SM311o — Third Exam, 8 Dec, 1998 (Solutions)

1. Let i, j, and k be the standard basis for the three dimensional space. Let a(t) = a;(¢)i +

a9 (t)j + as (t)k and b(t) =b (t)i + b (t)j + b3 (t)k Prove that

%(axb):a'xb—{—axb'.

Solution: Note that
a x b = (azbz — agby,azby — a1bs, arby — bras).

So

d
E(a X b) = (ahbs + asbly — aghy — asbh, asby + asb — albs — ayby, aibs + a1by — bjas — byab)

which can be separated into the two vectors
(a'2b3 — aébg,aébl — allbg,(lllb2 — bl102> —+ <a2bé — Clgbé,(lgbll — alb'3, alb’2 — bl102>
which in turn is equal to a’ x b+ a x b’.

. Let € be the angular velocity of the Earth. Let v be the relative velocity of a fluid particle
located at P with latitude ¢. Let unit vectors e1, e,, es be a basis at P with e; pointing east,
e, pointing north, and e3 = e; X es.

(a) Draw a diagram that shows the relationship between es, e; and 2.
(b) Show that @ = Q cos ges + 2 sin pes.

(c) Let v =vie; + v2e2 + vzez. Find the three components of
Qxv.

Solution: a) See Figure 1.

b) The three vectors £, e3, e3 form a right triangle as shown in Figure 1. Thus, the projection
of € on ey is (2 cos gey. Similarly, the projrction of € on es is Q2 sin ges.

c)

Q x v = (Qcospey + Qsindes) x (vieg + voes + vses)

which in turn is equal to
Quy cos pey X e + Quz cos pes X ez + Quy sin ges X e; + Quy sin ges X es.
But ez x e = —e3, €3 X €3 = €1, e3 X €] = €3, and ez X €3 = —e; SO

Q x v =—v18 cos pes + v3 cos pe; + v1{)sin pes — vo(ley.



Figure 1: The relationship between 2, e, es.

3. Consider the viscous Geostrophic equations
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Suppose that u and v are functions of z only and that p, f, and Ay are constants.

(a) Show that the horizontal pressure gradient (%, g—z) must be constant.

Solution: Differentiating the third equation with respect to x and y yields % = ;;Zg’z =

0. Therefore, % and g—z are independent of z. Now differentiate the first equation in

the Geostrophic system with respect to x. Since u and v only depend on z and p and
f are constants, we have % = 0, which implies that % is independent of z. Similarly,

2
;;gy
that % is independent of y. Putting all of the information about % together, we see
that this term must be contant. A similar argument applied to the second equation of
the Geostrophic system shows that g—z must be constant.

differentiating the first equation with respect to y shows that = 0, which implies

(b) Suppose that v = U, a constant, and v = 0 when z — oco. Find the constant values of
the horizontal pressure gradient.
Solution: Since u and v have asymptotic limits as z — 0o, the terms u''(z) and v (z) are
zero as z — 0o (draw a picture of such a function to convince yourself of this fact). Now let
z approach infinity in the first equation in the Geostrophic system. Since lim,_,, v = 0,
we have lim,_, % = 0. But we proved in the previous problem that % is constant.

Therefore, —gg = 0 everywhere. Similarly, let z — oo in the second equation of the
Geostrophic system. We get
dp
U=—-——
pf 8y7

which is the value of g—z everywhere since this term is constant.

4. As we have seen in class, the horizontal component of of velocity u of the previous problem
satisfies the 4-th order ODE
uuu 4 01211, =0.



(a)

(b)

Start by looking for solutions of this equation in the form u(z) = ¢™*. Find the polynomial
that m must satify.

Solution: m* + o = 0.

Show by direct computation that (ﬂ:%(l +14))? =i and (£-=(1 —1))? = —i. Use these

V2
facts to write down the general solution of the 4-th order problem.

Solution: The first assertions are straightforward. Let v = \/g . Then m =y +yiis a

root of the auxiliary polynomial. Therefore, u(z) = e(?+79% is a solution of u"" +au = 0.
But ' '
eV = 17712 = 7% (cosyz + isinyz),

from which we construct the real-valued solution
c1e7? cosyz + c2e7? sinyz.
Similarly, m = —vy — 7i gives rise to the real-valued solution
cze” 77 cosyz + cpe” " sinyz.
Thus, the general solution of u"”" + a?u = 0 is

u(z) = c1e7% cosyz + coe”* sinyz + cze” 77 cosyz + cue” V7 sinyz.



