SM3110 (Third Exam) Solutions

21 April 1999

1. (20 Points) Give a parametrization of the following surfaces:

(a)

The plane that passes though the points (1,0,0), (0,2,0) and (0, 1,1).
Solution: The equation of any plane is of the form Ax + By + Cz = D.
Substituting the point (1,0, 0) into this equation yields A = D. Similarly,
substituting (0,2,0) and (0,1,1) into Az + By + CZ = D yields 2B = D
and B+ C =D. So B = % and C = %. Substituting the values of A, B,
and C in terms of D into Az + By + Cz = D and dividing by D yields
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for the equation of the plane. Note that this equation can alternatively be
written as
z=2-2x—y.

Hence, the plane can now be parametrized as
r(u,v) = (u,v,2 — 2u — v).

The disk of radius 2 located in the yz-plane and centered at (0,2, 3).
Solution: The equation for the circle that constitutes the boundary of
this region is given by * = 0 and (y — 2)? + (z — 3)> = 4. So start the
parametrization by letting x =0, y —2 = ucosv and z —3 = usinv where
0 <u<2and0< v <27 The parametrization is then

r(u,v) = (0,2 +ucosv,3 + usinv).

2. (15 Points) Use double integration to determine the volume of the tetrahedron
with vertices (0,0,0), (2,0,0), (0,3,0), and (0,0, 4).

Solution: Following the same procedure as the one described in 1(a), the
equation of the plane that passes through the points (2,0,0), 0,3,0) and 0, 0, 4)
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from which we get that z = 4 — 22 — %—y is the equation of the slanted face of

the tetraderon. Hence, the volume of the tetrahedron is
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. (15 Points) Compute the flux of the velocity field v = (y — y?)k through the
surface S, the disk of radius 3 in the xy-plane centered at the origin.

Solution: To compute the flux, we need to determine [ [,V -r, X r, dudv,
where r is the parametrization of the surface. So first we must parametrize the
disk of radius 3 in the xy-plane centered at the origin. Following the strategy
in 1(b), we have

r(u,v) = (ucosv,usinv,0), 0<u<3, 0<wv<?2m.

Now
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. (20 Points) Compute the flux of the vorticity for the velocity field v = (y, —z, z)
through the surface of the hemisphere z? + y? + 22 < 1 and z > 0. (Hint: You
may calculate the flux directly, or indirectly by applying the Stokes theorem,
which states that the flux of vorticity along a surface S is equal to the flow’s
circulation around the boundary of S.)

Solution: T'll compute the flux of the vorticity indirectly, using the Stokes
Theorem, which states that

//DVXV-dA:?iv-dr.

So, to compute §. v -dr we must first parametrize the curve C, which is a circle
of radius 1 located in the zy-plane and centered at the origin:

r(t) = (cost,sint,0).



Now

5. (30 Points) Let v = (
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Determine the acceleration of v.

Solution: a = %—;’ +v-Vv. Now
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Now, %% = 0 (why?) while v - Vv means (Vv)v in the sense of matrix
multiplication. So
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Determine if the above acceleration has a potential. If it does, find it.

Solution: For a to have a potential it must satisfy V x a = 0 which the
acceleration in 5(a) does satisfy. Then there must exist a function ¢ such

that
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Integrating the first equation with respect to x yields

1

= 2(z2 + y?)

+ fy).

Differentiating this equation with respect to y and comparing the result

with the second equation in (1) shows that f'(y) = 0, or f = const. Let
1

this constant be zero. Then ¢ = )



