:AZ-A;*
=1

A similar argument shows that |37 | A;A¥|| < n |37, AfA;|. Therefore
Iyl < v and |7, < Vn

IN

n

for all m > 1.
To prove equality in (71) we consider E € M, (C,,) given by

€1
E=1 110

€n



by permuting rows we see that |E|| = y/n. Note that a permutation of the rows of ~,(E) brings it to

the form
I, 0
0 0]
Therefore ||y, (E)|| = 1. It follows that ||y, || > v/n. By considering
eT .. eT
E = 1 n
]

we get ||vn]| > /n. Combining these with the inequalities in (71) we get

1Vl = [Vl = V-

(73)

(74)

(75)



