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15.1 Verify that an operator space I is injective in O1 if and only if every completely bounded map into I
has a completely bounded extension of the same completely bounded norm.

Solution: Let ϕ : E → I be a completely bounded map and let E ⊆ F . We may assume that ϕ 6= 0.
If every completely bounded map into I has an extension of the same completely bounded norm, then
trivially every completely contractive map into I has a a completely contractive extension.

For the converse let ϕ̃ = ϕ/ ‖ϕ‖cb. Then ‖ϕ̃‖cb = 1 and since I is injective in O1, there exists
ψ̃ : F → I such that ‖ψ̃‖cb = 1. Let ψ = ‖ϕ‖cb ψ̃. It is straightforward that ψ extends ϕ and
‖ψ‖cb = ‖ϕ‖cb ‖ψ̃‖cb = ‖ϕ‖cb.

15.2 Let E ⊆ B(H) be an operator space. Prove that E is injective if and only if there exists a completely
contractive map ϕ : B(H) → E such that ϕ(e) = e for an e ∈ E.

Solution: Assume first that E is injective. Extend the identity map on E to a map ϕ : B(H) → E.
The map ϕ is completely contractive, because the identity is a complete isometry. If e ∈ E, then

ϕ(e) = idE(e) = e. (1)

For the converse let F ⊆ G be operator spaces and let ψ : F → E be a complete contraction. By
composing with the inclusion map j : E → B(H) we get a complete contraction j ◦ ψ : F → B(H).
By Wittstock’s theorem there exists a complete contraction ρ : G→ B(H) such that ρ|F = j ◦ψ. The
map ϕ ◦ ρ : G→ E is completely contractive and

(ϕ ◦ ρ)(f) = ϕ(j(ψ(f))) = ψ(f), (2)

since ρ extends j ◦ ψ and ϕ fixes E.

15.3 Let M ⊆ B(H) be an operator space and let ϕ : B(H) → B(H) be an M -projection with pϕ a
minimal M -seminorm. Assume that u ∈ B(H) is a unitary that commutes with M . Prove that if
γ(x) = u∗ϕ(x)u then pγ is a minimal M -seminorm and γ is a projection onto u∗ϕ(B(H))u. Prove that
if ψ(x) = ϕ(u∗xu) then pψ is a minimal M -seminorm and ψ is a (possibly different) projection onto
ϕ(B(H)).

Solution: If x ∈M , then
γ(x) = u∗ϕ(x)u = u∗xu = u∗ux = x. (3)

This shows that γ fixes M . Assume that p is a seminorm such that p ≤ pγ . Note that

pγ(x) = ‖u∗ϕ(x)u‖ = ‖ϕ(x)‖ = pϕ(x), (4)

since u is unitary. Now,
p(x) ≤ pγ(x) = pϕ(x), (5)
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and so by the minimailty of ϕ we have that p = pϕ = pγ . This shows that pγ is a minimal M -seminorm
and from theorem 15.4 that γ is an M -projection. The range of γ is clearly a subset of u∗ϕ(B(H))u.
The fact that,

γ(B(H)) = u∗ϕ(B(H))u, (6)

follows directly from γ(x) = u∗ϕ(x)u.

Next consider the map ψ. If x ∈M , then,

ψ(x) = ϕ(u∗xu) = ϕ(u∗ux) = ϕ(x) = x, (7)

and so ψ is an M -map. Assume that p ≤ pψ and define a p̃(x) = p(uxu∗). Now,

p̃(x) = p(uxu∗) ≤ ‖ψ(uxu∗)‖ = ‖ϕ(x)‖ = pϕ(x). (8)

From the minimality of pϕ we have that p̃ = pϕ. Hence,

p(x) = p̃(u∗xu) = ‖ϕ(u∗xu)‖ = ‖ψ(x)‖ = pψ(x). (9)

Once again by Theorem 15.4 ψ is a minimal M -projection

15.5 Let ϕ : B(H) → B(H) be a unital completely positive map that fixes the compacts. Prove that ϕ is
necessarily the identity map.

Solution: As every operator is a linear combination of at most 4 positive operators, it is enough to
prove that ϕ fixes every positive operator. In fact it is enough to show that ϕ fixes every invertible
positive operator. To see this note that P +εI is invertible for ε > 0 and P ≥ 0. If ϕ(P +εI) = P +εI,
then ϕ(P ) = P , since ϕ is unital.

We will need a Cholesky-type decomposition for positive operators on a separable Hilbert space which
we now describe.

Cholesky Decomposition Let P = (pi,j)∞i,j=1 ∈ B(`2) be positive and invertible.

P =
[
p1,1 A
A∗ B

]
, (10)

with p1,1 > 0. By the Cholesky decomposition described in exercise 3.9 we see that the operator

P1 =
[

0 0
0 B − p−1

1,1A
∗A

]
= P −

[
p
−1/2
1,1 0
A∗ 0

] [
p
−1/2
1,1 A

0 0

]
≥ 0 (11)

Let R1 =

[
p
−1/2
1,1 A

0 0

]
. If we now repeat this process we get a sequence Rk of rank one operators

such that

0 ≤ P −
n∑
k=1

R∗kRk ≤
[

0 0
0 Bn

]
, (12)

where Bn denotes the compression of P to the subspace

Mn := {(xk)∞k=1 : x1 = . . . = xn = 0}. (13)
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Therefore,

lim
n→∞

n∑
k=1

R∗kRk = P, (14)

in the SOT.

Let P be positive. Then there exists a sequence of operators {Rk}∞k=1 such that Rk is rank one,
Kn =

∑n
k=1R

∗
kRk ≤ P for all n ≥ 1 and

∑∞
k=1R

∗
kRk = P in the strong operator topology.

Since ϕ fixes the compacts we see that Kn = ϕ(Kn) ≤ ϕ(P ). Hence,

〈Px, x〉 = lim
n→∞

〈Knx, x〉 ≤ 〈ϕ(P )x, x〉 , (15)

which says that P ≤ ϕ(P ). By choosing a constant α such that αI − P is positive and using the
arguments above we see that

ϕ(αI − P ) ≥ αI − P. (16)

As ϕ is unital we get ϕ(P ) ≤ P .

We now deal with the non-separable case. Let x be in H. Let M be the closed linear span of
{Pnx : n ≥ 0}, which is a reducing subspace for P . With respect to the decomposition H = M⊕M⊥

the matrix of P has the form

P =
[
A 0
0 B

]
, (17)

with A,B ≥ 0. By the Cholesky decomposition we see that there is a sequence {Kn} of positive
compact operators on M which are bounded above by A and converge to A in the SOT. We have,[

Kn 0
0 0

]
= ϕ

[
Kn 0
0 0

]
≤ ϕ

[
A 0
0 B

]
= ϕ(P ). (18)

Therefore,
〈Px, x〉 = 〈Ax, x〉 = lim

n→∞
〈Knx, x〉 ≤ 〈ϕ(P )x, x〉 . (19)

Arguing as in the separable case we see that ϕ(P ) = P .

15.6 Let S ⊆ B(H) be an operator system which contains the compacts. Prove that I(S) = B(H).

Solution: Recall that I(S) is the image of a completely positive map ϕ : B(H) → B(H) which fixes
S. This map therefore fixes the compacts and is unital. By the previous exercise, ϕ must be the
identity map. Therefore, I(S) = ϕ(B(H)) = B(H).

15.7 Let A ⊆ B(`2) be the algebra of upper triangular operators. Prove that C∗e (A) = B(`2).

Solution: Let P be a positive invertible operator. Note that by the Cholesky decomposition described
in exercise 15.5, there exists a sequence of operators Kn =

∑n
k=1R

∗
kRk such that Kn → P in the SOT.

Therefore P = U∗U where U is an upper-triangular operator whose rows are the Rk’s. It follows
that U is bounded and so the C∗-algebra generated by the upper-triangular operators contains every
positive invertible operator. Therefore, C∗(A) = B(`2). By Hamana’s theorem (Theorem 15.16) there
exists a onto ∗-homomorphism π : B(`2) → C∗e (A) which fixes A. If π is not one-one, the kernel of
π, which is a two-sided ideal in B(`2) must contain K(H), the ideal of compact operators, and so
π(K(H)) = {0}. Since A contains non-zero compact operators we see that π is a ∗-isomorphism. We
have

π(P ) = π(U∗U) = π(U)∗π(U) = U∗U = P. (20)

3



Thus, π fixes all the positive invertible operators and must therefore be the identity map. Hence,
C∗e (A) = B(`2).

15.8 Prove that ∂SA(D) = T.

Solution: As A(D) ⊆ C(T) we see that ∂SA(D) ⊆ T. We know that the restriction map r : C(T) →
C(∂SA(D)) given by r(f) = f |∂SA(D) is isometric on A(D). For each z ∈ T, let fz(eiθ) = z + eiθ. It is
clear that ‖fz‖C(T) = 2 and that this is attained at eiθ = z. Also,

∣∣fz(eiθ)∣∣ < 2 at all other points on
the circle. Therefore, r cannot be an isometry on A(D) unless ∂SA(D) = T.

15.9 Prove that if A ⊆Mn, then C∗e (A) is finite-dimensional.

Solution: By Hamana’s theorem there exists an onto, ∗-homomorphism π : C∗(A) → C∗e (A). Being
a subspace of Mn, C∗(A) is finite-dimensional and C∗(A)/ker (π) is ∗-isomorphic to C∗e (A). Hence,
the C∗-envelope of A is finite-dimensional.

15.12 Let {u1, . . . , un} denote the unitaries in C∗(Fn) and let M denote the (n + 1)-dimensional subspace
spanned by these unitaries and the identity I. If A ⊆ M2(C∗(Fn)) denotes the (n + 3)-dimensional
operator algebra

A =
{[

λI x
0 µI

]
: λ, µ ∈ C, x ∈M

}
, (21)

then prove that C∗e (A) = M2(C∗(Fn)). Thus, a finite-dimensional operator algerba can have an
infinite-dimensional C∗-envelope.

Solution: By Hamana’s theorem there exists an onto ∗-homomorphism from C∗(A) → C∗e (A) such
that π(a) = a. We will show that the C∗-algebra generated by A is all of M2(C∗(Fn)) and that this
homomorphism is one-one.

We see that [
0 I
0 0

]∗
=

[
0 0
I 0

]
∈ C∗(A). (22)

If u is one of the generating unitaries, then[
0 0
I 0

] [
0 u
0 0

]
=

[
0 0
0 u

]
∈ C∗(A). (23)

Therefore, M2(C∗(Fn)) = C∗(A).

By matrix factorings similar to the ones used above we can check that π fixes all of M2(C∗(Fn)).
Therefore, π is a ∗-isomorphism and M2(C∗(Fn)) = C∗(A).
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