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Abstract of “Multiple Pulses in Nonlinear Optical Systems,” by Russell K. Jackson, Ph.D.,
Brown University, May 2003

In the first part of this thesis, we consider a system of two Schrédinger equations coupled
together through the nonlinearity; models of this sort have been developed to describe
the effects of birefringence in an optical fiber as well as the incoherent interaction of two
optical beams in a slab. Mathematically, localized pulses in a fiber and beams in a slab
are considered as standing waves. Such waves are important as information carriers —
and the profiles of these waves and their stability upon perturbation are of great interest.
We describe a family of multi-component pulses, as well as multi-component N—pulses,
that bifurcate from a simple one-component stationary wave as a system parameter is
increased. We also develop numerical and analytical tools to analyze the stability of these
waves. It is shown that the bifurcating multi-component pulses are stable for a range of
parameters near the bifurcation point and a geometric mechanism is provided that can
spur an eventual instability. A related criterion is used to show that all of the bifurcating
multi-component N—pulses are unstable.

In the second part of this thesis, we consider a model for pulse propagation in the regime
of strong dispersion management; this model takes the form of a Schrédinger equation with
a nonlocal nonlinearity. We approximate and study dispersion managed solitons using
their characterization as minima of an averaged variational principle. This approach helps
to explain the persistence of the dispersion managed soliton in the regime of negative
residual dispersion and the mechanism for its disappearance as the residual dispersion
decreases further. We also decribe the discovery of a bisoliton that has implications for

increased data transmission rates and more advanced coding schemes.
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Part 1

Pulses in Nonlinearly Coupled

Schrodinger Equations



Chapter 1

Introduction

The nonlinear Schrédinger (NLS) equation has received significant attention as a model
for pulse propagation in varying optical contexts. In optical fibers, it can describe the
travel of a temporally localized pulse, possibly broadening due to chromatic dispersion.
In a photorefractive slab, it describes a spatially localized beam, possibly broadening
because of diffraction. Under the right circumstances, the broadening or widening seen in
these cases can be counteracted exactly by the nonlinearity of the material properties. In
certain cases, a solitary wave (called a soliton) is formed. For the cubic NLS equation, the
evolution of such initial conditions can be calculated explicitly using the Inverse Scattering
Transform and it can be shown that the wave is stable, see Zakharov and Shabat [1],
Ablowitz and Segur [2].

Whether such a wave survives the inclusion of additional effects is always of great inter-
est. Such additional terms might model higher order nonlinear effects such as the Raman
effect, the Brillouin effect or self-steepening, saturation of the nonlinearity, attenuation

and periodic amplification, birefringence, dispersion management or even random effects,



see for instance [3]. The first question in these cases is whether a solution like the original
NLS soliton persists for the perturbed equations (and perhaps whether or not trains of
such pulses also exist). If such solutions do exist, then the follow—up question of stability
arises. WIill initial conditions close to the pulse solution evolve similarly to the pulse or
will small variations destroy the wave?

Another important extension is the inclusion of two or more fields interacting within
the same medium. Birefringence (models accounting for the two polarizations of light
simultaneously within a fiber) requires such a model. Other phenomena that force the
consideration of multiple fields include systems incorporating Wavelength Division Multi-
plexing (WDM) or models for all-optical switching. In the first part of this thesis, we will

consider a system of the form

i+ guer + ha(fulwP)u — w =0

(1.1)
Wy  + %wm + ho(jul? |wPw — rw = 0,

where 0 < r < 1 is a normalized propagation constant and hi(-) and ha(-) model the

material properties. This general form for h1(-) and hs(-) encompasses models for several

different phenomena. For example, Haelterman and Sheppard’s model [4] for birefringence

in optical fibers can be written in this form; as well as Ostrovskaya and Kivshar’s model

[5] for incoherent beam interaction in a biased photorefractive crystal. We denote the

evolution variable by “¢”, although depending on the model, this variable may not actually
be time.

Stationary waves of this system are real-valued, pulse-like solutions that do not vary

with t. As such, they may be considered as homoclinic orbits — nontrivial intersections



between the global stable and unstable manifolds of the origin — in a system of ordinary
differential equations given by

tuge + h(uw)u — uw = 0
(1.2)

%wm + he(Jul?, |w)w — rw = 0

which may also be written as a four—dimensional first—order system. There are various
stationary waves present in this system, depending upon the parameter r. For any value
of 0 < r < 1 there are two elementary solutions: a fast solution ¢,(z) = (U(z),0) and
a slow solution g (z) = (0, W(x)) (which depends upon the parameter r). We call the
solution g, (z) “fast” for two reasons: first, the propagation constant 1 is larger than the
constant r of the other solution, and second, the tails decay to 0 at a faster rate than those
of the “slow” solution. Depending upon the peculiarities of the phase space, we might
expect other more complicated solutions to be found nearby for various special values of
r. For instance, when r = 0, the slow pulse ceases to exist and the origin has a pair of zero
eigenvalues. This is one potential bifurcation value. At the other extreme, when r = 1, the
problem displays a resonance in which all of the eigenvalues at the origin have the same
magnitude. This is a second possible bifurcation value, and has been studied by Yew,
Sandstede and Jones [6]. Slightly more subtle is the possibility of intermediate bifurcation
values: parameters r* at which the fast stationary wave solution g, (x) is degenerate, i.e.,
the global stable and unstable manifolds of the origin are tangent to one another along
the pulse. This is the scenario that we will consider in the first part of this thesis.

We use a simple shooting method for various values of the parameter r to approximate

pulses in the above equations. Numerically, we see a rich variety of stationary waves in



this system. Nearby the parameters r* mentioned above, we see multi—-component pulses
with a small second component (that looks like a guided mode of the first component)
bifurcating from ¢, (z). Additionally, we also see families of multipulses that look like
widely spaced concatenated copies of the bifurcating multi-component pulses. With these
numerically generated pulses in mind, we give a proof of the existence of alternating N—
pulses for r* < r < 1, where r* is any point of degeneracy as described above, under fairly
general conditions.

One reason these multi-component solutions are of such great interest is that they
appear to be stable for a range of parameters near r*, see Ostrovskaya et al. [7]. As such,
this provides the possibility of stable pulses that have multiple peaks in their intensity
profile. It had long been believed that all such optical pulses would prove to be unstable.

We use a numerical implementation of the Evans function to investigate the location
of eigenvalues for these pulses. Indeed we verify the numerical result of Ostrovskaya et al.
that the multi-component solitons have spectrum lying entirely on the imaginary axis for
a range of the parameter r beyond the bifurcation point 7*.

As 7 increases, Ostrovskaya et al. [7] observe a pair of eigenvalues for the multi—
component pulse that bifurcate from the end of the essential spectrum into the gap on
the imaginary axis, eventually passing through the origin and onto the real axis, at which
point they generate an instability. In one case, Ostrovskaya et al. predict the onset of
this instability using the Vakhitov—Kolokolov stability criterion (also called the Weinstein
criterion [8]). However, other pulses show instabilities that are not predicted by this
condition. A primary goal of this thesis is to understand the origin of these eigenvalues

and the mechanism by which they generate this delayed instability.



To this end, we will first consider a toy problem in which a series of eigenvalues
bifurcate from the branch point of the essential spectrum as a parameter is changed. Such

a problem is

A0 X[—M,O] (:E) 0

For this simple problem, we can compute the Evans function E,()) explicitly and can
even continue this function across the essential spectrum to locate zeros of an extended
Evans function. In fact, we can extend the Evans function to an analytic function on a two
sheeted Riemann surface. This allows us to pinpoint not only eigenvalues, but the location
of potential eigenvalues which are seen as zeros of the extended Evans function on a two—
sheeted Riemann surface. Of particular note is that the eigenvalues that eventually emerge
through the branch points of the essential spectrum in this example are not originally
embedded within the essential spectrum, but are zeros of the extended Evans function on
the second Riemann sheet. Indeed, we see an infinite family of these zeros and observe
the mechanism by which they may become eigenvalues for increasing u.

The eigenvalue problem for a standing wave of equation (1.2) with respect to the full
coupled PDE (1.1) is, of course, much more complicated than the toy problem above.
However, for the fast elementary solution (U(z),0), the eigenvalue problem decouples into
two simpler problems: one is a one-dimensional nonlinear Schrédinger equation — for usual
functions h;(-) the spectrum of this operator should be well understood; the second is an
eigenvalue problem which can be reduced to a Sturm-Liouville problem much like the toy

problem (1.3), except with the fast pulse U(z) itself as potential. Thus we can isolate



eigenvalues (and potential eigenvalues) at a bifurcation point r = r*. We then show the
following as we follow the bifurcating multi-component pulse for increasing r to better

understand the mechanism for instability:

1. The bifurcating multi—-component pulse cannot have any positive real eigenvalues

for some range of the parameter r above r*.

2. The multi-component pulse itself may pass through a degeneracy as r is increased
further. This can be detected using the Pliicker coordinates to follow the tangent

spaces of the stable and unstable manifolds in an auxiliary system.

3. Using the numerical Evans function, we verify that the onset of instability of the
higher order mode in Ostrovskaya and Kivshar’s problem corresponds to the moment

of degeneracy of the pulse.

4. Using the Maslov index and an instability criterion as in Jones [9] or Grillakis [10],
we relate the winding of the tangent space of the stable manifold of the pulse to
the number of positive eigenvalues on the real axis. In this context, it is clear that
the passage through degeneracy changes the Maslov index of the pulse and therefore
changes the number of eigenvalues expected on the positive real axis. Addition-
ally, this criterion allows us to conclude that all true N-pulses accompanying the

bifurcation are unstable.

In this way we have tied the stability characteristics of the multi-component pulse to the
topological properties of the pulse itself. This should go a long way toward demystifying

a mechanism for the unexpected delayed instability of these multi—-component pulses.



Chapter 2

On the existence of stationary

waves

In models of physical phenomena, clues concerning the evolution of an initial state can
be gleaned from the identification of coherent structures within that system — structures
that either serve to organize the overall flow or contain information about the asymptotic
behavior of typical orbits.

In systems modeled by partial differential equations (PDEs), these structures will often
be nonlinear waves. As individual solutions (or families of solutions) that never change
their shape and propagate in a fixed direction, these nonlinear waves serve as information
carriers in a system. They provide permanent structures in the phase space and may
evolve simply by spinning (standing waves), by translating in a fixed direction (traveling
waves) or even by never moving at all (stationary waves). The importance of these waves in

physical systems is often a function of their stability; how does a wave behave when a small



perturbation is introduced either to the initial data or to the governing equations? Waves
that are not stable in a mathematical sense will not be realizable in a physical system,
as imperfections in the system may destroy the wave. The fundamental mathematical
challenge is then to develop techniques to find these nonlinear waves and determine their
stability.

Complicated physical systems are often governed by multiple evolution equations cou-
pled together. These higher dimensional systems pose problems which do not arise in
simpler low dimensional models, where analysis can often be reduced to flow on an annu-
lus or a Mobius band, see Sandstede [11] or Chow, Liu and Yi [12]. In this section, we
identify and analyze a particular bifurcation occurring in nonlinearly coupled Schrodinger
equations which leads to multi-component and multi-hump solutions.

The nonlinear Schrédinger equation provides a model for many different phenomena,
in the field of optics. It describes temporally localized pulses that serve as information
carriers sending streams of zeros and ones down a fiber. It also models the spatially
localized beams in a photorefractive slab that provide a possible method for realizing all-
optical switching. When more than one field is present, for instance the two copropagating
polarizations present in birefringent fibers or two incoherent beams in a slab, the model

will take the form of a system of coupled Schrédinger equations.

The system.

We consider the following system:

i+ guer + ha(ulwu — w =0

iwe + jwee + he(jul’ JwPw — rw =0,
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where 0 < r < 1 is a normalized propagation constant and h; and ho describe the ma-
terial properties, which depend upon the situation being modeled. In the models we will
consider, we assume that the material properties vary only through the intensity of the
fields and the coupling between the fields is strictly through the nonlinear terms, hence
we write the nonlinear terms as k1 (|u|?, |w|?)u and ho(|u|?, |w|?)w. Moreover, we assume

that these equations have a Hamiltonian structure, and thus we could write them as
hi(Jul?, lw*)u = O0H/Ou
ha(ju?, |lw?)w = OH/ow.

Two important models that display this structure can be found in

1. Haeltermann and Sheppard [4], where

1-B 1+B 1—-B
_ 4 + w2 4

H g U 7] ’w—I—Tw, and

2. Kivshar and Ostrovskaya [5], where

H= % (—In(1 + S(u® + w?)) + S(u® +w?)).

A standing wave is a real-valued solution of a PDE, decaying as x — 4oo, that is

independent of t. As such, a standing wave can be interpreted as a homoclinic orbit of
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the following system of coupled ordinary differential equations:

%um + hi(u?w?)u — uw = 0

1

SWep + hao(Ju)?, |w> )w — rw = 0.

which we further write as the four dimensional first order system

u = py
v (2.1)
pl, = —2hi(ju? |w?)u + 2u

Py = —2h2(|u|2, |’w|2)w + 2rw.

For convenience, we sometimes abbreviate this system as simply

where v € R* and f : R* - R%.

Properties of the ODE.
The assumptions above lead to several nice properties of the ordinary differential equa-

tions found in equation (2.1). We will list these properties here.

Property 1. The system (2.1) is Hamiltonian, i.e., there is a function H (u,w,py,Pw)
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such that
u = —gp%
w = _t’(??zTIi
o= G
Py = G

Property 2. The system (2.1) is time-reversible, i.e., there exists an involution R : R* —
R* with R? = I such that f(R(u,w,py,pw)) = —R(f (4, w, py,pw)). In particular, R acts

as R(’U,, wapuap’w) = (’U,, W, —Pu, _pw)

Property 3. There are additional symmetries S; and S such that f(S;(u,w,py,pw)) =
Sif (u,w, pu, pw)- These are S1(u,w,pu,Pw) = (—u, W, —pu,pw) and Sa(u, w, pu,pw) =

(ua —W, Pu, _pw)-

It follows from Property 3 that the two—dimensional subspaces U = {(u, w, py, pw)|w =
pw = 0} and W = {(u,w,py,pw)|lu = p, = 0} are invariant. These are the subspaces
corresponding to one of the two fields being identically zero, in which case the system
reduces to a simple Hamiltonian vector field in a plane. In the subspace U, there is a
symmetric pair of homoclinic orbits: we call the solution with positive u—part g,(x); the
other solution is then S1g,(z). Note that these solutions are independent of the parameter
r. Likewise, when r > 0, there is a symmetric pair of homoclinic orbits in W that can be

written as g, (z) and S2qu ().

Here we also take note of several important properties of the solutions g,(z) and

SlQu(x)'
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Property 4. The elementary pulses g, (z) and S1g,(z) in U are in orbit—flip configuration.
That is, they approach the origin from a direction other than the one associated with the

eigenvalues of smallest real part.

Property 5. Depending upon the functions hi and hg, for particular values of the
parameter r between 0 and 1, the pulses g,(z) and Sigy(z) in the subspace U may be

degenerate, i.e., dim(T, ) W*(0) N Tg, (-)W?*(0)) > 1.

Property 4 follows easily because the linearization of the vector field at the origin has
eigenvalues {—1, —/7,+/r, 1} and the invariant subspace U is spanned by the eigenvectors
associated with +1. Because Property 5 is a property of the tangent spaces about a pulse,
such parameter values can be found by studying the linearization about either of the pulses

qu(z) or S1qy(x) in question. We elaborate below.

Degeneracy and Sturm-Liouville.
We write the solution g,(z) in component form as (U(z),0,U’(z),0). Linearizing

equation (2.1) about the pulse g,(x) yields

U = Pu
w = Pw

(2.2)
pl, = 2(1—h1(U?(x),0) —2U%(x)D1h1(U%(z),0))u

P, = 2(r— hao(U?(z),0))w.
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This decouples into the two smaller systems

w = Pw

pl, = 2(r — ho(U?(x),0))w.

The first system (2.3) captures the trivial intersection of the tangent spaces induced by the
existence of a homoclinic orbit. This is seen as the bounded solution (U’'(z),0,U"(z),0).
The degeneracy described in Property 5 can then be interpreted in terms of a simultaneous
bounded solution of the second system (2.4). This is a Sturm-Liouville problem, the
analysis of which is well known — for completeness and for comparison in later sections we
include a geometric analysis here. We simplify the system (2.4) for consideration in two
ways. First, since these equations are linear, we projectivize the flow, which allows us to
consider an equivalent one dimensional problem. Second, since we are interested in the
behavior of orbits as x — +00, we compactify the phase space. In this way, the bounded
solutions we seek can be considered as connecting orbits between the appropriate points
on opposite ends of a cylinder. We projectivize the system by introducing the radial and

angular variables

pPo= wltp
0 = tan"! (’;U—“”)
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It is a simple exercise to show that this yields the equivalent system

po= 5 (L+20r — he(U%(2),0) sin(26) p

0 = 2 (r—hy(U%(z),0)) cos?(f) — sin?(8).

Note especially that the equation for € is independent of p. We can therefore consider the
second equation of (2.5) as a flow on the real projective space RP! x R.

Next, in order to clarify the asymptotic behavior, we use Terman’s convention and set

11 147
r=—1In
2K 1—71

where k is chosen appropriately so that

U2(r) = U2 (im(ii’i))

can be smoothly extended from the open interval (—1,1) to its closure. Hence we have

0 = 2(r —ha(U2(7),0)) cos?(f) — sin?(8)

(2.6)
" = k(1 -12)
which is a flow on RP! x [-1,1].
The spaces 7 = —1 and 7 = +1 are now invariant and carry the asymptotic flows. In

these spaces we simply have

6 = 2rcos?(f) —sin?(0)

T = 0.
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For r > 0, this equation has two fixed points: §, = +tan!(v/2r) and 6 = —tan™!(v/2r).
The unstable subspace in the original problem corresponds to the attracting fixed point in
the projectivized problem 8 = 6. The stable subspace corresponds to the repelling fixed
point = 6_. Solutions of the linearized equation (2.4) that decay as x — —oo correspond
to solutions of (2.6) that tend to (6,,—1) € RP' x (—1,1] as £ — —oo. Likewise, solutions
of the linearized equation (2.4) that decay as x — +oo correspond to solutions of (2.6)
that tend to (6_,+1) € RP! x [~1,1) as  — +00. And hence a bounded solution of (2.4)
corresponds to an orbit of (2.6) connecting (64, —1) and (6—,+1).

We then have the following shooting problem. As r > 0 varies, we follow the solution
that approaches (f;,—1) as z — —oo. This solution will wind around the cylinder for
7 € (—1,1), and for particular values of r it may meet up exactly with (6_,+1) as z — +o0.
We can count the number of these connecting values exactly by invoking a monotonicity
argument. In particular, consider two solutions 6, (x) and 6, (z) which approach (6, —1)
as ¢ — —oo for different values of the parameter r. The following result can be deduced

easily.
Lemma 2.1. For each z, if r; < r9, then 0,,(z) < 6,,(x).

Proof. First, since @, = +tan~!(v/2r) and tan~!(-) is a monotonically increasing function,
the result clearly follows for z — —o0. Second, we let a(z) = 6,,(z)—0,,(z). Suppose that
for some z that a(z) = 0. At such a point we would have o/(z) = 2(r;y — r9) < 0. Since
a(—o0) < 0 and o(z) < 0 if a(z) = 0, it follows that a(z) < 0 for all z. In particular,

Or, (z) < 6r,(x) for all z. O

Also, for r large, there is no winding. In particular, we have the following lemma.
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Figure 2.1: Degeneracy of the pulse g,(z) can be reduced to a Sturm-Liouville problem,
where a connecting orbit between the global unstable manifold at 7 = —1 and the global
stable manifold at 7 = +1 for a given value of r indicates a degeneracy of the pulse.

Lemma 2.2. For r sufficiently large, 0 < 6,(z) < 7/2 for all z.

Proof. Let r > max{hy((U%(7),0)) | 7 € [-1,1]}. If @ = 7/2, then # = —1 < 0. On the
other hand, if § = 0, then 6’ = 2(r — ho((U2(7),0))) > 0. Hence for r large, 6 remains

bounded between 0 and 7/2. O

Since there is no winding for r large, and 6(z) changes monotonically in r, the number
of winds associated with the center manifold at » = 0 gives an exact count of the number

of points of degeneracy between r = 0 and r large (for instance r = 1). See Figure 2.1.

2.1 A numerical investigation

Before we move to a rigorous proof of the various additional stationary waves which may
occur in a system with the above properties, we will first use numerical shooting methods
in order to gain some intuition and to visualize the waves that are present. There are two
closely related ways to shoot for pulses that respect the system’s reversibility (Property

2), and both reduce to a search along a one-dimensional curve of initial conditions.

1. First, for small € and fixed r, we could choose approximate conditions in the tail of the



18

pulse of the form e(cos(6),sin(f), v/2 cos(#), v2rsin(f)). Such an initial condition is
O(€?) close to the unstable manifold. We then numerically approximate the solution
through this point, and when it passes through an appropriate space (for instance,
Eu = {(w,w,py,pw) | v = 0} or By, = {(u,w,py,pw) | Pu = 0}) we check whether
or not the pulse is additionally within Fix (R) (particularly, if either w or p,, is also
zero). If we can find two values of § nearby one another for which the corresponding
values of w (or p,) within 3, (or 3,,) are of opposite sign, then we can isolate a

stationary wave in this interval.

2. Conversely, we can choose an initial condition in Fix (R), with one of the three pos-
sible conditions {(u,w, py,pw)[pu = 0,w = 0}, {(u, w, Py, Pw)|pu = 0,pw = 0} and
{(u, w, pu,pw) | v =0,pp = 0}. Since any homoclinic orbit must have Hamiltonian
H = 0, we consider Fix RN {H = 0} to provide a one-dimensional curve of initial
conditions. Note that the fourth possibility {(u,w, py,pw) | v = 0,w = 0} is forbid-
den since {(u, w,py,pw) | v =0,w =0}N{H =0} = {0,0,0,0}. We can shoot from
these initial conditions at the stable manifold of the origin. If we can find nearby
initial conditions along this curve for which the associated solutions are kicked out
on opposite sides of the stable manifold, then we can isolate a stationary wave in

this interval.

Using this second method, we explore the Ostrovskaya—Kivshar problem for varying r
values and fixed saturability constant s = 0.8. For this value of s there are two points of

degeneracy in the interval 0 < r < 1.
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Figure 2.2: For r > rq, there is a simple multi-component pulse bifurcating from the
single-component pulse g, (x). As r increases the w component increases in magnitude.

First of all, considering the Sturm—Liouville argument above, we expect a simple multi—
component pulse to bifurcate from the elementary pulse in U at each of the degenerate r
values. For r > r; = 0.621, we shoot from the space {(u,w,py,pw)|py = 0,w = 0} and
indeed find such a pulse, as pictured in Figure 2.2. Following the notation of Ostrovskaya
and Kivshar [5], we call this pulse g|g1y(z). For r near r1, this pulse looks like the original
elementary solution g, (z) with the addition of a small, but nontrivial w component. As r
gets closer to 1, this solution approaches several widely separated copies of the so—called
“circularly—polarized pulse” with equal 4 and w components. Similarly, for > r9 =~ 0.193,
we shoot from the space {(u,w, py,Pw) | Pu = 0,py = 0} and find a similar pulse, shown
in Figure 2.3. We call this pulse gjo (z). As r approaches 1, this solution appears to

approach widely separated overlaid copies of the elementary pulses g, (z + z¢), ¢, (x) and

quw (T — Zo)-

Cascades of multiple pulses.
Without any further structure, the bifurcation diagram near a point of degeneracy
unfolds like a pitchfork, see for instance Knobloch [13]. Because of the orbit—flip configu-

ration assumed in Property 4, however, we expect a richer family of homoclinic solutions
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Figure 2.3: For r > ry, there is a simple multi-component pulse, bifurcating from the
single-component pulse g, (z).

in this case. For the sake of specificity, we consider the Ostrovskaya—Kivshar problem
with s = 0.8 and r = 0.7. This r value is slightly beyond the bifurcation value r = rq
and well beyond r = ro. We will first look for pulses using initial conditions in the space
{(u,w, Py, Pw) | Py = 0,w = 0}; this is the space that gives us the simple pulse associated

with rq.

Shooting from {(u,w,py,pyw) | Pu = 0, w = 0}.
For a given value of u, a value p,(u) in this space is specified by the Hamiltonian

constraint; in particular

1 25
Py = \/—5'[12 + ? ]n(l + 0.8’(},2).

The simple multi—-component pulse associated with the bifurcation point r = r; intersects
this space at (u,py) = (3.3414,1.2616) — this is already a fair distance from the single
component pulse at (u,p,) = (4.0777,0). As the shooting parameter u is increased from
the value u = 3.3414, the multi-component 1-pulse is broken and we see a cascade of

pulses with increasing numbers of oscillations in u — these may be considered as multi—
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pulses in which the u—component is alternating. Increasing u from the 1-pulse value, we
see a b—pulse, then a 9—pulse, and hypothesize that there are 4n + 1-pulses for all n as
we increase u, until eventually the solution shooting from (u,p,) gains the appearance
of a periodic wave. Then, increasing u further, we see the reverse cascade which moves
through the 4n + 3—pulses for decreasing n until it terminates at v = 3.7339 with the
alternating 3—pulse.

In addition to the pulses with alternating u—component, for u < 3.3414, a cascade
of pulses that are non-alternating in the u—component appears. Decreasing u from the
value where the 1-pulse is found, we move through the non-alternating 2n + 1-pulses
for increasing n. As the shooting value u shrinks further, we unwrap the 2n—pulses for
decreasing n, terminating at the 2-pulse when u = 0.4232. These multi—pulses intersect
the space {(u, w, py, pw)|Py = 0,w = 0} between the actual bodies of the individual pulses
themselves. There are also pulses (for instance the up—down—down—up pulse in the figure)

which are not strictly alternating or non-alternating.

Shooting from {(u,w,py,pw) | ©v=0,py = 0}.
The remaining alternating pulses associated with the bifurcation point 7 = r1 can be
found shooting from the space {(u,w,py,pw) | v =0,p, = 0}. Given a value for w within

this space, the p, value is given by

2
Py = \/<2r — g) u? + gln(l + 0.8u?).

The alternating 2—pulse is found to intersect this space when (w,p,) = (0.7023,0.7049).

Decreasing w in this space, we see increasing oscillations in the resulting pulses and slide
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Figure 2.4: The section {(u, w, py,pw)|py = 0,w = 0} intersects several families of pulses.
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Figure 2.5: Pulses meeting the section {(u,w, py,pw) | pu = 0,w = 0}.

through the alternating 4n + 2—pulses. As w is decreased further, we then unwrap the
alternating 4n—pulses, terminating in the alternating 4—pulse when w = 0.0948.

In a similar fashion, alternating pulses associated with the other bifurcation point
7 = ro can be seen in this space. Since this bifurcation point is farther away, these pulses
intersect this space at much larger values of the shooting parameter w. However, the
cascade forms in the same way, with the 4n—pulses appearing for w < 1.9717, where the
4—pulse itself is, and the 4n+ 2 pulses appearing in sequence beyond the value w = 1.4827,

where the 2-pulse intersects this space.

Shooting from {(u,w,py,pw) | Pu = 0,pw = 0}.
The multi-component pulse associated with r = r9 is even in both u and w and can

be found shooting from the space {(u,w, py,pw)|pu = 0,py = 0}. Given a value for w, the



24

15

15 I I I I I I I I I
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 2.6: The section {(u,w, py,pw) | © = 0, py = 0} intersects several families of pulses.
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associated u—value can be determined by solving

1 1 1
O=—(——1>u2— (g—r>w2+s—21n(1+s(u2+w2))

S

implicitly. This multi-component 1-pulse is found with (u,w) = (3.0223,1.5711). We
expect the same structure of cascading multipulses found for the r = r; bifurcation.
However, perhaps because this pulse is farther removed from its bifurcation value, the
structure appears more complicated. Increasing u from 3.0223, we do find a nice alternat-
ing 5—pulse and an alternating 9—pulse. We find a second more awkward looking 5—pulse
nearby, however, and the only 3—pulse present is between the multi-component 1-pulse
and the 5—pulses. It is as though the two expected cascades have folded over upon them-
selves! In fact, examining this space for r = 0.25, closer to the bifurcation value at r = ro

reveals the expected cascades.

A precursor to the bifurcating pulse.

The numerics above focus primarily on the many exotic pulses which appear after
passing through a point of degeneracy like r = ry or r = r9. Before the degeneracy, the
winding of the linearized w—component is insufficient to produce a bounded 1-pulse with
nonzero w—component. However, it is possible that some manner of multipulse might still
exist that compensates for the insufficient winding by traversing another loop and then
returning via the stable or unstable manifold of this second loop. Indeed, this appears
to be the case. For r < 0.622, we shoot from the space {(u,w,py,py) | Pu = 0,w = 0},
where the multi-component pulse will arise for r > 0.622. Numerically, we find a pulse

that resembles —q,,(z + T') + qu(z) + gu(z —T).
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Figure 2.8: The section {(u,w, py,pw)|u = 0,p,, = 0} intersects several families of pulses.
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Figure 2.9: Pulses meeting the section {(u,w, py,pw)|u = 0,w = 0}.
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Figure 2.10: Precursors to the multi-component pulse for » = 0.20,7 = 0.40 and r = 0.60.
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2.2 An analytic study of alternating multipulses

There are a variety of methods available for studying bifurcations of homoclinic orbits
in such a system. The usual geometric method involves assuming that the flow can be
linearized about the origin and considering the “near” and “far” maps induced by the flow
between sections set up in this linearized region. This method has been used successfully
to analyze various bifurcations, for instance the orbit—flip as well as the inclination—flip,
see Nii [14], Homburg, Kokubu and Krupa [15] or Homburg and Krauskopf [16]. A more
analytic method which avoids the linearization assumption is the homoclinic Lyapunov—
Schmidt method, also called the Hale-Lin—-Sandstede method (and in either case abbre-
viated as the HLS method). In this method, piecewise continuous solutions are defined
between sections with jumps only allowed in a specified direction within these sections.
Homoclinic orbits correspond to solutions where the jumps are all set to be 0. Despite
the increased generality of the HLS method, the geometric mechanisms for multipulse
production are often hidden behind detailed remainder estimates. Analyses of this type
can be seen for various bifurcations in Sandstede [17], Yew [18], Sandstede, Jones and
Alexander [19], Knobloch [13] or van Gils, Krupa and Tchistiakov [20].

We will use the geometric method to study the bifurcation to be described in this
section. Because the governing equations are Hamiltonian, it is certainly reasonable to
expect that the flow will be linearizable in a neighborhood of the origin, see Moser [21] or
Devaney [22] for examples in which the equilibrium is of saddle—focus type. At any rate,
we assume the existence of a linear coordinate system near the origin.

The theorem and analysis below require only the five properties of the ordinary differ-
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ential equations and the elementary solutions listed previously. With these in mind, we

have the following theorem:

Theorem 2.3. Suppose that the ordinary differential equation v’ = f(v) satisfies Proper-
ties 1-5, is linearizable in a neighborhood of the origin, and the single component solution
qu(z) is degenerate at a point 7*. Then there exists a multi-component pulse bifurcating
from gy (z) for r > r*. Additionally, for all N > 2 there exist N—pulse solutions that are

alternating in the u component. These N—pulse solutions are not necessarily unique.

Proof. This theorem will be proven by construction. This construction will vary depending
upon whether 7* < 1/4 or r* > 1/4, but the result holds in either case. We fix a parameter
value 7 = r* + ¢, where € is chosen to be sufficiently small; in particular, if r* < 1/4, then

r<1/4.

The sections X, Youty S1%in, S120ut-
First, by assumption, we can consider a linear coordinate system in a neighborhood of

the origin. This system can be written as

! —
Vg = —V2 Vs
= =2
vy = T Vg
v, = V2r v,
-
Vi = V2 Uy

We renormalize inside the region where this coordinate system is available, so that the
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Figure 2.11: The sections Y;,, S13in, Yout and S1X,,: are set up perpendicular to the
homoclinic orbits g, (z) and S1¢,(x). The maps Ppeqr and S1Ppeqr define the local flow
between these sections, while ® 74, and 51 ® 4, are diffeomorphisms which define the global
flow.

unit box is in the interior of this region. Define the sections ¥;, and ¥,,; as

Ein = {('Ussa'USa'Uua'Uuu) | Vss = 1}

and

Yout = {('Uss;USa'Uuavuu) | Vyu = 1}-

Notice that because the pulse ¢, (z) is in orbit—flip configuration (Property 4), these three
dimensional sections are normal to the homoclinic orbit g, (z) and intersect ¢,(z) at the
points (1,0,0,0) and (0,0,0,1). The homoclinic orbit S;¢,(z) meets the sections S1%;,
and S13,,; similarly. See Figure 2.11.
Reduction of dimension via the Hamiltonian.

Any homoclinic orbit approaching the origin as £ — +o0o0 must lie on the same level

set of the Hamiltonian as the origin itself, i.e. H = 0. In the linear coordinates near the
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origin, the Hamiltonian reduces to

H('Uss, Vsy Vs vuu) = 4'Ussvuu + 47"”5'Uu-

Considering the intersection of the sets X;, N {H = 0} and X,,; N {H = 0}, we can
restrict our attention to a two dimensional manifold within ¥;, and X,,;. In particular,
given vg and v, in i, (Zout), vss(Vuy) = —10s0,. We can therefore consider the maps
Dor : Nout = Lin and Ppeqr 1 By = Loy as maps from R? = (v,,v,) into itself.
Degeneracy, reversibility and the “far” map.

At the parameter value r*, the homoclinic orbit g, (z) is degenerate (via Property 5).
In particular, @4, takes the v,—axis in 3y (i.e. the unstable manifold) to a curve that
is tangent at the origin to the vs—axis in ¥;, (the stable manifold). Conversely, <I>17alr
takes the vs—axis in 3, to a curve that is tangent at the origin to the wv,—axis in X,y;.
A key observation is that, because of the reversibility (Property 2), if ® 4, : (v1,v2) —
(w1, wsz) then <I>17a17 : (vo,v1) — (w2, w;1). Hence the curves @y, (W*(0) N Xoy) and
@;;T(WS(O) N X;,) are reflections of one another about the line vy = v, (as are the lines
WH(0) N Xpy: and WH(0) N Xy, themselves).

For r = r* 4+ ¢, we have

© _(1 _H2)1/2 Vs 3
(}far(vsavu) =+ + O(”(“s,”u)” )

(1= )2 p Vy

All of the second order error terms vanish because of the symmetry assumption of Prop-

erty 3. The parameter 4 — 0 as € — 0 in this bifurcation and assuming the generic
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Figure 2.12: The map ®y,,. @4 takes the local unstable subspace (in red) to a “cubic-
like” curve, while ‘1>J7alr acts identically on the local stable subspace (in blue).

condition that Dggg@%w(o, 0) > 0, there is a nontrivial intersection in X,,; of the v,—axis
and <I)J7alr(Span (vs)). This intersection represents the multi-component one—pulse of the
theorem.

Of primary importance to the search for multipulses is the following observation: even
though there is no clear reason to believe that ®,, is an area preserving map, it is still
true that it takes the region bounded between the v,—axis and @;;T(Span (vs)) in Xpyt to
its reflection in ¥;, bounded by ®y,,(Span (v,)) and the vy-axis. Thus, the reversibility

provides a “quasi”-area preservation. See Figure 2.12.

Orbit flip configuration and the “near” map.

Before we search for multipulses in earnest, we need to consider the behavior of the map
Doear + Lin — Lout U S1%0ut- First, observe that whether ®,,.,, takes an initial condition
to Xyt or S1¥yt is determined solely by the value of v,, associated with (vs,v,) in
Yiin- If vyy = rvyvs > 0, then @peqr @ Xin — Zout- Likewise, if vy, = rv,vs < 0, then
Drear * Lin = S180ut- (If vyy = 0, then (vs,v,) € W} _(0) and the evolution of such a
point approaches the origin as z — 00.)

Using the linearized system and the Hamiltonian (Property 1), one can quickly deter-
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mine the behavior of the map ®,,¢q,. In particular, given (vs,v,) € X, (where vgg = 1),
the value of vy, is explicitly determined. Since |vy,| = 1 in either exit slice X, or S1X4u1,

the elapsed time 71" between the slices is determined to be

1 = |vgleV?T
"Uuu|_1 = eﬁT
—In|vy| = V2T

T = —In|vgl/V2

T = —lIn|rvsv|/V2.

D, eqr 1s then given by

(,Use—\/ 27‘T’ ,Uue\/ 27'T)

Dpear ('Us; 'Uu) =

_ (Useﬁln|rvsvu|’,Uue—\/Flnh‘vsvu\)

= (o Crloul [ou) VT wulrlo] [oa) V).

The first thing to notice about this map is that unlike the map ® ¢4, @peqr is truly
area preserving — a quick calculation shows that Div (®,,c4r) = 0. Secondly, the qualitative
behavior of @,,., varies depending upon whether or not the bifurcation point r* satisfies
V/r* < 1/2. In particular, consider how the map ®,.,, acts on a curve approaching the
origin: for small z, ®pegr : (z,az) — ((ar)‘ﬂ"mHQ‘ﬁ, (ar)1’ﬁ$1’2‘ﬁ). So, if vr* < 1/2,
then for r near r* this curve is taken to a curve also approaching the origin, but now
tangent to the v,-axis at the origin. However, if v/7* > 1/2, then for r > r*, the curve is
mapped to a curve approaching infinity along the v,—axis. (Of course, the linear coordinate

system does not extend out to infinity.) Likewise, a curve intersecting the v;—axis in a
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Figure 2.13: The map Ppeqr. Preqr acts in a different manner depending on the value of
r. For y/r > 1/2, “cubic-like” curves are taken to unbounded curves.

point other than the origin will be taken to a curve tangent to the vs—axis at the origin if
/7 < 1/2, and it will be taken to a curve tangent to the v,—axis if \/r > 1/2. See Figures
2.13 and 2.14.

This then leads to two cases for the bifurcation analysis.

Bifurcation analysis.

Of primary interest in the search for multipulses is the evolution of small “cubic-like”
curves in the section 3;,. First we define the closed region Q in ¥;, as the bounded area
between the v,—axis and ® 4, (Span (vy,)), i.e. between the local stable manifold W#(0) and
the global unstable manifold W*(0) continued along the homoclinic orbit g, (z). A “cubic—
like” curve 7y is a curve in €2 which intersects the vs—axis at the origin and two nearby

points, symmetric about the origin, recalling Property 3. In particular, the boundary
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Figure 2.14: The map Ppeqr. Prear acts in a different manner depending on the value of
r. For v/r < 1/2, “cubic-like” curves are taken to closed curves.

® sqr(Span (vy)) is such a curve. For simplicity, we consider only the simply connected
component of € in the fourth quadrant — the component in the second quadrant is
equivalent. In each case, we will show that the image ® 4 0 ®pqr(y) also contains a

“cubic-like” curve.

Case 1. /r > 1/2.

Let yp be a “cubic-like” curve in . As noted above, when /7 > 1/2, ®,,.,, takes the
end of =y near the origin to an unbounded curve in S1Y,,; asymptotic to the v,—axis at
—oo. Likewise, it takes the end of 7y near the nonzero intersection point with the v;—axis
to a curve in S13Y,,; which is tangent to the v,—axis at the origin and enters the interior
of —@;;T(Q) in S1X,u¢. Therefore, there must be a nontrivial intersection in S1X ¢ of

D year (70) and —@;alr(Q). We call the portion of ®,,c4(70) between the origin and the first
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intersection ;. The map Py, then takes ;o to another “cubic-like” curve in 513,
and this curve is clearly in S1Q. We call this curve ;.

If we take Ag to be ® s, (Span (vy)) itself, i.e. the continuation of the unstable manifold
of the origin, then the intersection of A; with the v,—axis in §13;, represents the 2—pulse.

Continuing recursively, we find an alternating N—pulse for all N.

Case 2. /r <1/2.

This case follows similarly, except here the curve @,,.4-(70) is a closed bounded curve.
The map P@jeqr takes the portion of 4y near the origin to a curve approaching the origin
tangent to the wvy—axis in S1X,y¢; the portion of 9 near the nontrivial intersection is
taken to a curve in S1X,,¢ approaching the origin tangent to the vs—axis. Since the first
portion of ®,,cqr(70) is inside —(I’]ZalrQ and the return portion is outside —@;alrQ, there
must again be a first nontrivial intersection with the boundary and we again call the
portion of @4, () interior to —@;alTQ between the origin and the first intersection vy /.
The map Py, again takes v;/o to another “cubic-like” curve 7 in $1%;,, and this curve
is clearly in S;€).

The two cases vary primarily in the manner in which the curve 7y is produced —

the preimage of 71/, comes from different ends of 7 in each case.

Multipulses!

We take our initial cubic curve 7y to be the global unstable manifold W*(0) in X;,
as continued along g, (x), i.e. ®f4-(Span (vy)). Then the intersection of ; with the local
stable manifold W*(0) in S;1¥;y,, represents an alternating 2-pulse. Now, 3 C W*(0)
and taking it as our initial “cubic-like curve”, we get a curve v C 3;, whose nontrivial

intersection indicates the existence of an alternating 3-pulse. An induction argument then



Figure 2.15: The image of a “cubic-like” curve under the map @4, 0 ®pq, contains a
“cubic-like” curve. The intersections of iterates of @, o ®peqr with the local stable
manifold are indicators of multipulses. The iteration with \/r > 1/2 is shown on the left;
\/7 < 1/2 is on the right. Solid curves indicate iterates which are in ¥;, while the dashed
curves are in S7X;,.

yields the existence of an alternating N—pulse for all N. See Figure 2.15.

This ends the proof of the existence of multipulses. O

A remark on (non)uniqueness.

It is certainly possible that the image ®peqr(7) of a “cubic-like” curve intersects
—@;;TQ in more than one point — this would lead to multiple N—pulses for the cor-
responding value of N. In particular, suppose that the parameter r* at which the pulse
qu(z) is degenerate in near 1/4. If we allow 7* to vary with the system parameters, then as
V/r* passes through the value 1/2, a pitchfork bifurcation is destroyed which produces at
least 3 points of intersection for an interval of r* values on one side of v/r* = 1/2. For the
2—pulse, only the central point of intersection corresponds to a pulse which respects the

reversibility; the other two 2—pulses are reflections of one another through the reversibility
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Figure 2.16: The map ®peqr and non-uniqueness of multipulses. There is a pitchfork
bifurcation of intersection points in @, which is destroyed as v/r* passes through 1/2.

involution. See Figure 2.16.
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2.3 Degeneracy of the multi-component pulse and Plucker

coordinates

The key to the bifurcation of multi—-component pulses was the notion of degeneracy, some-
times called a homoclinic—flip. A solution is said to be degenerate if the stable and the
unstable manifold have a two dimensional tangency along the solution. The simple form
of the single—component pulse g, (z) led to a decoupling of the equation of variations, and
in that case such a degeneracy could be understood in terms of a Sturm-Liouville problem
— a classical problem whose analysis is well understood. However, the variational equa-
tion for the resulting multi-component pulses does not decouple in this way and hence it
becomes more difficult to detect these simple degeneracies of a pulse.

We write the equation of variations as follows:

0252 Iy o

U= 2—fu() —fo() . v. (2.7)
—fe()  2r = fu()

In order to more easily follow the two dimensional subspaces (the tangent spaces to the
global stable and unstable manifolds), we move to the Grassmannian of two dimensional
planes in R?, G3. The subspaces of interest in R* correspond to points in G4, so following
these subspaces is akin to simply following an orbit in this new space. For this calculation,
we make use of the exterior power space A2(R*) — we will delve into the intricacies of this

space more deeply in Section 3.1. This space is six dimensional and we can explicitly
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derive the system in A%(R*) induced by the linear system (2.7):

Py
Pl
Py
Py
Py

/
P34

Py — Py3

—fe(-)Prz

fe(-)Pr2 (2.8)
Py + (2r — fu(-)) Pr2

— P34 — (2 fu(-)) Pr2

(2 = fu())Pra — (2r — fu()) Pos + fe(*) (P13 — Poa) -

Not every set of coefficients F;; corresponds to a point in G3. The set of numbers P;; are

the Plicker coordinates if the following Grassmannian condition is satisfied:

PioPsy — Pi3Poy + P1aPp3 = 0. (2.9)

A quick calculation indeed shows that

(PioP3s — Pi3Poy + PiaPy3)' = 0.

Additionally, because (2.7) is Hamiltonian, the system also preserves Lagrangian planes,

A(2). This invariance is given by the following Lagrangian condition:

P13 + P24 =0. (2.10)
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An even quicker calculation shows that

(Py3+ Py) =0

and hence both the Lagrangian and the Grassmannian conditions will continue to be
satisfied as z evolves, if only the initial conditions satisfy them.

In (2.7) the asymptotic system has positive eigenvalues v/2 and v/2r, hence in (2.8)
the largest positive eigenvalue for the asymptotic system is v/2 + v/2r. The associ-
ated eigenvector is vy, = (1,0,0, V2r, —\/5,2\/17). Similarly, there is a negative eigen-
value —v/2 — v/2r with associated eigenvector vy, = (1,0,0, —/2r,+v/2,2/7). The
vector vy, is the point in Plicker coordinates that corresponds to the unstable sub-
space of the asymptotic system, and we wish to evolve forward a solution P%(z) =
(P (z), P(z), P3y(x), Py (z), Pss(x), P3y(x)) that is asymptotic to vy, as ¢ — —oo. Like-
wise, vgs corresponds to the stable subspace of the asymptotic system, and we wish to
evolve backward a second solution P*(z) = (P}, (z), P (x), Psy(x), Piy(z), Pss(z), P3y(x))
that is asymptotic to vss as x — +o00. Of interest is the manner in which the two spaces
corresponding to the vectors P*(z) and P?(x) intersect.

Because of the symmetries of the pulses described in the previous chapter, we expect
that the points P¥(z) and P*(—z) in G5 will be very closely related. This relationship is

described in the following lemma.

Lemma 2.4. Suppose (U(z), W(z),U'(z), W'(z)) is a stationary wave as found in the

previous chapter.
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1. If U(z) and W (z) are both even, then

(Pra(x), Pi3(—x), Poy(—), Piy(—x), Py3(—x), P5y (—x))

= +(Ply(), —Pi3(2), —Pay(x), —=Pl4(z), = Pa3(2), P3y(x))-

2. If either U(z) and W (z) is odd while the other is even, then

(Pra (), Pi3(—2), Py (—x), Pis(—2), Pys(—2), Py (—1))

= :E(_P1u2($)7 _Plu?,(m)a —P&(.’L‘),P&(.’E),P%(.’L‘), _P??AL(‘T))

Proof. This lemma, follows easily by considering the reversibility involution (which takes
Pl(z) — —1”(ij)13i’j(:v), where o(ij) is the number of elements of the pair {7, j} that are
also in the set {3,4}), as well as the symmetries of the pulse (which affect the sign of the

cross term f.(-)). O

This characterization will significantly ease the detection of degeneracies for symmetric
pulses. Particularly, if we make our calculations at = 0, once we calculate P*(0), we get
P#(0) for free by simply flipping the appropriate signs.

This leads immediately to the following characterization for the degeneracy of a pulse.
Proposition 2.5. Consider a stationary wave (U(z), W (z),U’(z), W'(x)).

1. If both U(z) and W (xz) are even, then the stationary wave is degenerate if and only
if either

Pi5(0) = P3(0) =0



44

or

Pi3(0) = P54(0) = Py (0) = P53(0) = 0.

2. If either U(z) or W(z) is even while the other is odd, then the stationary wave is
degenerate if and only if

Pi3(0) = P33(0) =0

or

Pi5(0) = Pr3(0) = P34 (0) = P34(0) = 0.

Proof. This proposition may not be as immediately apparent as it first seems, because
different sets of coordinates could conceivably span the same plane in R*. However, since
one of the components P (0) must be nonzero, we can easily write down two independent
vectors that span the unstable subspace specified by P*(0) (and the related vectors that

span P#(0)). For example, if P{%(0) # 0 then

TW*(0) = Span {(0, P15(0), P{3(0), Pi3(0)) , (P5(0),0, —P33(0), —F54(0))}-

If the pulse is degenerate, then we must have

(0, Pi5(0), Pr3(0), Pi3(0)) = (0, Pi5(0), Pr3(0), Pis(0))

and

(Pr2(0),0, = P33(0), —P24(0)) = £(F5(0),0, —P33(0), — P54 (0)).
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These requirements force the equalities above. O

The condition that two (or even four) components be simultaneously zero is not ridicu-
lously singular in this case. In addition to the Grassmannian and Lagrangian conditions,
there are other properties that ease our way.

First of all, because P“(z) and P*(z) represent the tangent spaces along a homoclinic
orbit, these spaces must have at least a one—dimensional intersection. This forces the

condition that P"(z) A P*(x) = 0. At x = 0 this again takes a simplified form.

Lemma 2.6. Suppose (U(z), W(z),U'(z), W'(z)) is a stationary wave as found in the

previous chapter.

1. If U(z) and W (z) are both even, then

Pi5(0) P35 (0) + P5(0) P34 (0) — P4 (0)P35(0) = 0.

2. If either U(z) or W(z) is odd while the other is even, then

P}, (0) P34 (0) — Pl (0) P34 (0) — P (0) P35 (0) = 0.

Proof. Inlight of the discussion above, the proof of these conditions is a simple calculation.

0

Each of these resembles the Grassmannian condition (2.9), and in combination with it
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forces a decoupling of the two conditions. For instance, in the first case we then have

Pi5(0)P34(0) = 0

and

Pi5(0)P4(0) — Pi(0) P3(0) = 0.

Automatically, either P (0) or Pg4(0) is equal to zero. Also if any one of the second four
coefficients is equal to zero then at least three of them are, since Pf4(0) and P34 must both

be zero as they are related through the Lagrangian condition.

A final condition comes about by considering the Hamiltonian H of the system.

Lemma 2.7. The stable and unstable manifolds are both contained within the level set

{H = 0}. Any vector v tangent to either of these manifolds must therefore satisfy

v-VH((U(0), W(0),U'(0), W' (0))) = 0.

Degeneracy of the pulse g ) (z)-
Here we follow the multi-component wave g|g2)(#) for which the w-component has

two zeros in the Ostrovskaya—Kivshar problem with s = 0.8. At r = 0.45 we have

P*(0) = (0.0000, —0.0676,0.0676,0.0946, —0.0484, —0.9897),
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where the vector has been normalized to unity. And by the time r = 0.51, we have

P*(0) = (0.0000,0.0396, —0.0396, —0.0608, 0.0258, —0.9962),

see Figure 2.17. As the sign of P{4(0), P3,(0), P4(0) and Pj5(0) have all changed in
this interval, we posit that they all went through zero simultaneously and that the pulse
therefore passed through a degeneracy. Indeed, consider the value of r for which P5(0) =
0. We immediately have P/4(0) = Ps4(0) = 0 by the lemmas above. All that remains is
to show that P4 = 0. This follows from the Hamiltonian condition since, for P§,(0) # 0,
we require

(—P4(0),—P34(0),0, P34(0)) - (0H/0u,0H/0w,0,0) =0

and

(PY(0), P (0), PY(0),0) - (OH/du, 0H /9w, 0,0) = 0.

Since P (0) = 0, the second equality then requires P (0)0H/d0u = 0 and, in particular,
Pry(0) = 0. We can therefore conclude that the multi-component pulse g 2)(z) has a

point of degeneracy between r = 0.45 and r = 0.51.

Bifurcation from the degenerate multi-component pulse.

As was the case in the previous chapter, when a stationary wave passes through de-
generacy, we expect a bifurcation of other stationary waves. In this case, we expect a
pair of nonsymmetric solutions to bifurcate from this stationary wave. The more exotic
multipulses are not present in this case because the multi-component pulses g|g ; (x) are

not in orbit—flip configuration.
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Figure 2.17: Above is the multi-component pulse gg 5 (z) for varying r, in particular, r =
0.45,0.48,0.51, from left to right. The lower graphs show the evolution of the six Pliicker
variables which coordinatize the tangent space to the stable manifold along the pulse.
Pi3(x), Poy(z), Pi4(x) and Py3(z) are shown in the upper graph, while Pjo(x) and Psy(x)
are below. As the parameter r increases, the Plicker coordinates P13(0), P24(0), P14(0)
and Pp3(0) all go through zero simultaneously, signaling a degeneracy of this multimode
pulse.
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E

Figure 2.18: There is a pair of nonsymmetric multi-component pulses that bifurcate from
the symmetric multi-component pulse when it becomes degenerate. Shown in this figure
is one of those pulses for » = 0.50, = 0.52 and r = 0.5275. (The other is simply its
reflection in the vertical plane.)

Because we are now looking for nonsymmetric waves, we must expand upon the shoot-
ing methods used in the first chapter in order to see these waves numerically. We will
use a hybrid method in which we specify decay conditions in the tail of the pulse of the
form €(cos(#), sin(#), v/2 cos(8), v/2rsin(f)). As we adjust 6, we then find two values of 0
for which the evolved solutions are kicked out on opposite sides of the stable manifold,
and therefore isolate a stationary wave in this interval. Repeatedly bisecting this interval
allows us to converge to the stationary wave.

Using this method, we find the expected asymmetric waves. As r is increased from the
bifurcation point, this pulse quickly converges to another “precursor” of the multimode
pulse which bifurcates from the elementary pulse g,(z) at 7 = r1 = 0.621. This pulse has

the appearance of a pulse ¢,(z + T') concatenated with the pulse ¢, (z). See Figure 2.18.



Chapter 3

On the stability of stationary

waves

In physical systems, the stability of waves is often as important as (and perhaps more
interesting than) the problem of existence. If a pulse is not stable, then any noise in the
system or a single imperfection in the initial data can cause the pulse to degrade. Stable
pulses then correspond to pulses that are physically realizable. In this section we will
develop tools to assess the stability of the pulses found in the previous section.

It has been suggested by Ostrovskaya et al. [7] that the multimode 1-pulses found
in the previous chapter are stable for a range of the parameter r beyond the bifurcation
value r*. In particular, as r moves away from the bifurcation point, the corresponding
1-pulse may remain stable even after the total intensity profile develops a multi-humped
structure. We wish to more deeply understand this stability and the mechanism which

eventually causes instability as the parameter value is increased.

50
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To begin, we consider any stationary wave given by (U(z), W (z)) for the equation

fu;  + %uu + (|u|2,\w|2)u — = 0

fwy + %wm + he (|u|2,|w|2)w — rw = 0.

A stationary wave is a real-valued t—independent solution of this equation with tails de-
caying as ¢ — +00.

To proceed in the analysis of solutions of these equations, we first decompose the
equation above into real and imaginary parts. Let u = u, + iu; and w = w, + tw;. Then

the governing equations may be rewritten as the real-valued system

() + 3z + P (W2 +udwi+w)u — wu =0
(wr)e + 2(Wi)es + he(Wl+ulw?+wHw, — rw, = 0
(ui)t — 2(r)ze — hi(u2+ud,w2+wP)u + up = 0
(wi)y — %(fw,«)m — ho (u% + u?, w? + 'wZQ) w, + Trw, = 0

Since we wish to study the stability of stationary waves in this system, we are inter-
ested in the behavior of solutions that are small perturbations of a given stationary wave

(U(x), W(z)). Since the stationary wave is real-valued, we can then write this as

Uy U p1

Wy w b2
= + €

Uj 0 q

wW; 0 q2
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We linearize formally by letting ¢ — 0, and arrive at the linear system

(pr)e + 5(@)es
(P2 + 3(2)ae
(@) — 3(P1)es
(@) — 3(P2)ea

where the character -

ting

o
Il
N[
Q..‘Q_.
+

h
+
Il
N[
&
+

+ hao(') g —rqgp =0
— h1(-)p1 —2U?D1hy () p1 —2UWDshy ()p2 + p1 = 0

— hy(-)ps —2UWD1hs (-)p1 — 2W?Dshs (-)p2 + Tp2 = 0,

replaces U2, W? simply for typographical space considerations. Set-

hi(:) 0 2U%D1hy () 2UW Dohy (+) 10
+ +

0 h2 () 2UWD1h2 () 2W2D2h2 () 0 r

the linearized equation can be rewritten as

— p1 - - Y41 -
Pz | O2x2 —L- D2
Q Ly O2x2 a1
q2 q2

Writing v(z,t) = (p1,p2,41,92), we study instability by searching for solutions of this

equation of the form v(z,t) = v(z)eM where v(z) is a bounded function with decaying
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tails and A is a complex scalar. Of interest then are the eigenvalue equations

q1 Y4l
L_ = =)
q2 P2
n q1
L+ == A
D2 q2
Explicitly, this is the system
2(p)es = MA@t — hi()p1 —2U?Dihi(-)p1 —2UWDshi(-)p2  +  p1
2(P2)es = Az — ho()p2 — 2UWD1ho()p1 — 2W2Doho(-)ps + 1 p2
Ha)ee = —dp1 — ()@ + q
H@)ee = —Ap2 — ho()ge + 7 q-
Letting (v1,v2,v3,v4) = (p1,P2,491,92) and introducing the variables vs,... ,vs as the
derivatives with respect to x of wy,... ,v4, respectively, we can write this as an eight

dimensional system of first order equations
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where Ay« is given by

e hi(-) — 2U2D1 ki () —QUW Dohi () A 0 |
—QUW Di1hs(-) r—ho(-) — 2W2Doho(-) | O A
D) 0 1— () 0

i 0 - 0 r — ha(-) |

This formulation emphasizes the differing dependence on the real and imaginary parts of
the solutions. It is sometimes also convenient to reorder the variables in order to better
visualize the separate roles of the two pulse components. To this end, by reordering the

components of the vector v, the matrix Agx4 could alternatively be written as

e hi() = 2U2Dihi() A —QUW Dohi (-) o |
A 1— ha(:) 0 0
—2UW D1hs(") 0 |7 —ho()—2W2Doho() A

i 0 0 = r — ho(+) |

When one of the pulse components is zero, the cross terms disappear and this system is
easily seen to decouple into a pair of four dimensional systems.

For either formulation, if there is a bounded solution v(z) of this system associated with
an eigenvalue A with Re () > 0, then v(z)e?? is an unstable mode of the linear equation.
Moreover, this eigenvalue problem has a four—fold symmetry; i.e., if A is an eigenvalue of
this system, then so are A, —), and —\, where ~ denotes complex conjugation. Hence,
the only chance a pulse has to be stable is for its entire spectrum to be confined to the

imaginary axis.
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This is the eigenvalue problem we wish to analyze for the pulses described in the
previous section. Before we begin this analysis in earnest, we will build up some numerical
machinery and study in full a lower dimensional example which displays a mechanism for
the delayed bifurcation of eigenvalues from the essential spectrum. With this in hand, we

will prove results for the three different cases:

1. The single component pulse ¢,(z). We can completely describe the spectrum in

this case — and it is completely contained on the imaginary axis.

2. The symmetric multi-component pulses g ;) (7). The initial stability for bifur-
cating multi-component pulses is easily explained since we know the initial configu-
ration of eigenvalues at the bifurcation point via the results for the single component
pulse. We describe a mechanism for instability using the notion of degeneracy — this
is the same condition that brought about the bifurcation of multimode pulses origi-
nally. A quick check of the Maslov index in the variational equation then allows us
to conclude instability for these pulses beyond such a degeneracy, using the criterion

of Jones [9] or Grillakis [10].

3. Nonsymmetric multi-component pulses. Recall that when the symmetric
multi-component pulses gjo ;) (xz) pass through a degeneracy, there is a bifurcation
of nonsymmetric multi-component pulses. In many different models (see Jones [10],
Aschbacher et al. [23]), it is the case that beyond such a bifurcation, the symmet-
ric wave is unstable and the nonsymmetric waves are stable. In this case also, the

instability criterion provides the possibility of stability for these waves.

4. Multi—component N—pulses. A primary difficulty for N—pulses is keeping track
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of the myriad eigenvalues near the origin. The instability criterion of Jones [9] and
Grillakis [10] is again a valuable tool, and it turns out that all N—pulses that look
like N concatenated copies of the single pulse q|0,,~>($) are unstable. This is a result
of properties of the bifurcating pulse g|o;)(z) itself, even before consideration of the

exponentially small eigenvalues near zero resulting from the glueing.
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3.1 The Evans function

The usual approach to analyzing the stability of a nonlinear wave is to use the linearization
of the governing equation about the wave in question. The proof of stability is then two—
pronged. First, it must be shown that using only the linear information is sufficient to
conclude stability in the full nonlinear problem. With this proved, one must then work
to actually analyze the linear equations. In question is whether the appropriate linear
operator has any spectrum in the right half of the complex plane.

A powerful tool in the latter pursuit is the Evans function. The Evans function is
an analytic function on the complex plane whose zeros coincide with the eigenvalues of
the nonlinear wave — and the order of the zero equals the multiplicity of the eigenvalue.
Therefore, if it can be proved that the Evans function has no zeros in the right half plane,
the wave will be stable. Below we describe in detail the Evans function and the steps in

its computation.

Background and definition of the Evans function.
First we shall outline the fundamental ideas. For now we consider a somewhat generic

N—-dimensional linear equation

Y' = A\ 2)Y = (A4g(\) + R\, 2)) Y

which represents a linear eigenvalue problem (such as the one in the previous section)
written as a first order system — the parameter X is a prospective eigenvalue. The matrix
Ap(A) describes the asymptotic behavior of the system while the matrix R(X,z) cap-

tures the transient behavior and decays exponentially as |z| — oco. If A is not in the
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essential spectrum, then the matrix Ayp(A) does not have any purely imaginary eigen-
values and the eigenvalues of Ay(A) can be separated into two groups according to the
signs of their real parts. Suppose that there are k eigenvalues with negative real part
and N — k eigenvalues with positive real part. It is then possible to find k linearly
independent solutions Yj(A,z),...,Yx(A,z) that decay as © — —oo and N — k lin-
early independent solutions Yii1(A,z),... ,Yn(A,z) that decay as © — +oo. For any
z € R, it is then possible to define subspaces E*(\,z) = Span{Y1(\, z),... ,Yx(\, z)} and
E*(\,z) = Span{Yy11(\, z),... ,Yn(A, z)}. For any given value of z, the spaces E* and
E? contain all of the initial conditions that decay as £ — —oo and & — 400, respectively.
Since an eigenfunction must decay both as © — —oo and as z — +o00, A is an eigenvalue
if and only if there is a nontrivial intersection between the two subspaces E%(\,z) and

E?(X, z) for some (and hence for any) z. As such, the Evans function may be defined as

E(\) =Yi(\,0) A+ AYN(,0).

The Evans function then provides a measure of how far the vectors Y1(),0),...,Yn(A,0)
are from being linearly dependent. And if E()\) = 0, then these vectors are no longer lin-
early independent and hence there is an eigenfunction that decays as x — +o0o. Therefore,
for X outside the essential spectrum, the Evans function E(\) is zero if and only if A is an

eigenvalue.
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3.2 Numerical implementation

The theoretical properties of the Evans function are detailed in Alexander, Gardner and
Jones [24], while many issues which come up in the numerical implementation are ad-
dressed in the thesis of Brin [25].

Because our current interest is in nonlinear Schrédinger-type equations, we will adopt
the convention that the total dimension of the space is 2n and that for A not in the essential
spectrum, the number of eigenvalues of the asymptotic matrix Ag(\) with positive real part
is the same as the number of eigenvalues with negative real part, i.e. k¥ = n. Because we
are not so much interested in particular solutions of this system, but rather the evolution
of the entire n-dimensional subspaces E%(\,z) and E®(A, z), it is natural to move our
consideration from simple flows in R?" to flows on the Grassmannian space G, (C?").
The Pliicker coordinates on the space of exterior powers A"C?" provide a basis for this

computation.

Preliminaries of A"C?".

In moving to the space of exterior powers, a primary computational difficulty is by-
passed. In order to compute the Evans function as described above, two sets of n linearly
independent solutions with appropriate decay at 400 or —oo must be computed. However,
the fastest growing mode quickly dominates the numerics, leading to a “numerical” linear
dependence as the n independent solutions approach multiples of the single solution with
the largest eigenvalue.

However, in the associated system on A™C?", the eigenvalues are given by summing

the various combinations of n eigenvalues of the original system (a quick proof of this fact
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will be given below). In this space, the set E%(), z) is an eigenvector associated with the
largest positive eigenvalue (the sum of all the positive eigenvalues of the original system).
Likewise, E*(\, z) is the eigenvector associated with the negative eigenvalue of largest
magnitude. Hence, these spaces are easy to track numerically.

We can describe elements of the space AC?" with the use of the wedge product A.

The A can be defined on SDQ" X+ X (DQTi by enforcing n-multilinearity and antisymmetry.

'

n times
If vi,... ,vn, w; and wy are vectors in €2" and « is a scalar in €, then these properties

may be defined as follows:
i. m-multilinearity
'Ul/\---/\vi_l/\(w1—|—aw2)/\vi+1/\---/\vn

=i A1 AL Avigr A Aoy

+Oé’01/\"'/\’Uifl/\’wg/\’l)i_H/\"'/\’Un.

ii. antisymmetry

VI A ANV_1 ANV ANVjg1 NViga A=+ Aoy,

==V A 01 ANVig1 AV A Viga A -+ A vy,

In particular, antisymmetry implies that if any two vectors among v1,... ,v, are equal,
then v A -+ Awv, = 0; this is sometimes even taken as the definition for antisymmetry. If

the vectors ey, ... ,eg, represent the usual basis for €2", then the basis for A”C?" will be



generated by

{ei, Nei, N---Nei |1 <y <ig < ---<ip <2n}

and an arbitrary element of A"C?" will look like

v = E Vigig-in €i1 N\ €ig N NE, .
1<i1<i2 <+ <in <2n

Given n vectors v',... ,v" € €?", the associated n-form may be computed

vEA A

2n
— . .. n o,
= E ’U“ 7 A A g v, €y,

i1=1 in=1
n .
E E ’UZI €i, ---/\’Uin €in
21=1 zn_l
n - PR -
E E, Vg =" in)eu/\ N e,
11=1 in=1
n+1 2n

Z Z Z WliZ"'in € VACERWAN €i,

t1=1 da=t1+1 in=ln—1+1

where
1 2 n
Vi, Ui Uiy
1 2 n
Uiz Uiz - Uiz
Vivigei, = det
1 2 n
| v, v, v |

We are then interested in the evolution of the (2:;) coefficients V; ;, To derive the
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appropriate evolution equation, we note that if Y7,...,Y,, are solutions of the original
ODE, then Y = Y] A --- A'Y,, should be a solution of the appropriate system in A™(C?").

And Y will satisfy the linear ODE

' = P YIAANYi LAY AY A AY,

= Y YiAN-ANYi  ANAN )Y AY i A - A Y.

These relationships then define a (**) x (*") matrix A(\, z) so that

n

Y' = A\ z)Y.
This is the system that we solve numerically. Just as we wrote the original system in

terms of its transient and asymptotic parts, we may also decompose A(\, z) as A(\, z) =

Ag(X) + R(\, z). The promised result concerning the eigenvalues of A is proved here.

Lemma 3.1. Suppose Ay is a 2n x 2n matrix with eigenvalues p1, . .. , o, and associated
eigenvectors Vi,...,Va,. Then the eigenvalues and eigenvectors of Ay are given by p;, +

ot p,and Vi A AV for 1 < < < - <y < 2
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Proof. Let the indices 1 <41 < 4o < -+ < iy, < 2n be given. Then

Ay(Viy A+ A V)
n
:ZYil/\.../\Yij_l/\Aoy;j/\yijﬂ/\.../\yin
j=1
n

=D Vi Ao Aoy Apg Yy Aoy A Y,

J
Jj=1

n
= ZMZJ Yil/\.../\Yin.
j=1

The numerical algorithm.

For X outside of the essential spectrum, the numerical algorithm consists of the follow-

ing steps:
1. Choosing the appropriate asymptotic conditions.
2. Translating into wedge space.
3. Evolving forward and backward in wedge space.

4. Calculating the Evans function E()\) at z = 0.

Step 1: Choosing the asymptotic conditions.

Since we have an explicit representation of the matrix Ay(A), we can often derive
exact expressions for the eigenvalues and their associated eigenvectors. This will be the
case in all of our examples and we can easily choose expressions for the eigenvectors

of Ap(A) which are analytic in A. If no such exact formulas are available, Brin and
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Zumbrun [26] have developed a nice scheme for numerically computing analytic asymptotic
conditions. In any connected component of € disjoint from the essential spectrum, we can
then analytically define eigenvalues p1(A), ..., pn(A)s int1(A), .-, pon(A) of Ag(A). And
because we avoid the essential spectrum, the signs of the real parts of each eigenvalue
1i(A) cannot change with A. We therefore dictate that pi(\), ..., un(A) have positive real

parts and pi,+1(A), ... , 2, (A) have negative real parts inside C \ o¢gs.

Step 2: Translating into wedge space.

Both the initial conditions and the evolution equations must be translated into Plicker
coordinates on the wedge product space. For smaller dimensional problems this can be
done by hand. For example, if n = 2 and k = 1, then the translation to 1-forms is merely
the identity; if n = 4 and k = 2, the we move to a wedge product space A2C* which is six
dimensional. However, our primary example has n = 8 and k = 4, leading to the seventy
dimensional space A*C8. Here, it helps to automate the process somewhat.

First of all, we need to define an enumeration of the basis
{62'1 Nej, N---Nej, | 1< <<+ <1y §2n}
In particular, we can define a bijective map

2
qﬁ:{eil/\eiZ/\---/\ein\ISil<i2<---<in§2n}—>{1,2,...,( n)}
n
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given by

¢(6i1/\6i2/\"'/\6in)
_ 2n — iy, n 2n — i1 + 2n —ip_o P 2n — 19 n 2n — 11 Y
n n—1 n—2 2 1

This is equivalent to the usual ordering of the associated binary sequences of 2n elements.
The basis n-form e;, Ae;, A---Ae;, is associated with a 2n digit binary number with 1’s in
the positions i1, %9, ... %, and a 0’s elsewhere. Counting only the binary sequences with an
equal number of zeros and ones yields the function ¢ given above. This characterization
makes it clear that if ¢(e;, Ae;, A---Ae;,) =i, then the complementary n-form (spanned
by the n remaining 1-forms) is numbered as (") —i + 1.

For the evolution of the unstable subspace E%(), z) from z = —oo, we need the space
spanned by the eigenvectors associated to all of the eigenvalues of Ay of positive real
part. For any given value of A, these are the eigenvalues p1(A),. .. , p,(A) with associated
eigenvectors v1(A),... ,v,(N). If these vectors are considered as the columns of a 2n X n
matrix V(A), then the initial condition for the coefficient of the basis vector e;; Ae;, A- - -Ae;,
will be given by computing the determinant of the n x n matrix derived by including only

the rows i1,%9,... ,i, of V. So

71
Un

V22
lim Y (A, z) = det "

T —00 (i)(eil /\67;2/\---/\ein)

Ul ’1)2 .. /l)nn
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The initial conditions at x = 400 corresponding to E*()\, z) are computed analogously

using the eigenvalues of negative real part and their associated eigenvectors.

Step 3: Evolving forward and backward in wedge space.

The numerical method will not be implemented on the whole real line R, but on a suf-
ficiently large interval [—M, M]. The limit M is chosen large enough so that the transient
matrix R(\, £M) is sufficiently small and therefore the initial conditions computed for
the asymptotic systems offer a reasonable approximation to the stable and unstable sub-
spaces. Also, because the spaces we wish to track numerically are the stable and unstable
subspaces themselves, these nearby approximations will converge to the desired subspaces
at a rate proportional to the spectral gap. Therefore, to increase the accuracy of our
computation, one can simply increase the value M.

We evolve the initial conditions via the (277) dimensional equation derived earlier. Be-
cause the space of interest is the eigenspace associated with the largest positive eigenvalue,
the size of the coefficients initially grows at a rate of u™ = 1 (A) + -+« + pp(X). To ease

in the computation, we augment the differential equation as follows:
Y = (A(/\,x) - ,ﬁI) Y.

The asymptotic system for this augmented ODE has a single zero eigenvalue and (2:) -1
negative eigenvalues, and we are tracing the solution which is asymptotic to the null
eigenvector. This also highlights the property that nearby approximations will converge
down to the desired solution E%(\,z). This now remains nearly constant for as long as u™

remains a reasonable approximation to the leading eigenvalue of A. This has the added
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benefit that the asymptotic conditions can be defined in a consistent manner even before
invoking linearity, in particular, the scale of the solution E*()\,z) evaluated at z = 0 is

independent of M.

Step 4: Calculating the Evans function E(\) at z = 0.

Once E*()\,0) and E*(X,0) have been calculated, it remains simply to calculate

E(\) = E*(\,0) A E*(),0).

Because of the antisymmetry property and the enumeration scheme, this calculation can

be reduced to a particularly simple form:

E(\) = E*(\,0) A E*(),0)

= Z y;—(eil/\eh/\"'/\ein)()\’ 0) e;;, Nejy, A=+ Nej,
1<61 <2< <1p <20
A Z y;(eil/\eh/\___/\ein)()\, 0) e;;, Nei, A= Nej,
1<i1 <<+ <in <2n
— + -~
= Z y¢(€i1/\ei2/\"'/\ein) (Aa O)y(2nn)+17¢(eil /\eiQ/\"'/\ein)(A’ 0)

1<1 <2<+ <1, <21

2n
ei1/\ez’2/\"'/\ein/\¢_1 ((n> +1—¢(ei1/\ei2/\.../\ein))

2n
n

—~
~—

5 0Oy, 00 67 ) A8 () 41 5)

<.
Il

—~
33
~—

y}L(A,O)y(_Z:)H_j(/\,O) o(j) e1 Aes A=+ A eom

<.
Il
—
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where

if the number of transpositions of successive elements taking

PO AGHEY) —j+1) toer Aea A+ Aey is even

if the number of transpositions of successive elements taking

LN AGH((P) —j+1) toer Aea A--- Aey is odd.

With this technology now at our disposal, we will first use the Evans function to explore
eigenvalues bifurcating from the essential spectrum in a toy example. We will then see
what can be said, both numerically and theoretically, about the full problem of pulses in

coupled Schrodinger equations.
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3.3 A motivating example

Numerical work by Ostrovskaya et al. [7] has shown eigenvalues bifurcating out of the
essential spectrum for multi-component solutions of the coupled Schrédinger equations.
In order to better understand the mechanism for the creation of these eigenvalues, we

propose to study a much simpler eigenvalue problem given by

A0 —X[—u,0] (t) 0

This example is intended to convey a similar flavor to actual systems, but should not be
thought of as the linearization about a pulse in any actual system. In this example, we can
locate eigenvalues by explicitly calculating the Evans function. We know from a simple

Sturm-Liouville analysis that the spectrum is composed entirely of

e essential spectrum consisting of the entire negative real axis

e point spectrum consisting of a finite number of real eigenvalues between zero and

one.

In fact, as the parameter y is increased, eigenvalues bifurcate out of the branch point at
the right hand end of the essential spectrum and accumulate at A = 1. Of special interest
is understanding the origin of these bifurcating eigenvalues. Using the Evans function
extended through the essential spectrum, we will locate and track these zeros of the Evans
function.

We will follow the steps detailed in the previous section regarding the calculation of

the Evans function.
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[]

Figure 3.1: For any potential eigenvalue X outside of the essential spectrum, the eigenvalues
of the associated asymptotic system are given by v/X and —v/X. The eigenvalue associated
with the asymptotic condition at —oo is marked with a box, while the condition for +oo
is marked with a circle.

Step 1: Choice of the asymptotic conditions.
For any value of A outside of the essential spectrum, the eigenvalue/eigenvector pairs

that determine the asymptotic conditions are
o VX, (1LVNT
b _\/Xa (la_ﬁ)T'

One can quickly verify that v/A and —v/X are purely imaginary only within the set {Ae
C | ReA < 0,Im X = 0}, and hence this set represents the essential spectrum. Choosing
the usual branch of the function /-, we use the eigenvector associated with the eigenvalue
with positive real part (v/A) as the “initial condition” at + = —oco. Likewise, we choose

the eigenvector associated with the eigenvalue —v/X as the “initial condition” at ¢ = +oo.
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Step 2: Translation into wedge space.

Because the stable and unstable eigenspaces in the asymptotic system are both one—
dimensional, the translation to the space of 1-forms is simply the identity.
Step 3: Evolution.

The evolution of these 1-forms (vectors) can be explicitly computed. Recall that we
rescale the system as

0 1 0 0 Vi 0
Y = + — Y.

Then the solution Y* which is asymptotic to (1,v/A)? also has Y¥(—u) = (1,vV)T.
Similarly, Y*(0) = (1,v/A)”. All that remains is to evolve Y* from ¢ = —u to t = 0 via
the transient system.

Between t = —u and ¢t = 0, this rescaled system reduces to the autonomous system

_\/X 1
Y = Y

A=1 =V
with eigenvalue / eigenvector pairs given by
e VA-1, (LVA=1)T

o —VA-1,(1,-vVA=1)T.
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The initial condition (1,v/A)T can be written as

2 1 2 A —1
v A A—1 —V/A=1
Hence
141 A 1_1 V2
yroy=| 2 PVAL leATvAey | P BVAL VATV,
SVA=T+3VA —3VA=T1+ 3V

4. Calculation of the Evans function E()\).

The Evans function is now given by taking the wedge product of the forward solution

Y*(0) and the backward solution Y*(0).

E()) = Y*(0) AY*(0)

1 v 1_1_V
v (VATT—VNu | 2 2Vl VATV A
IA—T+iVA —3VA-1+35VA
1
A
-V
1 22 -1 2\ —
M o (VAT A ( /X ) (—VA—T—VA)u
2( )\_1> + - A+ T e

e Vu ( 2V AcoshvA —1 p \/)\_ L sinhvA—1 u)

See Figure 3.2. For the critical values of A on the real axis between zero and one, we have

E\) = VA ( 2V A cos V1 — X p—

20 -1
\/i__/\sin\/l—)\u).
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Figure 3.2: The Evans function E()) in a neighborhood of the origin for g = 4. The thick
black line is the essential spectrum, where the Evans function is undefined. The imaginary
part of E is zero along the blue dashed curves, while the real part of F is zero along the
red dash—dotted curves. For this value of u, there are two real eigenvalues.

Since e~V £ 0, for A # 0.5, E(\) = 0 if and only if

1 =2 /AT =N -
Ji=x (tan 1(2A——1>_k”> s

for some integer k. The remaining value A = 0.5 is an eigenvalue if and only if u =

V2(0.5m + k) for some integer k. The eigenvalues in the interval (0,1) are then located
as in Figure 3.3. Note in particular that as p varies, eigenvalues bifurcate from the branch

point at A = 0 exactly when

Extension of the Evans function.
To better understand the origin of these bifurcating eigenvalues, we must extend the

Evans function through the essential spectrum. Within the essential spectrum, there are
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A

Figure 3.3: Zeros of the Evans function E()) vary as p is increased. In this example,
eigenvalues bifurcate from the essential spectrum when the parameter y passes through
multiples of .

two possible extensions for the Evans function, corresponding to choosing the asymptotic
conditions continuously from either above or below, see Figure 3.4. By extending this
assignment of asymptotic conditions through the essential spectrum and into the lower
(or upper) half plane, we have an analytically extended Evans function whose zeros no
longer necessarily correspond to eigenvalues of our system, as the associated “eigenvectors”
are not guaranteed to decay. However, as the parameter p varies, it is possible that the
location of these zeros will change and that they may move into a region where the Evans
function has not been artificially extended, where they will represent actual eigenvalues.
Of particular note is that there are no eigenvalues embedded within the essential spec-

trum itself. Indeed, for values of X\ in the essential spectrum, the two possible extensions
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Figure 3.4: The asymptotic conditions are chosen in a different manner on opposite sides
of the essential spectrum.

of the Evans function reduce to

B() = v (;22\/—)\(;03 VIThp— _117+—2:\ Y u)

= (cos(\/—_)\ ) £ isin(v/—X u)) ($2i\/—_)\c0sx/m = _1?_&2; sinv1— \ u) .

Since sin(-) and cos(-) are never simultaneously zero and all of the coefficients are nonzero
for A < 0, E()\) # 0 within the essential spectrum.

We can extend the Evans function not only to the essential spectrum, but through it.
One simple way to understand this extension is by making the substitution 2 = A. Then

the eigenvalue / eigenvector pairs for the asymptotic system are given by

e, (1,7

* -, (17 _7)'
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For any 7 in the complex plane, we then choose (1,7) as the asymptotic condition at
x = —oo and (1,—v) as the condition at £ = +oo. For 7 in the right half plane, the
associated function E(7) is related to the true Evans function. For 7y in the left half plane,
the asymptotic conditions have been reversed so that the computed subspaces grow rather
than decay — this is the regime of the extended Evans function. We have unfolded the
branch point A = 0, and have extended the Evans function to an analytic function on a
two—sheeted Riemann surface, see Figure 3.5.

As previously mentioned, “eigenvalues” move through zero and onto the positive real y—
axis when p passes through multiples of 7. Now we can see the origin of these eigenvalues.
In the left half plane, there is an infinite family of zeros of the extended Evans function
E(-) located along a vertical curve. As p increases, the locations of these zeros move
pairwise toward the real axis. When a conjugate pair meets on the negative real axis,
they separate moving right and left. The left—-moving zero approaches v = —1 as y — oo,
and the right-moving zero passes through v = 0 and onto the positive real axis (where it
now represents a true eigenvalue), going to v = +1 as p — oo.

This example has demonstrated a mechanism by which eigenvalues may emerge from
the essential spectrum as a parameter is varied. We will relate the mechanism shown here
with a possible mechanism for eigenvalue creation in the coupled Schrodinger model in

the next section.

Remark 3.2. In retrospect, it is not surprising that resonant poles accumulate at A =1
on the second Riemann sheet concurrently with eigenvalues accumulating at A = 1 on
the first. Consider the winding argument that counts the eigenvalues on the positive real

A—axis on the first sheet. The monotonicity of the eigenvalues with respect to A is based



7

S L L L - - L L L L L
-1 -0.5 0 05 1 -1 -0.5 0 0.5 1

Figure 3.5: The Evans function E() extended to the two—sheeted Riemann surface using
the map 72 = A, for p = 4,5,6 and 7. For p = 4, we still see the two true eigenvalues (in
the right half plane) as before. The positive and negative imaginary axis now correspond
to the two different extensions of the Evans function to the essential spectrum. In this
extension for y = 4, we also see a pair of complex valued resonance poles — zeros of the
extended Evans function in the left half plane. As yu is increased, these poles meet on the
negative 7y axis (corresponding to the positive real axis on the second Riemann sheet), and
one then moves through zero and becomes an eigenvalue as y passes through 27.
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upon two factors: first, as A increases, the speed of the winding decreases, until eventually
the transient system is hyperbolic and there is no winding at all; second, as A increases,
the asymptotic states that provide the shooting values move apart. On the second sheet,
the winding is the same, but now the roles of the asymptotic states have been reversed, so
that, as A increases, they are moving closer together. Since the winding is the dominant
effect for large values of yu, zeros of the extended Evans function accumulate at A = 1 on
the second sheet just as they do on the first. However, because the monotonicity property
no longer holds, there is the possibility of pairs of eigenvalues appearing in the interval

(0,1) on the second sheet that would not be counted in a winding argument.
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3.4 The single-component pulse g,(z)

We are now prepared to begin our search for eigenvalues for pulses in the coupled non-
linear Schrodinger equations. For the stationary wave ¢,(z) = (U(z),0) with trivial

w-component, the eigenvalue equation (3.1) decouples into a pair of 4 x 4 systems

- -1/ - - -
v O O 1 O U1
) 0 0 01 V9
= (3.2)
vs 2(1 — hy(:) — 2U%D1h4(+)) 2\ 0 0 vs
Vg -2\ 21—h1() |0 O Vg
and
- - ! - - — -
V3 0 0 10 V3
V4 0 0 01 V4
= (3.3)
7 2(r — ha(")) 2 00| v
(%] —2)\ 2(7‘ — hg()) 0 0 (%

The spectrum of the stationary wave will then be the union of the spectra of these two
individual systems. These two contributions to the spectrum are described in the following

two lemmas.

Lemma 3.3. For the first subsystem (3.2), the essential spectrum is purely imaginary
encompassing the entire imaginary axis except for an open gap between —i and %, in
particular, o, = {z + iy | z = 0, |y| > 1}. There is an eigenvalue at the origin which has

geometric multiplicity 2 and algebraic multiplicity 4. For the saturable nonlinearity of
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Figure 3.6: The spectrum of the first subsystem (3.2).

the Ostrovskaya—Kivshar problem, there are also a pair of eigenvalues in the gap on the

imaginary axis near the branch points of the essential spectrum. See Figure 3.6.

The first system (3.2) is the usual Schrodinger equation with an intensity—dependent
nonlinearity and the spectrum is well known. The essential spectrum is defined & la Henry
[27], and contains the set of points at which the asymptotic matrix has eigenvalues on
the imaginary axis. It is a quick calculation that the asymptotic matrix has eigenvalues
+4/2(r £ iA) and hence X is in the essential spectrum if and only if either r+i\ or r—i\ is
a non-positive real number. The point spectrum at zero is determined by the symmetries
present in the system. There is an eigenfunction (U’'(z),0,U"(z),0) associated with the
translation invariance of the solution; i.e. if U(x) is a solution then so is U(z + €) for
any e. Similarly, there is an eigenfunction (0,U(z),0,U’(z)) stemming from the phase
invariance; given a solution U(z), U(z)e’ is also a solution for any e.

Depending upon the specific form of the function hi(-) there may be other point
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Figure 3.7: The spectrum of the second subsystem (3.3) is the union of two reflected
components.

spectrum as well. For instance, with the saturable nonlinearity used by Ostrovskaya and
Kivshar, with saturability parameter s, there will be a pair of eigenvalues in the gap, one

at a distance O(s?) from each branch point, see Kapitula and Sandstede [28].

Lemma 3.4. For the second subsystem (3.3), the essential spectrum is purely imaginary
encompassing the entire imaginary axis except for an open gap between —ir and ir, in
particular, o, = {z +iy | x = 0,|y| > r}. There are also a finite number of eigenvalues on
the imaginary axis, whose distance from one branch point or the other are independent of
r. Particularly, there is a positive descending sequence a1, a9, ... ,a; such that i(r — a;)
and —i(r — a;) are eigenvalues. Depending upon the parameter r, these values may be

either in the gap or embedded within the essential spectrum. See Figure 3.7.

To more readily visualize the spectrum associated with the second system (3.3), we
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make the substitutions A = —i)\ and vy = —tvg. This yields the system
o = 2 —ha() v3 — 2\ By
’174” = —25\ vz + 2(1“ - hg()) ’54.

We then consider eigenfunctions with the special form 94 = w3, and find the Sturm-—

Liouville problem
o = 2(r —X) v — 2hy(-) vs.

Letting 7 = r — A, we arrive at the same equation which was used in the existence section
to identify the points of degeneracy of this same pulse. In particular, it is a Sturm-
Liouville problem and has essential spectrum where 7 < 0, along with a finite number of
eigenvalues 71,... ,7 corresponding to eigenfunctions with, respectively, 0,1,... ,k — 1
zeros. Returning to the original variables, the second subsystem has essential spectrum
oe={z+1iy | £ =0,y > r} and eigenvalues given by i(r — 71),i(r — 72),... ,i(r — 7).

Similarly, if we look for eigenfunctions of the form 9y = —wv3, we find the problem

o = 2(r+X) vz — 2ha(-) vs.

This provides the other component of the essential spectrum o, = {z+iy | z = 0,y < —r}
and eigenvalues given by —i(r — 71), —i(r — 72), ... — i(r — 7).

The full spectrum of the second subsystem is made up of these two reflected pieces.

Remark 3.5. Considering the parallels between the simple example in the previous sec-

tion and the Sturm-Liouville problem here, there are two distinct mechanisms present that



83

may produce eigenvalues emerging from the essential spectrum as we follow the bifurcating
multi-component pulses. Suppose we follow the multi-component pulse gy ;(z) associ-
ated with a bifurcation of the i mode. First, the point spectrum that is originally either
embedded in the essential spectrum or already in the gap (particularly, the eigenvalues
associated with modes 0, ... ,k—1) may enter the gap. Additionally, motivated by the toy
problem in the previous section, we might expect resonance poles representing potential

modes of order greater than k to emerge from the branch point as true eigenvalues.

Remark 3.6. It is clear from the analysis above that the degeneracy of the elementary
pulse g,(z) corresponds to a conjugate pair of eigenvalues meeting at zero when r =
T1,72,... ,7k. 1f we continue to follow the elementary pulse g, (z) through one of these
values of the parameter r, these eigenvalues pull through each other and continue along the
imaginary axis — indicating that the pulse ¢, (z) is stable for all . However, accounting
for these near zero eigenvalues as we follow the symmetric bifurcating pulses q‘o’i)(x),
@ =11,... % is of paramount importance in determining the stability properties of g/ ; (x)

in a neighborhood of r;. This study will be undertaken in the next section.
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3.5 The bifurcating pulse gy ;(z).
In this section, we consider the stability properties of the bifurcating pulse g|o;(z).

The initial stability of g)o; (7).

At the bifurcation point r;, there are two additional eigenvalues at the origin. Following
the elementary pulse g,(z) through this bifurcation value, these eigenvalues pass through
each other. The next lemma specifies the location of these two eigenvalues if we instead

follow the bifurcating multi-component pulse g ; (7).

Lemma 3.7. For r > r;, the bifurcating multi-component pulse q|07i)(a:) has a zero eigen-

value of geometric multiplicity 3 and algebraic multiplicity 6.

Proof. Recall that the elementary pulse generally, i.e. away from the bifurcation point,
has an eigenvalue at the origin with geometric multiplicity 2 and algebraic multiplicity 4.
These correspond to the translation and phase invariances. Because of the form of the
nonlinearity, the pulse g|g ; (z) has a phase invariance associated with each nonzero pulse
component. Therefore, the two new eigenvalues are locked at zero in order to account for

the nontrivial phase invariance of the now nonzero w-component of g ; (z). O

This provides the somewhat surprising result that, near the bifurcation value r = r;,
both the elementary pulse g, (z) and the bifurcating pulse g ;) () are stable, as the near
zero eigenvalues move along the imaginary axis for g, (z) and are locked at zero for g|o ;) ()-
In neither case do they move onto the real axis, away from zero.

We recall from the first section that — farther from the bifurcation value r = r; where

¢u(7) becomes degenerate and the pulse g|o ;) (z) bifurcates from it — it is possible for the
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pulse g|o4(z) itself to become degenerate. Beyond this degeneracy, there are a pair of
nonsymmetric pulses bifurcating from gjo ;) (). At the point of degeneracy itself, there are
again two additional eigenvalues at A = 0. And again, determining the fate of these eigen-
values is the primary issue in determining the stability of either g|o;(z) or the bifurcating

nonsymmetric pulses.

The instability criterion of Jones and Grillakis.

Recall that the eigenvalue equation can be written as

b1 n
O2x2 —L-— P2 D2
=A
Ly 0Ogxo q a1
| 92 | | 92 |
where
hi() 0 10
L. = 3=+ +
0 ha() 0 r
> hi() 0 2U2D:hy (1)  2UWDshy () 10
Ly = 3gp+ + N
0 B2 () 2UWD1hy (-) 2W2Dshs () 0 r

Both Grillakis [10] and Jones [9] provide a criterion relating the spectrum of the operators

Ly and L_ with the spectrum of the operator

O2xo —L_
N =

Ly  0oxo
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The operators L, and L_ are both self-adjoint and hence the spectrum of each will be
contained entirely within the real axis. The spectrum of N will not be real; as we have

seen already, much of it will lie upon the imaginary axis. We define

n(L;) = the number of positive eigenvalues of L
n(L_) = the number of positive eigenvalues of L_
z(L_) = the number of zero eigenvalues of L_

where the eigenvalues are counted including multiplicity. In the case that L, and L_ are
scalar operators, Jones [9] provides an instability criterion, namely, that if n(L,)—n(L_) #
0,1, then N has a real positive eigenvalue. The proof is geometric in nature, and involves
a shooting argument in the space of Lagrangian planes A(2). For higher dimensional
systems, Grillakis [10] provides a generalized criterion using a functional analytic approach.
In particular, if we write

Y = [ker(L) Uker(L_)]*

and let

L, = the restrictionof L; toY

L' = the restriction of L~ to Y

then Grillakis’ theorem states that there are exactly

max{n(L.),n(L-1)} — dim(C(L;) n C(L2Y)

positive real eigenvalues. Here, C(L) = {y € Y | (Ly,y) < 0} denotes the negative cone

of an operator L. We use Grillakis’ theorem to derive a generalization of Jones’ criterion
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suitable for our purposes. This derivation parallels the work of Yew [18].
Lemma 3.8. If n(Ly) — 2(L_) — n(L_) > 0, then N has a real positive eigenvalue.

Proof. To prove this criterion, we must bound the quantities present in Grillakis’ theo-
rem. In particular, to estimate the quantities n(L.) and n(L-') we must consider how
projection onto the subspace Y affects the indices. Because L. is self-adjoint, the nega-
tive eigenspace of L is orthogonal to its kernel ker(L. ), and hence is influenced only by
projection off of ker(L_). At worst, projection off of ker(L_) reduces the dimension of the

negative eigenspace of L, by dim(ker(L_)) = z(L_) and hence

max{n(L.),n(LZ")} = n(Ly)

> n(Ly) —2(L).

Likewise, at best, projection off of ker(L. ) leaves the dimension of the negative eigenspace

of L_ unchanged. Therefore

dim(C(Ly) N C(L™Y) < min{dim(C(L,)),dim(C(L~1))}

IN

min{n(L.),n(L_")}

IA
E
i

and it follows that

max{n(Ly),n(L=")} — dim(C(L;) N C(L=Y)) > n(Ly) — 2(L_) — n(L_).

Applying the theorem of Grillakis, the lemma follows immediately. O
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This lemma, provides a useful criterion for the instability of a pulse, but does not imply
stability in the case that n(Ly) — 2(L_) —n(L_) <0.
We will use this condition to examine the (in)stability of the symmetric multi-

component pulses g|g ;) (z) and the asymmetric pulses bifurcating from them.

Remark 3.9. As an exercise, we can check this criterion for the single component pulse
qu(z) considered in the previous section. For this pulse, both of the operators L™ and L~

decouple further. L™ is given by

1 d2 hi() 0 2U?D1h1 (1) 0 10

be=gam ™t

0  he() 0 0 0 r
Hence L, can be broken into scalar operators with spectrum that can be determined by
a Sturm-Liouville argument. The first operator

1

Ly =502

+ hy (-) +2U%D1hy (1) — 1

has a zero eigenvalue reflecting the translation invariance of the single component pulse.
Moreover, since the eigenfunction (U’,0,U"”,0) has one zero, there is exactly one positive
eigenvalue of this operator. The second operator

1 d2

2 = -4
T 2dg2

+h2(-)—1“

has a non—negative number j(r) of positive eigenvalues depending upon the value of r. In

particular, if ;11 < r < r;, then j(r) =i+ 1. So n(Ly) =1+ j(r). The operator L_ is
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given by

and can also be broken into two scalar operators. The first,

o1&

__iw—}_hl(')_l’

has a zero eigenvalue associated with the phase invariance of the wave and hence z(L! ) =
1. Since the eigenfunction (U,0,U’,0) has no zeros in the first component, there are no
positive eigenvalues of this operator, i.e. n(L!) = 0. The second operator,

L2_1d2

_—Ew-l‘hQ(')—’r‘,

is the same as L% in this case and has the same non-negative number j(r) of positive
eigenvalues. L2 has a zero eigenvalue only when the pulse solution ¢, (z) is degenerate, so
n(L?)=1ifr € {r,... ,r;} and n(L%) = 0 otherwise.

So, n(Ly) = 1+ j(r), 2(L-) = 1 or 2 and n(L_) = j(r). Hence n(Ly) — z(L_) —
n(L_) = —1,0. Therefore, we do not a priori expect an instability in this stationary wave

(which is a good sign, as we proved this wave to be stable).

Remark 3.10. For both the symmetric and nonsymmetric multi-component pulses, the

values n(L_) and z(L_) are easy to compute. As in the case for the elementary pulse
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qu(z), the operator L_ decouples as

1 d2 hi() 0 10

L-=532

The two resulting scalar operators each have a zero eigenvalue associated with the phase
invariance of the two individual components of the solution, hence z(L_) = 2. The
value of n(L_) is then determined by the number of zeros of the two pulse components
themselves. So for the pulse g|o;(7) and any asymmetric pulses bifurcating from it, we
have n(L_) = 0+ ¢ = i. The application of the instability criterion then depends upon

the more complicated calculation of n(L ).

Winding and the calculation of n(L,).
We can use the Maslov index to count the number of real positive eigenvalues of L.

Recall that the eigenvalue problem for L, can be written as

0252 Isyo

VS 20N -0 el v (3.4)

022

_fc(') 2(T+A) _.fw(')

In order to follow the two-dimensional unstable subspace, we can once again move to
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Pliicker coordinates:

P, = Pyy— Py

Py = —f(-)Pr2

Py = fe()Pr

Py = P+ 2>r+A) = ful) P2
Py = —Pu—(2(1+X) = fu()) Pr2

Py = 200+ X) = ful-))Pra — (2(r + X) = fu(-)) Pz + fe(-) (P13 — Poa) -

This equation preserves both the Grassmannian condition (2.9) and the Lagrangian con-
dition (2.10) — and so we can consider a flow on the space of Lagrangian two—dimensional
planes in R*, A(2). Because A(2) is a 3-dimensional manifold, a concrete visualization
can be given. In particular, A(2) can be seen as S? x [—1,+1] where the spheres at +1
and —1 are identified via the antipodal map (see Jones [9]). Specifically, A(2) is a fiber
bundle over S' with fiber $? and clutching function the antipodal map. The fundamental
group is Z and the projection onto S' gives the winding — this winding is the Maslov
index. In order to exploit this winding, it is natural to use the covering space of A(2) —
this covering space is S? x R and will be denoted C(2).

The eigenvalue problem can then be reformulated as a shooting problem in A(2). Before

detailing this shooting problem, we require the notion of the train of a point ¢ € A2.

Definition 3.11. The train of v, denoted D(v) is the set of all ¢ € A(2) that have a
nontrivial intersection with v, where ¥ and ¢ are considered as two—dimensional subspaces

of R%.
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Figure 3.8: The covering space C(2) for the space of Lagrangian planes A(2).

For any ¢ € A(2), the train D(1)) can be lifted to D (1) in the covering space C(2). In C(2),
D(zp) has the appearance of the union of infinitely many cones, joined base to base and
vertex to vertex. Each vertical slice is a disk and the fiber S? is obtained by identifying
the boundary of S? to a single point. D(t)) partitions C(2) into an infinite number of
components, see Figure 3.8.

For a fixed train D(8), any curve in A(2) starting at a point a and ending at a point

B’ can then be lifted C(2). We can then define the Maslov Index.

Definition 3.12. The Maslov index of a path starting at a point « and ending at 3,

o ¢ D(B) is, by definition, either
1. the index of intersection of this path with ﬁ(ﬂ) if 8# 0, or
2. 1 + the index of intersection of this path with D(g8) if 8 = .

We are required to distinguish between paths ending at the vertex 8 and paths ending at
other points because the intersection of a path with the vertex is two dimensional, whereas

intersections with other parts of the train are one dimensional.
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The shooting argument is then clear. For a fixed A € R, we can identify the two
points W* € A(2) associated with the unstable subspace of the asymptotic system and
W3 € A(2) which is associated with the stable subspace. Lifting W to a point W in
the covering space, A is an eigenvalue if and only if there is a connecting orbit between
W* and D(W3).

Letting 7()\) denote the Maslov index of the path in C(2) with a-limit set W for a

particular A, we have the following lemmas.
Lemma 3.13. If \; < Ao, then the number of eigenvalues A € [A1, A2) equals I(A1)—1(\2).
Lemma 3.14. The number of eigenvalues A € [A1,00) equals I(A;).

The fact that I(A;) — I(A\2) provides a lower bound for the number of eigenvalues is
clear. Equality requires a monotonicity argument — we defer to Deng [29] in this matter.
The second lemma is once more a result of the loss of ellipticity of the transient system

for A large.

The Maslov index is related to the horizontal distance traveled by a path in C(2)
projected onto R (the covering space of the fiber bundle S'). However, some information
is lost in this projection, as two points in the same fiber may be in separate components
of C(2) (they may lie on opposite sides of the train) and the Maslov index of paths ending
at these two points will differ by 1. However, because the equation for L, reduces to the
equation of variations when A = 0, we know a priori that A = 0 is an eigenvalue (this
eigenvalue is associated with the translation invariance of the stationary wave). Therefore,

the orbit with a-limit W* connects exactly with the train ﬁ(Wi) In particular, we can
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compute the Maslov index I(0) exactly using only the angular information associated with

the aforementioned projection onto R. And n(L;) = I(0) —1.

Remark 3.15. When the pulse g|o;y(z) becomes degenerate, the associated orbit in C'(2)
will intersect the vertex of the train. On opposite sides of the degeneracy then, we expect
this orbit to have different values of the Maslov index I(0) and hence different values for
n(Ly). For the single-component pulse ¢,(z), this change was offset by a corresponding
change in n(L_). For multi-component pulses like g ; (), however, n(L-) is fixed by
the phase invariances of the two components. Hence an increase in I(0) (and therefore

n(L4)) will likely trigger an instability in this case.

The space of Lagrangian planes A(2) can be represented as a homogeneous space:
A(2) 2 U(2)/0(2), where U(2) is the group of unitary matrices and O(2) is the subgroup
of real orthogonal matrices (see Arnol’d [30]). With this view, the projection onto S! is
achieved via the map Det 2(-). The angular equation associated with the map Det 2(-) is

then

_; ImDet 2(+)
ReDet 2(-)"

Kk = tan

In Bose and Jones [31], this formulation is used to derive formulae for £ and «’ in Pliicker

coordinates:

1 2(Pi1sa — Py3)(P1a — Psa)
(Pia — Po3)? — (P12 — P34)?

k = tan~

and

o — tan—1 2(Pl2 = P3y) (Pia — Pos) — (Piy — Pp3)(Pro — Paa)
(Pra — P3)? + (P2 — P3y)?

We use these expressions for x in order to numerically evaluate I()A) and therefore n(L. )
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for various incarnations of the stationary wave. First of all:

Lemma 3.16. For r near r = r;, where the multi-component wave g|o;(z) originates,
q|0,iy(z) has I(0) = i+ 2 or i+ 3, and therefore n(L,) =i+ 1 or i +2. Because n(L_) =i
and z(L_) = 2, it is clear that n(L+) — 2(L_) — n(L_) is either —1 or 0, and we do not

necessarily expect the pulse to be unstable.

Proof. At the parameter value r increases through r = r;, the one—component pulse g, (z)
passes through a degeneracy. The associated orbit in C(2) terminates at the vertex of
the train for this value of r. Because L decouples into two smaller systems in this case,
we easily calculate that n(L,) drops from ¢ + 2 to 7 + 1 at this same point. Because the
associated orbit of the bifurcating pulse g|o;(z) originates at this same point, for small
changes of r, the terminal point of the associated orbit in C(2) can only move to one of
the two components of the train which meet at this vertex. These have I(0) =i+2,7+3

and the lemma follows. O

Remark 3.17. We numerically observe that the terminus of the orbit in C(2) for the
bifurcating pulse g|g 3 () moves in the opposite direction from that of the single component

pulse g, (z) with increasing r and has I(0) = ¢ + 3.
For the sake of specificity, we lay down the following lemma.

Lemma 3.18. If the stationary wave g)o; () itself becomes degenerate, and passage
through this degeneracy is associated with an increase in the Maslov index I(0) from 7+ 3
to i + 4, then beyond this degeneracy, the pulse g|g;)(z) is unstable.

Proof. This is clear, as we then have n(Ly) —2(L_) —n(L_) =i+ 3—2—14 = 1. The

instability criterion is then satisfied. O
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We will now compute these values in three cases for the Ostrovskaya—Kivshar problem

with saturability parameter s = 0.8.

1. For r between the bifurcation value ro ~ 0.20 and the parameter value for which
q0,2) (%) becomes degenerate r ~ 0.48, the pulse gjg9y(z) has I(0) = 5, n(Ly) —
z(L_) —n(L_) =4 —2—2 =0 and is not necessarily unstable, as seen in Lemma

3.16. See Figure 3.9.

2. For r beyond the parameter value for which g|g2y(z) becomes degenerate r ~ 0.48,
the pulse g|o2y(z) has I(0) = 6, and hence n(L) —2(L-) —n(L-)=5-2-2>0

and is unstable as in Lemma 3.18. See Figure 3.10.

3. For r beyond the parameter value for which g ;) (z) becomes degenerate r = 0.48, the
bifurcating non-symmetric pulse has I(0) = 5, n(Ly)—2z(L_)—n(L_) =4—-2—-2=0

and may actually be stable. See Figure 3.11.

Remarks concerning stability.

Remark 3.19. We should be able to count eigenvalues on the imaginary axis as well
as those on the real axis. For A in the gap of the imaginary axis, we can make the
transformations A — iA and q = (q1,92) — iG. Then the operator N can be written as a
real operator, and the eigenvalues of L and L_ should again tell us something about the
eigenvalues of N. A potential difficulty comes from the fact that the equivalent “X large”
limit is not available in this case. Perhaps some extension into the essential spectrum
(or onto another Riemann sheet) is possible that would help us to bound the number of

eigenvalues that might enter into play through the branch points.
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Figure 3.9: Calculation of n(L.) for the pulse g 2y(z) at r = 0.45, before the degeneracy.
The angular variable x(z) is shown for increasing values of the eigenvalue parameter A. A
values for which ) is an eigenvalue are seen as steps — for A values on either side of these
steps, the orbit in C'(2) goes to different components of the train. The highest “half-step”
is associated with the eigenvalue A = 0. Here I(0) = 5, and hence n(Ly)—z(L_)—n(L_-) =
4 — 2 —2 =0 and the pulse may be stable.
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Figure 3.10: Calculation of (L) for the pulse gjg 2)(7) at r = 0.50, after the degeneracy.
The angular variable x(z) is shown for increasing values of the eigenvalue parameter A. A
values for which X is an eigenvalue are seen as steps — for A values on either side of these
steps, the orbit in C(2) goes to different components of the train. The highest “half-step”
is associated with the eigenvalue A = 0. Here a new eigenvalue has appeared with A small.
Now I(0) = 6, and hence n(L4)—z(L_-)—n(L-) = 5—2—2 = 1 and the pulse is unstable.
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r=0.50

0 40

Figure 3.11: Calculation of n(L. ) for the bifurcating nonsymmetric pulse at » = 0.50, after
the degeneracy. The angular variable x(z) is shown for increasing values of the eigenvalue
parameter A. X values for which )\ is an eigenvalue are seen as steps — for A values on
either side of these steps, the orbit in C'(2) goes to different components of the train. The
highest “half-step” is associated with the eigenvalue A = 0. Here we still have I(0) = 5,
and hence n(Ly) —z(L_) —n(L_) =4 —2—2 = 0. The nonsymmetric bifurcating pulse
may indeed be stable!
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3.6 N-—pulses

The criterion of Grillakis and Jones also applies to the multi—pulses that bifurcate from
the single-component pulse ¢, (z) as it passes through degeneracy for r = r;. The primary
complication for determining the stability of multi—pulses is the issue of eigenvalue multi-
plication. If the pulse gjo; () has k eigenvalues near a point, then an N-pulse that looks
like g0,y () concatenated with itself N times, will have Nk eigenvalues near that same
point. For instance, the pulse ¢,(z) has an eigenvalue with algebraic multiplicity 8 at the
origin at the bifurcation point » = r;. For an N—pulse created at this bifurcation, only 6
of the 8NN eigenvalues are guaranteed to remain at the origin. The primary issue in the
study of stability is determining whether any of these 8N — 6 eigenvalues move into the
positive half-plane, generating an instability.

The manner in which the multi-pulses are “glued” together is often a critical factor in
determining the motion of eigenvalues following the bifurcation. This is of course true in

this case as well, but here there is a simplification which eases the following conclusion:

Lemma 3.20. For r near a bifurcation value r;, all N—-pulses which look like concatena-
tions of the bifurcating pulse qm,i)(ac) are unstable. In particular, they have at least N — 1

positive eigenvalues.

Proof. This follows from Remark 3.17. In particular, as the pulse g,(z) passes through
degeneracy increasing r through the value r;, the Maslov index I(0) of the pulse g,(z)
decreases to 7 + 2, while the bifurcating pulse g|o;(z) has Maslov index I(0) = i + 3.
Therefore the operator L, for the pulse g|o; () has i + 2 positive eigenvalues, including

the small positive eigenvalue that bifurcates from zero for r > r;. The N—pulse then has
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N eigenvalues exponentially close to each of these 7 + 2 positive eigenvalues, in particular
Because any N—pulse is required to alternate in exactly one of its components between

successive pulses, the N-pulse has n(L_) = iN + (N — 1). Additionally, we still have

n(Ly)—z(L)—n(L) > (i+2)N—2—(GN+ (N —1))

= N-1

So, by way of the proof of Lemma 3.8, any N—pulse has at least N — 1 positive eigenvalues.

0

Remark 3.21. The inherent instability of N—pulses is due to the multiplication of the
near—zero, but positive, eigenvalue of L for the pulse g (7) that appears at bifurcation.
This multiplication produces N — 1 positive (and also N — 1 negative) eigenvalues for the
full composite operator. Of course, there may be additional instabilities present once we

account for the other 6N — 6 near zero eigenvalues.
We make the following conjecture, and numerically verify it only in the case N = 2.

Conjecture 3.22. Consider a sequence of N binary digits given by j1,j2,... ,jn and let
fji,...,jn}(T) be an N-pulse in which the u—component of the it pulse is positive if j; = 0

and negative if j; = 1. We conjecture that g;, . () has exactly

a]N}

N-1
N—1+ > (1= (i1 —5)?)
i=1
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positive real eigenvalues.

Remark 3.23. This conjecture says that the alternating N—pulses constructed in Section
2.2 are, in some sense, as stable as possible, with only the N — 1 positive eigenvalues
specified above. At the other extreme, the N—pulses in which the u—component does not

alternate at all has 2N — 2 positive eigenvalues.

Both the alternating and the non—alternating 2—pulse near the bifurcation point r =
r1 are shown in Figure 3.12. In Figure 3.13, we see the numerical calculation of the
Maslov index and the location of the positive eigenvalues for L, of the alternating 2—pulse
qf1,03(7). The operator L for this pulse has 2(i + 2) = 6 positive eigenvalues. Since
n(L_) = 3 and z(L_) = 2, this pulse has at least one real positive eigenvalue and is
unstable. Likewise, in Figure 3.13, we see the numerical calculation of the Maslov index
and the location of the positive eigenvalues of L of the non-alternating 2-pulse g1 11(z).
Here, L has an additional near—zero eigenvalue, so that n(L,) = 7. It follows that this

pulse is unstable and has at least 2 positive eigenvalues.
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r= 065
T

-4 L L L L L L ! L L L
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 3.12: Two different 2—pulses are found for r = 0.65 near the bifurcation point
r = ry. The first is alternating in the first component while the second is not.
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Figure 3.13: Calculation of n(L4 ) for the alternating 2—-pulse at r = 0.65 near the degen-
eracy r = r1. There are two eigenvalues near each X value at which the 1-pulse g 1) ()
has a single eigenvalue. The angular variable x(z) is shown for increasing values of the
eigenvalue parameter \. Zero is a simple eigenvalue here and there are no eigenvalues ex-
ponentially close to zero. Now I(0) =7, and hence n(Ly)—2(L_)—n(L_) =6—3—-2=1
and the pulse is unstable.
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Figure 3.14: Calculation of n(L,) for the non-alternating 2-pulse at 7 = 0.65 near the
degeneracy r = r1. There are two eigenvalues near each A value at which the 1-pulse
qj0,1)(z) has a single eigenvalue. The angular variable x(z) is shown for increasing values
of the eigenvalue parameter A. Zero is a simple eigenvalue here, and there is a positive
eigenvalue exponentially close to zero. Now I(0) = 8, and hence n(L;) —2(L_)—n(L_) =
7 —3 — 2 = 2. The pulse is unstable and has at least two positive eigenvalues.



Part 11

Pulses in the Gabitov—Turitsyn

Equation
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Chapter 4

Introduction

Within the last decade, dispersion management has become an important principle in
the field of fiber optic communication. As we described in the first part, the nonlinear
Schrodinger equation provides a model for pulse propagation in optical fibers, incorporat-
ing the effects of chromatic dispersion, as well as the nonlinearity of the material properties.
Under the right circumstances, the broadening due to dispersion can be counteracted ex-
actly by this nonlinearity and a soliton can be formed. Unfortunately, much of the world’s
optical fiber was installed without this balance in mind, and for the most part, the ef-
fects of nonlinearity were ignored. In these fibers, dispersion is so large that the power
required in order to achieve the nonlinear balance is prohibitive. However, it is possible
to manufacture fiber that has a dispersion coefficient of opposite sign at the usual operat-
ing wavelength. By alternating lengths of this “dispersion managed” fiber with the usual
fiber, we reach a regime in which the average dispersion is small and the nonlinearity can
again play an important role.

Pulse propagation in the regime of strong dispersion management is described by the

107
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following nonlinear Schrodinger equation:
i, 4 d(2)ug + €(lu)®u + auy) = 0. (4.1)

This models the situation described above in which there is a large periodically varying
dispersion term d(z) (with (d) = 0) but where the effects of nonlinearity and the residual
dispersion are both small. A natural step in the analysis of this equation would be to use
an averaging procedure to remove the periodic dispersion term d(z), and in so doing, we

derive the Gabitov—Turitsyn equation

v, + avy + i/_l(T_1 (IT(2)v|*T(2)v) dz = 0. (4.2)

We call a stationary solution of this equation a dispersion managed (DM) soliton.

Rapid development in the theory of the DM soliton has been driven by its practical
importance as well as its somewhat intriguing properties. One of these properties is the
persistence of the DM soliton when the residual dispersion « is zero or even slightly
negative; the corresponding nonlinear Schrédinger equation has no pulse-like solutions in
this regime. A typical explanation for this behavior is based on Lagrangian averaging over
a Gaussian ansatz. This reduction produces an effective finite dimensional system with a
corresponding potential. When the residual dispersion « is positive, this potential well has
a global minimum that corresponds to the DM soliton. This global minimum persists for
the case of zero residual dispersion, and when the residual dispersion is slightly negative,

there is still a local minimum. However, as the residual dispersion is decreased further,



109

this local minimum is destroyed in a saddle-node bifurcation. This was described by
Pelinovsky [32].

The DM soliton can be understood as the ground state for the averaged Hamiltonian
associated with equation (4.2). Recently, it was shown by Zharnitsky et al. [33] that the
ground state for the averaged Hamiltonian could be found by carrying out a minimization
procedure. That approach was also used to show that a critical point could not be a
minimum if the residual dispersion were negative [33], see also related work by Pelinovsky
[32].

In this thesis, we numerically implement such a minimization procedure using a basis
of Hermite-Gaussian functions. In studying stationary waves of the equation (4.2), we
consider a constrained variational principle, as introduced by Zakharov in the context of
the nonlinear Schrodinger equation, see [3]. (For an interesting historical discussion of
the use of variational principle for stability analysis, see [34].) Any finite collection of
elements from this Hermite—-Gaussian basis spans a finite dimensional space; and minima,
of the Hamiltonian restricted to this space may be expected to approximate nearby critical
points of the infinite-dimensional Hamiltonian. Locating such local minima then gives us
information about the form of the standing waves of equation (4.2).

Using the Hermite—Gaussian functions as a basis, we approximate the profile of the DM
soliton for positive and mean—zero residual dispersion and even into the negative residual
dispersion regime. We explore the destruction of the DM soliton as residual dispersion is
decreased and note that our minimization technique yields an approximation for the DM
soliton into the regime where the Gaussian ansatz fails to do so. Additionally, the better

approximations of the DM soliton in the Hermite—Gaussian basis propagate in all regimes
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with far less noise than their Gaussian counterparts. Furthermore, the increased accuracy
in the tails provides for far better modeling of well-separated pulse interactions than a
Gaussian ansatz allows.

Finally, as we increase the number of Hermite-Gaussian functions in the approxima-
tion, it is possible to find local minima that do not correspond to a single DM soliton.
In fact, we find a local minimum that corresponds to a pulse with the appearance of two
widely spaced DM solitons, we call this solution a bisoliton. Such a solution (first found
in Maruta et al. [35]) suggests an ideal pulse spacing for DM solitons or even advanced

coding systems for information transmission.



Chapter 5

Approximate pulses via a

variational principle

5.1 Governing equations and the numerical method

Pulse propagation in the regime of strong dispersion management is described by a non-
linear Schrodinger equation with periodically varying dispersion, see Lakoba and Kaup

[36]. This is written
fu; + d(2)ug + e(jul*u + augy) = 0,

where d(z) is a periodically varying group velocity dispersion with (d) = 0 (see Figure
5.1), ea is the residual dispersion, and z and ¢ correspond to the distance along the fiber

and the retarded time, respectively.
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Figure 5.1: The symmetric dispersion map.

This is a Hamiltonian equation, and the Hamiltonian is given by

+o00 1
H(u) = / d(z)|ut|2 +e€ (()z|ut|2 - §|u|4> dt.

—0o0

To remove fast oscillations induced by the strong dispersion d(z), we make a linear
canonical transformation u = T'(z)v and u = T~ (z)v, where T is the solution operator of
iu, + d(z)uy = 0 and T~ is the solution operator of su, — d(z)uy = 0. This change of
variables provides an equivalent formulation for the Hamiltonian:

+o0 +o0
H(v) = o / o2 dt— / T (=)o]? [T~ (2)0] dt.

—00 2/

And because T~ (z)o = T'(z)v, we can rewrite this Hamiltonian in the more convenient

form
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Finally, we average over a single period of the dispersion map to obtain

+0o 1 +oo 1
(H)() = a / ot — / / T (2)o]* dz dt (5.1)
—00 4 —o0 J-—1
with the corresponding averaged equation

’L"Uz + vy + —

1
i /_ T (T PT(EY) de =0 (5.2)

The constrained variational principle takes the form

+0o0 +o0
Hy = inf{(H)(v) | / lon? dt < oo,/ o] dt = E}
— 00 — 00

A solution of this variational principle corresponds to a standing wave in the averaged
equation (5.2). Indeed, a constrained minimizer V (¢) € H%(R) must satisfy the relation-

ship

oH)
0

for some w € R and hence the solution v(t,z) = €*?V(t) satisfies the averaged equation
(5.2).

The averaged equation (5.2), as well as the associated variational principle, were ob-
tained by Gabitov et al. in [37]. When the residual dispersion « is positive, this variational
principle has been shown to possess a ground state [33]. Even when the residual disper-

sion « is zero, a similar result can be demonstrated, see Kunze [38]. This ground state
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corresponds to the dispersion managed soliton.

The numerical procedure.

In this thesis, we locate minimizers numerically using the following procedure.

Reduction to a finite dimensional space.
We approximate the Sobolev space H' (R) by introducing a finite-dimensional Galerkin
approximation for V(¢) in the basis of Hermite-Gaussian functions. A similar reduction

was carried out in [36] and [39]. The set of Hermite—Gaussian functions is given by

]_ 2
— — _H,(t)e 7 |n=0,1,2,...
2nnly/T

where the terms Hy(t), H1(t),... , Hy(t) are the Hermite polynomials. The Hermite poly-
nomials themselves can be computed recursively using Hy(t) = 1, Hi(t) = 2t and the
relation

Hy1(t) = 2tH, (t) — 2nH,_1(t).

The Hermite-Gaussian functions can be shown to be eigenfunctions of the differential
equation

y// —t2y =0

and are thus mutually orthogonal; the coefficient y/27n!/7 is required to insure that the
set of Hermite—Gaussians are orthonormal.

In order to better make use of this basis, we insert a width parameter o and use the
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renormalized basis

2
_ AN g <i> e 2% |n=01,2...9,
V2rnl/m As

where

are defined so that this orthonormality is preserved in the presence of the variable o. The
parameter o allows a more natural scaling of the Hermite-Gaussian functions appropriate
for the system at hand; hence fewer terms are necessary to produce more accurate pulse

approximations. Our approximation for V() then takes the form

v(t):ia L S (i) s 55
k=0 ) \/W k As ? .

where ¢ and ag, a9, ... ,asn are complex numbers; these will serve as the variables in our

minimization procedure.

The minimization procedure.
We wish to find critical points of the functional (H)(V') given in (5.1) within a finite

dimensional space of functions of the form (5.3) restricted to the energy surface

+oo
/ lv|?dt = E
—00

for a fixed value of E.

The function (H)(V).
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For a fixed value of N, it is tempting to derive a closed form for (H)(V') in terms of o,
ag,a1,... ,ay. This is possible, as the operator T'(z) takes Hermite—Gaussian functions
to combinations of other Hermite-Gaussian functions, and the integrals of products of
such functions can be explicitly computed. However, this becomes extremely unpleasant
(in large part because of the nonlinear term) and is not especially elucidating beyond
one—dimension. We will make this calculation for the Gaussian (one-dimensional) ansatz,

but for all higher dimensional spaces, we will approximate (H)(V') numerically.

First of all, we can reduce the scale of the computation by exploiting the structure of
the operator |T'(z)V|. Indeed, because of the symmetric structure of the dispersion map,

we know that for z € [0,1/2],
T(z)V =T(1—2)V=T(1+2)V=T(2-2)V.

In particular then

(H)(V) = a/;oo VifPdt — /_:O /01/2 T()V[* dz dt.

For any particular realization of V specified by the coefficients o, ag,a1,... ,an, we
use the Fast Fourier Transform (FFT) to numerically compute both V; and T'(2)V, for a

finite grid of values for z. The integration is also carried out numerically.

Constrained minimization of (H)(V).

Because of the orthogonality of the Hermite—Gaussian basis, the energy constraint
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[T |u]?2dt = E takes the simple form

—0o0

lao|? + |a1]® + ... + |an|* = E. (5.4)

The constraint [72°|V;[2dt < oo holds automatically.
In order to find minima of (H) (V') restricted to this set, we use the function fmincon()
found in Matlab’s Optimization Toolbox. fmincon() finds local minima using a sequential

quadratic programming (SQP) method.

We make several additional simplifications to aid in our search. First, we expect
that minimizers will display an even symmetry (see Turitsyn et al. [40]) — the evolution
equation (5.2) also respects this symmetry. Therefore, we will restrict our basis to only
the even Hermite—Gaussian functions, i.e., we will set the odd coefficients a1, a3, as, ... all
to zero.

Additionally, because we have specified the dispersion map d(z) in a symmetric man-
ner, we expect that a minimizer will be real (again, see Turitsyn et al. [40]). In this
way, our minimization problem can be considered on Rt x SV, where ¢ € R" and

ai+a3+...+a3y =E.
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5.2 The dispersion managed soliton

In this section we give a description of the dispersion managed soliton using the min-
imization procedure described in the previous chapter. For the Gaussian case, where
V(t) = ag w4 o7 1/4 et/ 20 we derive an analytical expression for the functional
(H)(V'). This gives us a good first approximation for the dispersion managed soliton, and
can be used as a first verification for our numerical method. For higher dimensional ap-
proximations including increasing numbers of elements from the Hermite—-Gaussian basis,

we search for minimizers numerically using the routine described in the previous section.

The Gaussian case, N = 0.

_ _ 42
1/4 5=1/4 —t*/20

Lemma 5.1. For the initial profile V(t) = ap 77/* ¢ , we have

1 2 1 1 a% 12 g1 (1
<H>(V)—§aa0;—mm0 smh ; .

Proof. The proof is by computation — and most of this computation is simply using the
tools of integration. The only exception is that we are required to compute the evolution
|T'(2)V| where T'(z) is the solution operator of iu, + d(z)uy = 0. This can be done
by moving to Fourier space, where the linear Schrédinger equation becomes a simpler

parameter—dependent ODE. We perform this calculation first.
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To begin, we must translate the initial condition V' (¢) into Fourier space:

() = 2= 03 V(e dt

1 4o S R R
= \/—g_ﬂffooaoﬂ‘la 1e % e dt

= L a J_%fﬂ’oe_%_it& dt
ri22 T
2
L1 lge? ~1(Ft+ivee)
= —Fraypo 1e 3% fj::e 2 (Vettivee dt
w422
_1 12
= lrao1e2 Jo2r
w422

= aqp 771 gt e3¢,
The evolution equation iV, + Vi = 0 itself becomes

V, = —ie%V.
This is a simple ODE and is solved by

V(£ 2) = Vo(e)e .

It then remains to return %e*i‘szz from Fourier space to the original variables. This is a
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simple calculation:

V(t,z) = f+°° et d¢
= = [TIV(E) e et dg

_ a007f f+00 ——U{ e —i€22 it§ df

WIQQ_
— gz f—l—oo — L ((0+2i2)€2 —2it€) d¢
71'122
2
142 _1(
= % ot e 2042z f+°° ( o228 \/a+2zz) dé
3 1 — oo
7423
1 142 1 \/_
— 80 0% —5.%3
= % F e 20+%z ——— /271
F%Q% Vo+2iz
1 142
— 0‘070—11 e_i o+2iz |

I
74 (0+42iz)2

Now that we have the solution T'(z)V, the evaluation of (H)(V') is merely an exercise

in integration. Because

|V;5|2 = — aop 7'(_% o'_% e 20
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the first term of (H)(V') is simply:

+oo
a/ V3|2 dt
—0o0
+ 2
_1 ~t
=aalm 205/2/ t? e o dt
—00
+o0 2
1 g _s% g
=aalm 205/2/ —8262£d8
oo 2 2
2 —1 1 9—3/2 e s
=aaym 20 273/ —/ s |—se 2| ds
—0o0
2 _—1 1 o-sjp [T _a
=aaym 20 273/ / e 2 ds
—00
1
= al w72 o7t 2732 (27)1/2
1 -
=_aa ol

2
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The second term is calculated in a similar manner:

1/2
/ / (2)V[* dz dt

12 4 2 2
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Combining these two terms, we arrive at the promised expression

1 1 2 1
(HY(V)=-aa = — — 0 5172 gipp~? (—)
g

1
92 o 93/2 p1/2

0

The coeflicient ag in the formula above is fixed by the energy constraint; in particular,
E = a3. So, for any particular value of the dispersion parameter c, (H) can be considered

as function of the single variable o, where o controls the width of the pulse.
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In Figure 5.2, we show the reduced Hamiltonian for different values of residual dis-
persion «. For all values of «, (H) approaches zero from below as ¢ — c0. As 0 — 0,
however, the first term, which is inversely proportional to o, dominates. When o > 0,
(H) = 400 as 0 — 0. Conversely, when a < 0, (H) — —o0 as ¢ — 0. And when a = 0,
(H) — 0.

One can see that for positive and zero values of «, the Hamiltonian function has a
unique global minimum. When « is only slightly negative, the function possesses a local
minimum and a local maximum — these extrema disappear in a saddle-node bifurcation

as « is decreased further.

a=0.010 a =0.000
T T T T

Figure 5.2: The reduced Hamiltonian for the Gaussian pulse.
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Hermite—Gaussian case, N = 1.

a=+0.1

Figure 5.3: Reduced Hamiltonian for the two mode pulse. ag = sin(f) and ay = cos(6).
For a > 0, there are two minima corresponding to refinements of the DM soliton with zero
and one oscillation. As « is decreased, the non-oscillating pulse is destroyed first. The
singly—oscillating pulse persists slightly into the regime where the Gaussian ansatz has no
minimum before being destroyed.

In this section, we look for minima of the Hamiltonian (H) where two Hermite—
Gaussian modes are considered. This analysis reduces to a search for critical points on a
cylinder S' x RT, since the width ¢ must be positive and the coefficients ag and a9 satisfy

a¢ + a3 = E. In particular, critical points can still be seen visually on a two—dimensional

plot. This cylinder is shown in Figure 5.3, where the cylinder is cut open along the curve
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ag = 0. The curve ay = 0 corresponds to the Gaussian approximation of the previous sec-
tion. We view the level curves of the Hamiltonian (H) for various values of a: a = +0.1,
a = 0.0, a = —0.01 and @ = —0.013. As one can see, for @ > 0, the minimum from the
Gaussian approximation has opened up as a saddle in the higher dimensional space and
there are now two local minima on either side of the curve as = 0. These two nearby local
minima, provide various approximations to the ground state — they differ in the number
of oscillations in their tails. These different approximations to what we believe to be the
unique DM soliton seem to be an artifact of the imposed finite-dimensionality, much like
the Peierls—Nabarro barrier in discretized systems. It is important to be aware of this
multiplicity of minima as we look into the structure of the DM soliton.

For @ < 0, there is no longer a global minimum because (H) — —oo as o — 0.
However, for a close enough to zero the bow tie structure persists and we still find two
approximations to the DM soliton. As a becomes more negative, the loop of the bow tie in
the two mode approximation with o closer to zero is “untied” and its corresponding local
minimum disappears. At this point the non—oscillating approximation to the ground state
no longer exists, however the saddle and the oscillating minimum are still present. As «
is decreased further, this remaining minimum and the saddle are simultaneously washed
out in a saddle node bifurcation. However, it is interesting to note that this minimum
persists slightly into the regime where the original Gaussian guess fails to produce any
local minima at all. This can be seen in Figure 5.3; when a = —0.013, the Hamiltonian
decreases monotonically to —oco along the line § = 7/2 as o — 0, while the saddle and
the oscillating minimum can still be seen in the region § > 7/2. This suggests that the

oscillating approximations better reflect the structure of the DM soliton than the non—
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oscillating ones.

Hermite—Gaussian case, N > 2.

As we increase the number of Hermite-Gaussian modes in our expansion, we find
better and better approximations to the dispersion managed pulse. We summarize the
results up to N = 20 in Figure 5.4 and choose the approximation in which agr and aggo
are of opposite sign for all 0 < k < 20. When the residual dispersion is positive, the
Hamiltonian quickly approaches a minimizing value as the number of modes increases.
In particular, the first three modes are enough to get a reasonable approximation to the
minimizing value. This provides confirmation that our minimization process is actually
converging to a ground state. Further evidence is provided in the next plot where the
weight of the modes for the N = 20 pulse is shown. Most of the weight is in the low order
modes, and the weights can be seen to steadily decay on a logarithmic scale.

Similar results are obtained for the mean—zero case and even in the case where the
residual dispersion is negative and small. As « decreases, the pulse narrows and tail
oscillations become more pronounced, as found in earlier works, see Ablowitz and Biondini
[41] for example.

Recall that when residual dispersion is negative, the constrained variational principle
has no minima [42]. A global minimum is not expected, of course, since the Hamiltonian
functional is unbounded from below. What is more, there are no local minima. A heuris-
tic explanation is that the negative gradient term becomes dominant for high frequency
harmonics even if their amplitudes are small. It is then possible to construct a sequence

of pulses converging to a hypothetical minimizer, having the same energy, but with lower



127

Hamiltonian values. This shows that there can be no minima in the negative case, however
it does not prove the instability of a hypothetical critical point.

However, using our numerical algorithm we have found local minima in each reduced
finite-dimensional function space even for the case of small negative dispersion. An expla-
nation for this may be that our control over the parameter ¢ allows us to “smooth out”
the higher frequencies by increasing o simultaneously with the increase in the number of
modes. Even as the number of modes is increased, this affords the opportunity of finding
local minima, in the finite dimensional approximations that may approximate saddle points
of the full system.

It is possible, however, to choose reduced spaces strategically which have no local
minima. For instance, in Figure 5.5, we show a higher dimensional analogue of the reduced
Hamiltonian using only the coefficients ag, corresponding to the Gaussian mode and ayg,
a rapidly oscillating mode. The local minimum which was present in the one dimensional
approximation when only the Gaussian mode was present (recall Figure 5.2) has become
a saddle in this higher dimensional system. The maximum in Figure 5.5 corresponds to
the maximum in Gaussian case (Figure 5.2) and it is known to be unstable [32]. No
local minima exist in this subspace. Similarly, we expect that any minimum of a higher
dimensional reduced Hamiltonian in the case of negative residual dispersion can be made
into a saddle by adding a sufficiently oscillatory mode.

One way to answer the question of which of the family of minima is the most pertinent

is to actually compare how far these various approximations are from being actual solutions
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of the nonlinear eigenvalue problem. To this end we write

Res(v) = —wv + avy + /1/2 T71(¢) [T(g)v T(&)v T(£)fu] d¢.

—-1/2

If v were actually a critical point of the average variational principle, then Res(v) would

be identically zero. So we can calculate the mismatch

o
Res :/ |Res(v)|? dt

—0o0

as a measure of the error in our approximate solutions. A table of these errors follows, see
Figure 5.2.

Reading across the rows, we observe that the error for improving approximations with
a fixed number of oscillations appears small but seems to saturate rather than approaching
0. Moving down the table, it appears that increasing the number of oscillations reduces
this saturating value — the approximations with an increasing number of oscillations as
we increase N provide the most accurate solutions.

Another method for determining which pulse profiles are the most relevant can be
given by numerically evolving these approximate pulse shapes using a Fourier split-step
scheme. All of these approximations evolve without significant disruption for at least one

hundred periods of the dispersion map.
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Figure 5.4: The results of the minimization procedure with a Hermite-Gaussian approxi-
mation. For & = +0.1, 0.0 and —0.01 the following are plotted from left to right: (a) the
minimizing pulse for £ = 20; (b) the Hamiltonian value of the minimizing pulse as k is

increased; and (c) the decay of the coefficients in the Galerkin expansion for the 20-mode
pulse.
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Figure 5.5: Reduced Hamiltonian for modes Hy and Hgy. ag = sin(f) and agy = cos(#).
The maximum from the Gaussian approximation ( = 7/2) persists, but the minimum
from that approximation has now become a saddle and no other minima are present.

1-mode 2-mode 3-mode 4-mode 5-mode

1.446 ¥ 1073 9.076 x 10 % 8.080 x 10 % 7.406 * 107 % 7.405 % 104

M - 1.499 «10°* 4.637+10°° 2.391%10°° 2.396x%10°
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Figure 5.6: Errors for the various approximations to the DM soliton with a = +0.1.
Increasing the number of Galerkin modes (reading across) or considering minima with
more oscillations (reading down) decreases the error of the approximate solutions.
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5.3 The bisoliton

In this section, we continue to explore the global structure of the reduced Hamiltonian.
Making use of the finite dimensional approximation (5.3), we search this reduced space
for local minima (and other critical points) of the constrained variational principle — these
minima may correspond to stable pulse solutions in the averaged DM system. Not only
does finding such minima give us important insight into the structure of the DM soliton
and its region of existence, as in the previous section, but it is also possible (and in
fact required via topological considerations) that other critical points exist in this finite
dimensional space, and these may correspond to different pulse solutions. In fact, when
the number of modes N > 5, we observe a bisoliton, found earlier by [35] using different
techniques.

On the cylinder representing the phase space for the two mode approximation, as in
the previous section, there are several prominent features (see Figure 5.7). First of all, a
pair of local minima separated by a saddle can be seen in the lima bean shaped region
along the line # = 7/2, where the pulse is approximately Gaussian; these are a family of
approximations of the DM soliton. Additionally, however, there is another critical point of
(H) far from this near-Gaussian pulse. Near the line § = 0 in Figure 5.7 (corresponding
to a solution in which the Gaussian mode is not present) is a saddle. As the number
of modes is increased, this saddle spawns a separatrix, organizing the phase space, and
provides the foundation for another local minimum which corresponds to a two-humped
pulse. The Hamiltonian value of this pulse is not nearly as low as that of the single pulse

at the same energy value but, as could be expected, is approximately twice that of the
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Figure 5.7: The phase space in the two mode approximation. ag = sin(f) and a = cos(#).
The phase space a near—Gaussian global minimum as well as a saddle which organizes the
structure in higher dimensions.

single pulse of half the energy. Following Maruta et.al. [35], we call this pulse a bisoliton
and show this pulse in Figure 5.8. Using a Fourier split—step scheme, this bisoliton is seen
to evolve stably in the averaged equation (5.2).
Approximation of the bisoliton in other bases.

We now address a practically important question: whether or not this bisoliton can

be well approximated by two separated Gaussians.

A first attempt.

One way to answer this question is to look for local minima in the expansion

V(t)= A (e 4 et/
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v(t)

0.5r i

v(t)

Figure 5.8: The bisoliton. a = +0.1 and £ = 7. The dashed line shows the ten term
approximation to the bisoliton, while the solid line traces its evolution after seventy—five
periods. This is shown on both a linear and a logarithmic scale.

where o and ty are variable and A(o,%)) is chosen to fix the energy of the double pulse
at a specified level. Interestingly enough, for some energy levels there is a minimum
corresponding to a double pulse in this approximation. In the phase space, there is a
symmetric bow tie around ¢ty = 0, once again providing a small correction to the Gaussian
approximation of the DM soliton. Additionally, there is a small loop down at the value of
o corresponding to the ideal pulse width for a pulse of half the energy. This loop and the
minimum it contains give a suggestion of a preferred stable pulse spacing in the system.
However, perhaps because the Gaussian approximation gives such a poor approximation
of the tails where the pulses interact, this minimum corresponds to a pulse spacing less
than that of the bisoliton found in the Galerkin approximation and does not evolve stably.

This is shown in Figure 5.9.
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Figure 5.9: Two separated Gaussians — take 1. On the left are the level curves for two
separated Gaussians. There is a global minimum which is a correction to the Gaussian
pulse and a local minimum which looks like two separated Gaussians, each with half the
energy of the original pulse. On the right is the evolution of this local minimizer on its
way to being destroyed after seventy—five periods.

A second attempt.
Another more practical answer to this question of approximating this bisoliton is to
simply fit two Gaussians to the bisoliton as well as possible. To this end, we choose ¢ and

to to minimize the value

/ ‘Vgalerkin(t) - Vgaussian(t)|2dta

where Vg is the approximation to the bisoliton found in the Hermite-Gaussian basis

alerkin

and V.

gaussian is an approximation using two separated Gaussian pulses. This best value

of (o,tp) is marked with an ’0’ in phase space, with a note that its Hamiltonian value is

greater than the nearby local minimum. The initial condition V, corresponding

gaussian (t)

to the best-fitting parameter values evolves stably under the averaged PDE (5.2), see

Figure 5.10.
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a=+0.1
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v(t)

—0.9}
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Figure 5.10: Two separated Gaussians — take 2. On the left is a closer view of the
loop and local minimum for two separated Gaussians and their relationship with the
best approximation of the bisoliton, marked with an ’0’. On the right is this Gaussian
approximation and its evolution after seventy—five periods.

Changing the spacing between Gaussians.

A follow up question to approximating the bisoliton using a pair of Gaussians is this:
what happens if we increase or decrease the pulse spacing? As we have seen, if too small a
spacing is specified, the two pulses will collapse into one another. This is shown again in
Figure 5.11, where the pulse separation is one unit less than that of the best approximation
to the bisoliton.

Increasing the pulse spacing one unit from ideal, we see little effect. After one hundred
periods of the dispersion map, the centers of the two humps have not moved in either
direction. The spacing present in the bisoliton then seems to yield a threshold, beyond

which the interpulse interactions are less important.
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Figure 5.11: Changing the separation distance. If the initial spacing between Gaussian
pulses is less than that of the bisoliton, the pulses attract each other. On the left is
an initial condition one unit closer than the spacing of the bisoliton (’dashed’) and the
evolution after 100 periods of the dispersion map (’solid’). Pulses in which the separation
is larger seem to have little or no interaction. This is shown in the figure on the right, in
which an initial condition with spacing one unit greater than that of the bisoliton evolves
for 100 periods.
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