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2 JACKSON AND JONES

1. Introduction and statement of results. In optical systems, the evolution
of an electro-magnetic field is often modeled by a nonlinear Schrédinger (NLS) equa-
tion; and when more than one field is present, the model is augmented to include two
or more NLS equations, coupled together through the nonlinearity. Solitary waves
may serve as information carriers in such systems, and so an understanding of the
various waves present, as well as their stability properties, is of paramount importance.

The problem of determining the stability of these waves is often as important as,
and perhaps even more interesting than, the problem of existence. If a pulse is not
stable, then any noise in the system or a single imperfection in the initial data may
cause the pulse to degrade. Stable pulses then correspond to pulses that are physically
realizable. In this paper, we introduce a geometric criterion that translates informa-
tion about the process of pulse construction into information about the presence of
positive real eigenvalues for that same pulse. An analysis of this criterion allows us to
characterize the stability properties of known pulses, and also to identify new families
of (potentially stable) pulses that appear when this criterion changes.

The particular model we consider is the following coupled system:

i, + uze + h(uwP)y — w = 0

iw, + Wy + h(uwPHw - rw = 0,

(1)

where 0 < r < 1 is a normalized propagation constant and hi(-) and ha(-) model
the material properties. This model appears in various situations: for instance, both
Haelterman and Sheppard’s model [1] for birefringence in optical fibers, where

ha(luf?,|wl?) = (1=B)ul*+ (1 + B)w|*

® ha(lul?, [wf?) = (14 B)ul + (1 B)luf?

and Ostrovskaya and Kivshar’s model [2] for incoherent beam interaction in a biased
photorefractive crystal, where

2 2
B (Jul?, [w]?) = ha(ul?, [wf?) = —2- 1w
(3) (lul®, ) = ho(lul®, ) = T2 S o)

can be written in this way. Stationary waves of (1) are real-valued, pulse-like solutions
that do not vary with z, and so these waves can be identified as homoclinic orbits in a
related finite dimensional ordinary differential equation. For reasonable incarnations
of the focusing nonlinearity h;(-), there are a pair of one-component stationary waves
of the form (Uy(z),0) and (—Up(x),0) that are independent of the parameter r. For
particular values of r, the tangent spaces of the global stable and unstable manifolds
followed along (Ug(z),0) from z = +o0o and x = —oo, respectively, may coincide;
beyond this r value, a number of additional pulses can be found, including a multi-
component 1-pulse and also N-pulses for every positive integer N. These pulses have
been seen numerically and even experimentally, and recently an analytic description
of this bifurcation was given by one of the authors in [3]. This deeper understanding
of the process of pulse generation in system (1) allows the opportunity for greater
insight into the mechanisms of eigenvalue production in these same pulses.

It has been suggested by Ostrovskaya et al. [4] that the multi-component 1-
pulse described above are generally stable for a range of the parameter r beyond
the bifurcation value. In particular, as r moves away from the bifurcation value,
the corresponding 1-pulse may remain stable even after the total intensity profile
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develops a multi-humped structure. We wish to more deeply understand this stability
and describe a potential mechanism for the eventual instability as r is increased.

Additionally, in [3], the mechanism for multi-pulse production was shown to vary
as the value of r at bifurcation passes through 1/4. We will also investigate the
differences that this variance imposes upon the stability properties of the N-pulses in
these two regimes.

To begin, we consider any stationary wave given by (U(z), W (xz)) for the equation

i'LLz + Uz + hl (|’U/|2, |'LU|2) u - u
i'U)Z + Wy + h2 (|U|2, |w|2) w — rw

0
0.

To proceed in the analysis of solutions of these equations, we first decompose the
equation above into real and imaginary parts. Letting u = u, +iu; and w = w, +iw;,
the governing equations may then be rewritten as the real-valued system

(wr): + (W)ee + M (u + u?, wk + w? )u, - u; =0
(wr): + (Wi)zw + h2 (u + uz,w + w; ) — rw; = 0
(wi): = (U)o — ha(u2+u? w + wf) + u, =0
(wi): — (Wp)az — he(W2+uf,w2+w?)w, + rw, = 0.

Since we wish to study the stability of stationary waves in this system, we are inter-
ested in the behavior of solutions that are small perturbations of a given stationary
wave (U(z), W (z)). Since the stationary wave is real-valued, we can then write this
as

Uy U D1
wr [ _ | W | P
u; 0 rjl
w; 0 a2

We linearize formally by letting € — 0, and arrive at the linear system

(p1)z + (@1)zz + 1 ()@ - @=0
(p2): + (¢2) 2z + h2 (-) @2 — rgqg=0
(q 1)z—(101)m—h1()101 —2U?D1hy (-)pr —2UWD2hy ()p2 + p1 =0
(¢2): — (P2)aa — ha (-) po —2UWDyhy (-) p1 — 2W?Dohy (-)p2 + rp2=0,

where the character - replaces U2, W? simply for typographical space considerations.
Setting

2 hi() 0 10
_ a2z 1
L-=a=* 0" mo|t|or
L= [ M) 0 ] 2UDihi() 2UWDsh () 10
+ 7 da? 0 ha (+) 2UW D1hs () 2W2Dyhy () 0 r |

the linearized equation can be rewritten as

D1 Y4t
P2 _ [ O2x2 —L_ ] P2
a1 L Ly Ooxe a1
qz q2
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Writing v(x, 2) = (p1, P2, ¢1,q2), we study instability by searching for solutions of this
equation of the form v(z, z) = v(x)e** where v(2) is a bounded function with decaying
tails and A is a complex scalar. Of interest then are the eigenvalue equations

L_ q1 Y |: D1 :|
q2 D2
b1 q1

L = A

Tl q2

Explicitly, this is the system

(P1)ee = A — ha()p1 —2U°Diha(-)p1 — 2UWDshi()p2 +  p1
(P2)ez = A2 — ha(-)p2 — 2UWD1hy(-)pr — 2W2Daha(-)p2 + 7 p2
(@)ez = =21 — h()a + q1
(@2)ez = —Ap2 — ha()ge + 7 Q.
Letting (v1,v2,v3,v4) = (p1,P2, q1,¢2) and introducing the variables vs, ..., vs as the
derivatives with respect to z of vy, ...,vs, respectively, we can write this as an eight
dimensional system of first order equations
Og4xa | Taxa ]
4 "=
) v [ Auxa | Oxxq | *
where A4 is given by
1— hi(-) —2U%D1hy(+) —2UWDsh(+) A 0
(5) —ZUWDth() 7‘2 - hg() - 2W2D2h2(') 0 A
-2 0 1—hi(") 0
0 —A 0 T — hg()

This formulation emphasizes the differing dependence on the real and imaginary parts
of the solutions. It is this formulation that we will exploit in order to write down,
and then analyze, the geometric instability criterion in Section 3.

Before doing so, however, it is sometimes convenient to rearrange the variables in
order to better visualize the distinct roles of the two pulse components. To this end,
by reordering the components of the vector v, the matrix Asx4 may alternatively be
written as

1= () = 20°Diha() A ‘ —2UWDsha (") 0

] i\ 1—hi() 0 0

(6) SSUWD () 0 (7l =2 D) X
0 0 —-A r— hg()

When one of the pulse components is zero, the cross terms disappear and this system
is eagsily seen to decouple into a pair of four dimensional systems. This formulation
allows us to easily understand the spectrum of the one-component pulse (Uy(z),0)
and, by continuation, the absence of positive real eigenvalues of the multi-component
1-pulse nearby the bifurcation value.

For either formulation, if there is a bounded solution v(z) of this system associated
with an eigenvalue A with Re(\) > 0, then v(z)e* is an unstable mode of the
linearized equation. Moreover, this eigenvalue problem has a four-fold symmetry;
i.e., if X is an eigenvalue of this system, then so are A, —), and —\, where ~ denotes
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complex conjugation. Hence, the only chance a pulse has to be stable is for its entire
spectrum to be confined to the imaginary axis.

In Section 2, we use the formulation of the eigenvalue equation given by (6) in
order to describe the spectrum of the single-component pulse (Up(z),0) and the multi-
component 1-pulses nearby the bifurcation values. We can completely characterize the
spectrum of the one-component pulse, and a characterization of the spectrum of the
bifurcating multi-component pulses quickly follows (at least nearby the bifurcation
point). In particular, for the nonlinearities h;(-) given above, there are no real non-
zero eigenvalues and the pulses may be stable.

In Section 3, we derive a geometric instability criterion that provides information
about the presence of positive real eigenvalues, in relation to the formulation given
by (5). Using the geometric information given in the bifurcation analysis in [3], we
can begin a characterization of the stability of all of the pulses seen in that paper.
In particular, an analysis of this criterion supports the assertions of the previous sec-
tion. Moreover, this citerion shows that N-pulses in the regime where the bifurcation
parameter r > 1/4 are all inherently unstable. Startlingly, when the bifurcation pa-
rameter 7 is smaller than 1/4, the resulting N-pulses do not necessarily have any real
positive eigenvalues!

Finally, as the multi-component pulses are continued away from the original bi-
furcation, the instability criterion may change, marking the presence of a real positive
eigenvalue. At the onset of this change, a pair of asymmetric pulses bifurcate from
the original multi-component pulse. In many different models, see Jones [8] or Jack-
son and Weinstein [16] for example, it is the case that beyond such a bifurcation,
the symmetric wave is unstable and the asymmetric waves are stable. In this case
also, the instability criterion provides the possibility of stability for these bifurcating
asymmetric waves.
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Fi1G. 1. The spectrum of the first subsystem (7).

2. Elementary results concerning the spectrum. We are now prepared
to begin our search for eigenvalues for pulses in the coupled nonlinear Schrédinger
equations. For the stationary wave (Ug(z),0) with trivial w-component, the eigenvalue
equation (4) decouples into a pair of 4 x 4 systems

v ]’ 0 0 1 0] [ o
(7) V2 _ 0 0 01 V2
Vs - 1-— hl() — 2U2D1h1 () A 0 0 Vs
Ve -2 1-— hl() 0 0 1 Vg
and
vs |’ 0 0 10 vs |
(8) V4 _ 0 0 01 V4
vr - r— h2(') A 00 vr
Vg -2 r— h2() 00 Vs ]

The spectrum of the stationary wave will then be the union of the spectra of these
two individual systems. These two contributions to the spectrum are described in the
following two lemmas.

LEMMA 1. For the first subsystem (7), the essential spectrum is purely imaginary
encompassing the entire imaginary azis except for an open gap between —i and i, in
particular, o, = {zx +1iy | £ = 0,|y| > 1}. There is an eigenvalue at the origin which
has geometric multiplicity 2 and algebraic multiplicity 4. For the saturable nonlinearity
of the Ostrovskaya—Kivshar problem, there are also a pair of eigenvalues in the gap

on the imaginary axis near the branch points of the essential spectrum. See Figure
1.

Proof. The first system (7) is the usual Schrodinger equation with an intensity—
dependent nonlinearity and the spectrum is well known. The essential spectrum is
defined & la Henry [5], and contains the set of points at which the asymptotic matrix
has eigenvalues on the imaginary axis. It is a quick calculation that the asymptotic
matrix has eigenvalues £+/1 £ i\ and hence X is in the essential spectrum if and only
if either 1 +iX or 1 — i) is a non-positive real number. The point spectrum at zero
is determined by the symmetries present in the system. There is an eigenfunction
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o—©
o —©

F1G. 2. The spectrum of the second subsystem (8) is the union of two reflected components.

(U'(x),0,U"(x),0) associated with the translation invariance of the solution; i.e., if
U(z) is a solution then so is U(x + €) for any e. Similarly, there is an eigenfunction
(0,U(x),0,U’(x)) stemming from the phase invariance; given a solution U(z), U (z)e¢
is also a solution for any e.

Depending upon the specific form of the function h;(-) there may be other point
spectrum as well. For instance, with the saturable nonlinearity used by Ostrovskaya
and Kivshar (3), with saturability parameter s, there will be a pair of eigenvalues in
the gap, one at a distance O(s?) from each branch point, see Kapitula and Sandstede
[6]. O

LEMMA 2. For the second subsystem (8), the essential spectrum is purely imagi-
nary encompassing the entire imaginary azis except for an open gap between —ir and
ir, in particular, o, = {x+iy | x =0, |y| > r}. There are also a finite number of eigen-
values on the imaginary axis, whose distance from one branch point or the other are
independent of r. Particularly, there is a positive descending sequence ro,r1,...,Tk
such that i(r — r;) and —i(r — r;) are eigenvalues, for 0 < j < k. Depending upon
the parameter r, these values may appear either in the gap or embedded within the
essential spectrum. See Figure 2.

Proof. To more readily visualize the spectrum associated with the second system
(8), we make the substitutions A = —iX and 4 = —ivys. This yields the system

Ué’ = r—- h2(~) V3 - 5\ 174
’U~4” = —Avs + r— h2() V4.

We then consider eigenfunctions with the special form 94 = vs, and find the Sturm-
Liouville problem

vy = (r—X) vz — ha(-) vs.

Letting # = r — )\, we arrive at the same equation that was used in the existence
study to identify the points of degeneracy (the bifurcation values) of this same pulse.
In particular, it is a Sturm-Liouville problem and has a finite number of eigenval-
ues fg,71,...,7 corresponding to eigenfunctions with, respectively, 0,1,...,k ze-
ros. Returning to the original variables, the second subsystem has essential spectrum
o. = {z+iy | x =0,y > r} and eigenvalues given by i(r — 7o),i(r — 71),...,i(r — 7).
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Similarly, if we look for eigenfunctions of the form 44 = —wv3, we find the problem
v = (r+A) vs — ha(-) vs.

This provides the other component of the essential spectrum o, = {z+iy | z =0,y <
—r} and eigenvalues given by —i(r — 7o), —i(r — 1), ..., —i(r — 7).

The full spectrum of the second subsystem is made up of these two reflected
pieces. O

It is clear from the analysis above that the degeneracy of the single-component
pulse Ug(z) when r = rg,r1,...,7%, the values that mark the onset of a multi-
component bifurcating pulse, correspond to a conjugate pair of eigenvalues meeting
at zero in the eigenvalue problem for that pulse. If we continue to follow the one-
component pulse Up(z) through one of these values of the parameter r, these conjugate
eigenvalues pull rigidly through each other and continue along the imaginary axis —
indicating that the pulse Up(z) is stable for all ». However, accounting for these near
zero eigenvalues as we follow the symmetric bifurcating multi-component pulses is
critical in determining the stability properties of these pulses in a neighborhood of
the bifurcation at » = ;. The next lemma specifies the fate of the two conjugate
eigenvalues as we follow the bifurcating multi—component pulse.

LEMMA 3. Forr > r;, the bifurcating multi-component pulse has a zero eigenvalue
of geometric multiplicity 3 and algebraic multiplicity 6.

Proof. Recall that the single-component pulse generally, i.e., away from the bi-
furcation points, has an eigenvalue at the origin with geometric multiplicity 2 and
algebraic multiplicity 4. This corresponds to the translation and phase invariances.
However, because of the form of the nonlinearity, the bifurcating multi-component
pulse has a phase invariance associated with each nontrivial pulse component. There-
fore, the two new eigenvalues are locked at zero in order to account for the nontrivial
phase invariance of the (now nonzero) w-component of the bifurcating pulse. O

This provides the somewhat surprising result that, near the bifurcation value
r = r1;, both the single-component pulse Uy(z) and the bifurcating multi-component
1-pulse may be stable, as the near zero eigenvalues at r = r; move along the imaginary
axis in one case and are locked at zero in the other. In neither case do they move
onto the real axis, away from zero.

REMARK 1. Although there are no real positive eigenvalues for the bifurcating
pulse, we have not ruled out the possibility of other unstable eigenvalues (with nonzero
imaginary part) emerging. As desribed above, no eigenvalues with positive real part
appear due to the convergence of eigenvalues at the origin that spurs the bifurcation.
Additionally, any isolated eigenvalues of algebraic multiplicity one in the gap along
the imaginary axis cannot leave this axis because of the four-fold symmetry of the
spectrum in this problem. However, the eigenvalues embedded within the essential
spectrum may leave the imaginary axis regardless of their multiplicity. This possibility
has been studied carefully by Pelinovsky and Yang [7].
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3. An instability criterion and its implications. In this section, we de-
rive an instability criterion for the stationary pulse solutions of (1) and describe its
implications for the stability of the many known solutions.

Recall that the eigenvalue equation can be written as

b1 D1

[ O2x2 —L_ ] P2 | _y | P2

Ly  0O2xo Q1 a1

q2 g2

where
_e  [me) o 10
oo [m@ 0 1 [ 2U2Dih() 2UWDshi () 10

+ 7 da? 0 h2 () 2UWD1h2 () 2W2D2h2 () 0 r ’

Both Grillakis [9] and Jones [8] provide a criterion relating the spectrum of the oper-
ators Ly and L_ with the spectrum of the operator

O2x2 —L_ ]
N = .
[ Ly Oaxe

The operators Ly and L_ are both self-adjoint and hence the spectrum of each will
be contained entirely within the real axis. However, it is not immediately clear how
the spectrum of the operator N relates to the spectra of L, and L_. In particular,
the spectrum of N will not typically be real; as we have seen already, much of it will
lie upon the imaginary axis. We define

n(Ly) = the number of positive eigenvalues of L,
n(L_) = the number of positive eigenvalues of L _
2(L_) = the number of zero eigenvalues of L_

where the eigenvalues are counted including multiplicity. In the case that L, and
L_ are scalar operators, Jones [8] provides an instability criterion, namely, that if
n(Ly) —n(L_-) #0,1, then N has a real positive eigenvalue. The proof is geometric
in nature, and involves a shooting argument in the space of Lagrangian planes A(2).
For higher dimensional systems, Grillakis [9] provides a generalized criterion using a
functional analytic approach. In particular, if we write

Y = [ker(Ly) Uker(L_)]*
and let

f)+ = the restriction of Ly to Y
L=! = the restriction of L= to Y’

then Grillakis’ theorem states that there are exactly
max{n(Ly),n(L=")} - dim(C(L4) N (L)

positive real eigenvalues. Here, C(L) = {y € Y | {Ly,y) < 0} denotes the negative
cone of an operator L. We use Grillakis’ theorem to derive a generalization of Jones’
criterion suitable for our purposes. This derivation parallels the work of Yew [10].
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LEMMA 4. Ifn(Ly)—2(L_) —n(L_) > 0, then N has a real positive eigenvalue.

Proof. To prove this criterion, we must bound the quantities present in Grillakis’
theorem. In particular, to estimate the quantities n(L) and n(L_') we must consider
how projection onto the subspace Y affects the indices. Because L is self-adjoint, the
negative eigenspace of Ly is orthogonal to its kernel ker(L, ), and hence is influenced
only by projection off of ker(L_). At worst, projection off of ker(L_) reduces the
dimension of the negative eigenspace of L, by dim(ker(L_)) = 2(L_) and hence

max{n(Ly),n(@7)} = n(is)

> n(Ly)—2(L-) .

Likewise, at best, projection off of ker(L;) leaves the dimension of the negative
eigenspace of L_ unchanged. Therefore

dim(C(L4) N C(L=") < min{dim(C(Ly)),dim(C(L7"))}
< min{n(Ly),n(L_")}
= n(L7Y)
< n(L-)

and it follows that
max{n(L1),n(E7)} - dim(C(L+) N C(E) > n(Ly) = 2(L-) —n(L-) .
Applying the theorem of Grillakis, the lemma follows immediately. O

This lemma, provides a useful criterion for the instability of a pulse, but does not
imply stability in the case that n(Ly) — 2(L_) — n(L_) < 0. However, each of the
components of this criterion can be read off quickly for the known stationary waves
and hence can provide immediate information concerning the stability of stationary
pulses. Additionally, a change in the value of this criterion along the continuation of
a pulse indicates not only the possible onset of instability, but also a degeneracy of
the pulse, and therefore a further bifurcation of stationary waves.

We will use the condition given in Lemma, 4 to examine the (in)stability properties
of the stationary solutions of (1).

3.1. The one-component pulse, revisited. As an exercise, we can check the
criterion given in Lemma 4 for the single component pulse (Up(x), 0) considered in the
previous section. For this pulse, both of the operators LT and L~ decouple further.
L* is given by

L S Y OB L[ 20Dk () 0] 1 0
T da? 0  ha() 0 0 0 r |
Hence L, can be broken into scalar operators with spectrum that can be determined
by a Sturm-Liouville argument. The first operator

d2
) = O+ 2U2Dy hy () —

has a zero eigenvalue reflecting the translation invariance of the single component
pulse. Moreover, since the eigenfunction U'(z) has one zero, there is exactly one
positive eigenvalue of this operator. The second operator

d2
Lf)—F—th()
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has a non-negative number j(r) of positive eigenvalues depending upon the value of
r. In particular, if r;y; <r <r;, then j(r) =14. So n(Lf)) = j(r).

The operator L_ is given by

KON

and can also be broken into two scalar operators. The first,

2
1 d
L£)=w+h1(')—1,
has a zero eigenvalue associated with the phase invariance of the wave and hence
2(LY) = 1. Since the eigenfunction U(x) has no zeros, there are no positive eigenvalues

of this operator, i.e., n(L(f)) = 0. The second operator,

d2
L(_Q):@'F"W(')_ra

is the same as Lf) in this case and has the same non-negative number j(r) of pos-

itive eigenvalues. L® has a zero eigenvalue only when the pulse solution Up(z) is
degenerate, so z(L(_2)) =1ifr € {ro,r1,...,r%} and z(L(_z)) = 0 otherwise.

So, n(Ly) = 1+ j(r), 2(L-) = 1 or 2 and n(L_) = j(r). Hence n(Ly) —
z(L_) —n(L-) = —1 or 0. Therefore, we do not a priori expect an instability in this
stationary wave. This is, of course, a good sign, as we proved this wave to be stable
in the previous section.

3.2. The computation of n(L;) using the Maslov Index. For any station-
ary pulse in this system, the values n(L_) and z(L_) are easy to compute. As in the
case for the single-component pulse Uy(z) above, the operator L_ decouples as

e[ ]2

For a pulse with two non-trivial components, the two resulting scalar operators each
have a zero eigenvalue associated with the phase invariance of the two individual com-
ponents of the solution, hence z(L_) = 2. The value of n(L_) is then determined by
the number of zeros of the two pulse components themselves. The successful applica-
tion of the instability criterion then depends upon the more complicated calculation
of n(L4).

The key to the calculation of n(Ly) for any pulse is the notion of winding. In
the case above, L decoupled into a pair of scalar evolution equations, where the flow
could be interpretted as occuring on two circles S* x S. The circle has fundamental
group 7Z, and so the winding number is straightforward to define and is equivalent to
the number of nodes of the zero-eigenfunction.

Unfortunately, for multi-component pulses, L, does not decouple in this way and
the flow is naturally interpretted as occuring on the Grassmannian space G2(R*), i.e.,
the set of two-dimensional subspaces within R*. This space has fundamental group
Z4 and so a notion of winding is not immediately available. Fortunately, because of
the Hamiltonian structure of (2) and (3), solutions of L also preserve Lagrangain
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planes, and so can be tracked in the Lagrangian subspace A(2) of G?(R*); and A(2)
has fundamental group Z.

For calculations in these spaces, we make use of the exterior power space A2(R*).
This space is six dimensional and we can explicitly derive the system in A%(R*) induced
by the eigenvalue problem for L, given in (5):

Pl, = Pu-Py
Pl = —f()Pi
(9) le4 = fC(')P12
Py = Pu+((r+A)— ful)Pr
Pyy = =Py —((1+2X) = fu())Pr2
Py = (14 A) = ful)Pia = ((r +A) = fu () Poz + fe(*) (P13 — Paa),

where f,, fu and f. have been introduced in place of hy(-) + 2U2D1hy(-), ha(-) +
2W2Dshsy(-) and 2UW Dy hs(+), respectively, for the sake of brevity. Not every set of
coefficients P;; corresponds to a point in Go(R?). The set of numbers P;; are the
Pliicker coordinates if the following Grassmannian condition is satisfied:

(10) P3Py — Pi3Poy + P1yPo3 =0 .
A quick calculation indeed shows that
(P12Psy — PisPay + PraPo3)' = 0.

Additionally, because (1) is Hamiltonian, (9) also preserves Lagrangian planes, A(2).
This invariance is given by the following Lagrangian condition:

(11) Pi3+ Py =0.
An even quicker calculation shows that
(P13 + Poy) =0

and hence both the Lagrangian and the Grassmannian conditions will continue to be
satisfied as x evolves, if only the initial conditions satisfy them.

We can therefore use the Maslov index to count the number of real positive
eigenvalues of L. Because A(2) is a 3—-dimensional manifold, a concrete visualization
of this space and the winding within it can be given. In particular, A(2) can be seen
as S? x [—1, +1] where the spheres at +1 and —1 are identified via the antipodal map
(see Jones [8]). Specifically, A(2) is a fiber bundle over S! with fiber S? and clutching
function the antipodal map. The fundamental group is Z and the projection onto
S! gives the winding — this winding is the Maslov index. In order to exploit this
winding, it is natural to use the covering space of A(2) — this covering space is S? x R
and will be denoted C(2).

The eigenvalue problem for L, can then be reformulated as a shooting problem
in A(2). Before detailing this shooting problem, we require the notion of the train
of a point ¢ € A2, We define the train of 1, denoted D(1)) to be the set of all
¢ € A(2) that have a nontrivial intersection with 1, where 1) and ¢ are considered as
two-dimensional subspaces of R*. For any ¢ € A(2), the train D (1)) can be lifted to
D(«) in the covering space C(2). In C(2), D(¢) has the appearance of the union of
infinitely many cones, joined base to base and vertex to vertex. Each vertical slice is
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F1a. 3. The covering space C(2) for the space of Lagrangian planes A(2).

a disk and the fiber S? is obtained by identifying the boundary of this disk to a single
point. D (1) partitions C'(2) into an infinite number of components, see Figure 3.

For a fixed train D(f), any curve in A(2) starting at a point o and ending at
a point 4’ can then be lifted to C(2). We can then define the Maslov index of a
path starting at a point o and ending at @', for a ¢ D(J) as either: the index of
intersection of this path with D(8) if 8 # ', or 1 + the index of intersection of this
path with ﬁ(ﬁ) if 3 = f'. We are required to distinguish between paths ending at
the vertex § and paths ending at other points because the intersection of a path with
the vertex is two dimensional, whereas intersections with other parts of the train are
one dimensional.

The shooting argument is then clear. For a fixed A € R, we can identify the two
points W* € A(2) associated with the unstable subspace of the asymptotic system
and W3 € A(2) which is associated with the stable subspace. Lifting W* to a point
W* in the covering space, A is an eigenvalue if and only if there is a connecting orbit
between W* and ﬁ(Wi)

Letting I(\) denote the Maslov index of the path in C(2) with a-limit set W
for a particular A\, we have the following lemmas.

LEMMA 5. If Ay < Ag, then the number of eigenvalues X € [\, \2) equals I(\) —
().

LEMMA 6. The number of eigenvalues \ € [Ay,00) equals I(A1).

The fact that I(A1) — I(A2) provides a lower bound for the number of eigenvalues
is clear. Equality requires a monotonicity argument — we defer to Deng [11] in this
matter. The second lemma is a result of the loss of ellipticity of the transient system
for A large.

The Maslov index I(X) is related to the horizontal distance traveled by a path in
C(2) projected onto R (the covering space of the fiber bundle S!). However, some
information is lost in this projection, as two points in the same fiber may be in separate
components of C(2) (they may lie on opposite sides of the train) and the Maslov index
of paths ending at these two points will differ by 1. However, because the equation
for L reduces to the equation of variations when A = 0, we know a priori that A =0
is an eigenvalue (this eigenvalue is associated with the translation invariance of the
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stationary wave). Therefore, the orbit with a-limit W* connects exactly with the

train lA)(W_i) In particular, we can compute the Maslov index I(0) exactly using
only the angular information associated with the aforementioned projection onto R.
And n(Ly) = I(0) — 1.

The space of Lagrangian planes A(2) can be represented as a homogeneous space:
A(2) = U(2)/0O(2), where U(2) is the group of unitary matrices and O(2) is the
subgroup of real orthogonal matrices (see Arnol’d [14]). With this view, the desired
projection onto S is achieved via the map Det 2(-). The angular equation associated
with the map Det 2(-) is then

_; ImDet %(+)

=tan 1 ———— 7
b= tan ReDet 2(+)

In Bose and Jones [15], this formulation is used to derive formulae for x and &' in
Pliicker coordinates:
1 2(Piy — Po3) (P12 — P34)

(Pra — Pp3)? — (P12 — Pyy)?

k = tan

and

W = 2Py = Poy)(Pra — Po3) — (Py = Pp3)(Pro — Psa)
(Pra — P23)? + (P12 — Ps4)? ’

We can use these expressions for x in order to quickly evaluate I()), and therefore
n(Ly), numerically for any stationary wave.

Moreover, for the bifurcating stationary waves (multi-component 1-pulses and N-
pulses) given by Jackson [3], we can determine I(\) analytically. Near the bifurcation
value, this work demonstrates how the global unstable manifold, W*, intersects trans-
verse sections Y, and X, defined near the origin on successive excursions near the
one-component pulse (Up(z),0) and its reflection (—Up(z),0). In particular, we can
pick out points in these sections associated with the passage of each stationary pulse.
The evolution of the orbit with a-limit set W* can then be uniquely identified since
it must be spanned by 1) a vector transverse to the section in the direction of the flow
and 2) a vector tangent to the global unstable manifold W* within the section. Using
this infomation, we can compute the total winding I(0) of the orbit with a-limit set
W throughout its evolution. This will be pursued for the multi-component 1-pulse
and the N-pulses in the following subsections.

3.3. The multi-component 1-pulse, revisited. As the parameter r increases
through a bifurcation value r = r;, the one-component pulse Up(x) passes through
a degeneracy. The orbit in C'(2) with a-limit W* terminates at the vertex of the
train for this value of r. Because L decouples into two smaller systems in this case,
and winding along Up(z) in S! is monotonically decreasing in 7, we easily calculate
that the Maslov Index I(0) drops from 4 + 2 to ¢ + 1 at this same point for the one-
component pulse, as in the previous section. However, note from Figure 4 that the
multi-component pulse bifurcating from Uy (z) as r passes through r; does not observe
this relaxing of the winding and, along this pulse, the tangent space of the global
unstable manifold rotates 7 radians farther than it does for the single-component
pulse. Therefore I(0) =i + 2 in this case and so

n(L+) —2z(L_) —n(L )= (i+2)— (2)— (i) = 0.
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Fi1G. 4. A view of the winding from the bifurcation picture for the 1-pulses. The orbit in C(2)
with a-limit W* rotates farther for the bifurcating multi-component 1-pulse than it does for the
continuation of the one-component pulse.

In particular, this pulse may be stable.

Note that if, as we continue the multi-component 1-pulse farther from the bifur-
cation point, this pulse itself becomes degenerate, the associated orbit with a-limit
set W¥ in C(2) will again intersect the vertex of the train. On opposite sides of
the degeneracy, then, we expect this orbit to have different values of the Maslov in-
dex I(0) and hence different values for n(L, ). Whereas, pulses bifurcating from the
single-component pulse Up(x) when it became degenerate had a shot a stability, since
the change in the Maslov Index was offset by a corresponding change in z(L_), bi-
furcations from pulses with two non-trivial components do not share the same fate.
In these cases, z(L_) is already fixed by the phase invariances of the two nontrivial
components and an increase in I(0) (and therefore n(L4)) is not offset and will likely
trigger an instability. We will examine this possibility in a later subsection.

3.4. Multi-component N-pulses, for 1/4 < r; < r. As seen in Jackson [3],
the mechanism for N-pulse creation varies depending upon whether the bifurcation
occurs when r < 1/4 or r > 1/4. Depending upon the nonlinearities h;(-) and ha(-),
either case is possible.

Because any N-pulse is required to alternate in exactly one of its components
between successive pulses, the N-pulse has n(L_) = iN + (N — 1). Additionally,
we still have z(L_) = 2. We will now calculate n(L4) by carefully determining the
winding number I(0) along the pulse.

For each N, we find an N-pulse Un(z) by identifying an intersection of (@, o
@near)(N ) o P, Wi, with the local stable manifold W2 . In particular, we consider
the manner in which the global unstable manifold W* of the origin intersects consec-
utive sections Yot and i, (and their reflections Sy ¥4, and S;Y;, defined near the
origin, following successive excursions near the one-component pulse (Ug(z),0) (and
its reflection (—Up(z),0)).

In order to compute I(0), we initialize a vector p(z), based at the point on the v,,-
axis in X,y associated with the N-pulse, tangent to the v,-axis so that W* is spanned
by the vector Uj (z) tangent to the pulse and p(z). Evolving the 2-form p(z) AU (z)
via (9) between Yoy and Xi,, we note that when it reaches ¥i, this 2-form remains
tangent to ®g, W%, and has undergone the same degree of winding as the 1-pulses
in this regime. In particular, ®¢,W¥. connects the origin (representative of the
single-component 1-pulse) and a point on the ws-axis in ¥, (this point represents the
multi-component 1-pulse). The projection of p(z) onto ¥, continues to be tangent
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F1c. 5. A view of the winding from the bifurcation picture for the N -pulse with bifurcation
value r; > 1/4. The orbit in C(2) with a-limit W* gains i + 1 winds with each ezcursion.

to @par W), and to point away from the origin.

However, as the single-component pulse is near degeneracy, the impending pas-
sage near the origin between the sections ¥, and 57X,y may act to either increase
the winding (as with the multi-component 1-pulse) or decrease the winding that has
occured (as with the single-component 1-pulse) along the nearby N-pulse. This wind-
ing can again be determined by considering the bifurcation mechanism itself. For
r > 1/4, curves approaching the origin transverse to the wg-axis in ¥;, are taken
far from the origin in S134y¢. Similarly, a curve approaching any other point along
the w,-axis in ¥, is taken to a curve tangent to the w,-axis and approaching the
origin in S Xoy¢. In particular, the pertinent portion of the curve ®pear 0 ®gar Wi, —
the part containing the point corresponding to the N-pulse — approaches the origin
tangent to the ws-axis in S; ¥yt and the projection of p(x) onto S; Xyt is tangent to
D rcar © Prar Wit and now pointing toward the origin. As seen in Figure 5, the N-pulse
therefore has winding of 7 + 2 associated with this (and subsequently, each further)

excursion along the pulse +Uy(x) and hence
n(Ly)—2(L-)—-n(L_)=N@{E+2)—2-(GN+(N-1)=N-1.

In this regime, then, the alternating N-pulses are necessarily unstable, with at least
N — 1 positive eigenvalues.

3.5. Multi-component N-pulses, for r; < r < 1/4. The calculation in this
regime begins in a similar manner, since we again have n(L_) = i{N + (N — 1) and
z(L_) = 2. It remains now to determine n(L4) by calculating the winding number
I(0) along the pulse.

As before, we follow successive iterates of the unstable manifold W* of the origin
along the N-pulse Un(z), and note the winding of the manifold spanned by p(x) A
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Fic. 6. A view of the winding from the bifurcation picture for the N -pulse with bifurcation
value 7; < 1/4. The orbit in C(2) with a-limit W¥ does not see as much winding in this regime,
as the pass near the origin (the “glueing”) does not reinforce the winding of the 1-pulse. The orbit
gains only 1 winds with each ercursion.

Uj(z), where p(z) is again initialized based at the point on the v,-axis in gut
associated with the N-pulse, tangent to the v,-axis.

Evolving the 2-form p(z) A Up(z) via (9) between Yoy and Xin, this 2-form
remains tangent to ®g.. W2, when it reaches ¥, and has undergone the same degree
of winding as the 1-pulses in this regime. ®¢,, W%, connects the origin (representative
of the single-component 1-pulse) and a point on the ws-axis in ¥i, (representing the
multi-component 1-pulse). The projection of p(x) onto i, continues to be tangent
to @ Wi, and to point away from the origin.

In this case, however, the passage near the origin between the sections ¥j, and
S1¥out acts to decrease the winding. For r < 1/4, curves approaching the origin
transverse to the ws-axis in ¥, are mapped to curves approaching the origin tangent
to the w,-axis; and a curve approaching any other point along the w-axis in ¥, is
taken to a curve tangent to the w,-axis in 51Xyt In particular, the pertinent portion
of the curve ®pear © ®rar W approaches the origin tangent to the w,-axis in Sy Xqy¢
and the projection of p(x) onto S1Xoys is tangent to Brear © Prar Wi, and continuing
to point away from the origin. As seen in Figure 5, the N-pulse therefore only has
winding ¢ + 1 associated with this (and all but the final) excursion along the pulse
+Up(z). Since the final excursion ends with the the base point on the w,-axis, and
the global unstable manifold W* transverse to it, the final excursion has winding i+ 2.
See Figure 6. Therefore,

n(Ly) —2z(L-)—n(L_)=[(N-1)@E+1)+(@+2)]—-2—-[N+(N—-1)]=0.

Amazingly, in this regime, then, the alternating N-pulses are not necessarily unstable!!
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F1c. 7. There are a pair of asymmetric multi-component pulses that bifurcate from the sym-
metric multi-component pulse when it becomes degenerate. Shown in this figure is the symmetric
pulse when r = 0.48 and one of the bifurcating pulses for r = 0.50, r = 0.52 and r = 0.5275. (The
other is simply its reflection in the vertical plane.)

3.6. A secondary bifurcation of asymmetric pulses. It is straightforward
to use the expression for k given in (3.2) to numerically calculate I(0), and hence
n(Ly) for the 1-pulses seen so far. We note especially that I(0) may increase as we
follow the multi-component 1-pulse away from the initial bifurcation. Beyond such
a point, the multi-component 1-pulse will be inherently unstable, with at least one
positive eigenvalue.

However, the change in I(0) signals the passage through degeneracy of the multi-
component 1-pulse, and we expect a further bifurcation of pulses at this point. In
this case, since the multi-component 1-pulse is not in orbit-flip configuration, we do
not expect a cascade of N-pulses. The results of Knobloch [12] apply in this case and
we see a pair of asymmetric pulses bifurcating from the (symmetric) multi-component
1-pulse. Such bifurcating pulses are shown in Figure 7.

Additionally, these new asymmetric multi-component 1-pulses inherit the winding
number of the symmetric multi-component 1-pulse from before the bifurcation, and
hence these pulses may, in fact, be stable! The winding numbers for the symmetric
multi-component 1-pulse and the asymmetric pulses bifurcating from it are shown in
Figure 8.
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Fi1Gc. 8. Numerical computation of n(Ly) for the multi-component 1-pulse (above,left) and
the asymmetric multi-component 1-pulse bifurcating from it (below,right), at r = 0.50, after the
symmetric pulse has passed through degeneracy. The angular variable k(x) is shown for increasing
values of the eigenvalue parameter \. X\ values for which \ is an eigenvalue are seen as steps — for
A walues on either side of these steps, the orbit in C(2) goes to different components of the train.
The highest “half-step” is associated with the eigenvalue A = 0. For the symmeltric pulse, a new
eigenvalue has appeared with A\ small. Now I(0) = 6, and hencen(Ly)—z(L_)—n(L_)=5-2-2=1
and the multi-component 1-pulse is necessarily unstable in this regime. For the asymmetric pulse,
we still have I(0) = 5, and hence n(Ly) — 2(L—) —n(L-) = 4 —-2—2 = 0. The asymmetric
bifurcating pulses may indeed be stable!
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