Final Examination, 15 December 1998
SM3110 (Fall 1998)

The following formulas may be useful to you:

a)y{Cv-dr://Sva-dA,

b) p(%—:—l—VV-v):—prLuAv—i—pF, div v =0.
_1op 0%u _ 1op 0% _ 1op
C) —fU——;a—x—FAVﬁ, fu-—;a—y+AV@, 0——55—
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1. (a) Let v = (222, ysin(xy), e **). Find the divergence of v.

. . . —zz z? in
Solution: div ((z%y, sin(zy), e **) = 6(3;/) + 8Say -

0). Find the curl of v.

Tz

+ 922 =2zy + xcosy — e

b) v = g ——-=
() v = (-
lution: 4 ——= = — X
Solution: V X <\/x2+y2, \/x2+y2,0) (0,0, \/W>
(c) Let f(z,y) = e**sin3my. Find the direction of steepest descent at P = (0, }).
Solution: Vf = (2¢**sin 31y, 3me?* cos 3ry). So the direction of steepest descent at

P=(0,7)is
3 3 3T\ 2
Vilp = (2sin ", 31 cos ) = (v/2, — ”‘f>.
4 4 2
2. Verify by direct differentiation if
(a) u(z) = e*cos z is a solution of u"” + a?u = 0 for any a.
Solution: u""(z) = —4e* cosz. So u" + a*u=0if a> =4 or if a = £2.
(b) u(z,y) = sin3zsin4y is an eigenfunction of the Laplace operator —3‘9—; - ;—;. What is

the eigenvalue?
Solution: Let u(z,y) = sin 3z sin4y. Then

0? 0?
_(8—;; + 8—;;) = 25sin 3z sin 4y.

So A = 25.

3. Parametrize the following curves and surfaces:
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(a)

The plane passing through the points (1,1,0), (0, 3,2), and (1,0, 5).
Solution: The equation of the plane passing through (1, 1,0), (0, 3,2), and (1,0, 5) is of
the form Ax + By + Cz = D. Substituting the three points into this equation leads to
the following system of algebraic equations

A+B=D, 3B+2C=D, xz+5C=D
whose solution is A = %, B = %, C = %. Substituting these values in Ax+By+Cz =
D and dividing by D yields 12x+5y+2 = 17 for the equation of the plane, or equivalently,
z =17 — 12z — 5y. So

r(u,v) = (u,v,17 — 12u — 5v)

is the parametrization of the plane.
The curve z2 + 3y% = 2.
Solution: Write the equation of the curve as ’”2—2—1—3%2 =1. Let cos?t = % and sin? ¢ = 3

2
or £ =+/2cost and y = \/%sint. Then

r(t) = (v2cost, \/gsint% t € (0,2m)

is the parametrization of this curve.

The upper hemisphere of radius 2 centered at (1,—1,1).
Solution: r(u,v) = (1 +2cosusinv,—1+ 2sinusinv, 1+ 2cosv), u € (0,27), v €
(0, %)

The function ¢(z,y, z) = ar®y?® + by*2> + cz?x? — x is the potential for a velocity vector
field v. Determine the values of a, b, and ¢ so that the velocity of the particle located at
(1, -2, 3) is zero.
Solution: Because v = V¢ we have

v = (2azy® + 2cxz® — 1,202y + 2by2?, 2by*2 + 2ca’z).
Substitute (1, —2,3) into v:

V|1,—2,3 = (—1 4 8a + 18¢, —4a — 36b, 24b + 6¢)

which isOifa:%, b:—ﬁ, andc:ﬁ.
The function ¥ (z,y) = ax® — zy + by? is the stream function of a velocity field v. Find
a and b so that the velocity of the particle located at (—1,4) is perpendicular to (1,1).

Solution: Since ¥ = az? — xy + by?, then
v = (—x + 2by, —2az + y).

Now, the velocity at (—1,4) is v|(_1,4 = (1 + 8b,2a + 4). After setting the dot product
of this vector with (1,1) equal to zero we get that 2a + 80 = —5.
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5. (a)

Consider the velocity vector field v = (z? — y?, —2xy + 2*®). Does this vector field have
a stream function? If yes, find it.

Solution: div v = 2z — 22 = 0, so the velocity field have a stream function. From

% = 2% — 3% we have ¢ = 2%y — y—; + f(z). But 2 = 22y — 2* while the same derivative

of 9 also equals 2zy + f'(z). So f'(z) = —2® or f(z) = —’”4—4. Finally,

3 4
2y L E
y=Ty-T -

Let u and v be the velocities in a geostrophic flow with Ay = 0. What is the geometric

relationship between the isobars and the particle paths of typical fluid particles?
Solution: According to the viscous geostrophic equations, we have

1 Op 1 Op

V= — e U= ——7,
pf Oz pf Oy

when Ay = 0. Thus v- Vp = (u,v) - <%, g—g) = <—#g—z, #%) : <<%, g—g) = 0. Therefore,
the velocity field is orthogonal to the pressure gradient in the flow. Since Vp is orthogonal
to the isobars, v is parallel with isobars which implies that the isobars and the particle

paths coincide.

6. A flow is called barotropic if the pressure field p is a function of the density p, that is, p = f(p)
for some function f.

(a)

Compute Vp in terms of Vp. What can you conclude about Vp x Vp in a barotropic
flow? Why? What does this result say about the isobars and isopycnals of the flow?
Why?

Solution: Vp = (g2, 8, 22) =(f'(p) 32, '(p) 32, f'(p)32)= f'(p)V p. So
Vp = f'(p)Vp.

Hence, Vp and Vp are parallel which implies that Vp x Vp = 0. Also, because Vp and
Vp are perpendicular to isobars and isopycnals, respectively, then isobars and isopycnals
are parallel.

Let f(z) = x® 4+ 3z. Suppose that the density at P = (1,2,3) is 1.003. Furthermore,
suppose that the pressure gradient at P is (3,4,2). What is the density gradient at P?

Solution: Since Vp = f'(p)Vp, then Vp = ﬁVp. But
fl(z)=22+3
so f'(1.003) = 5.006. Also, since Vp|2.3) = (3,4,2), we have
Vpl(123) = 5.006(3,4,2) = (15.018, 20.024,10.012).
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7.

(a)

Let p and p be two arbitrary smooth functions of z, y, and z. Use direct differentiation
and prove the identity

1 1
V x (—Vp) = ——(Vp x Vp).
p p

Solution: Let’s start by expanding the left-hand side of this identity:

) ik
v x <_vp):det 22 s
P 1op 1dp 1op
pdx pdy poz
O L0 9 10p 0 100 0 10p 0 10p 0 10p,
Oy p0dz" 0z pdy’ 0z pdx’ 0Ox pdz’ dxr pdy’ Oy pdxr’’

Let’s concentrate on the first term of this vector:
19pdp 1 0% 10pdp 1 0%

9002 " 820y T Raya: T poyos T ozoy  pdady

which simplifies to

1 otn_opop,

p?roy0dz 0z 0y

which is the first component of the vector —p%Vp x Vp. The rest of the proof follows in
the same manner.

Use the above identity, the conclusion in 6(a), and the Stokes theorem to compute the
line integral §. %Vp- dr where C' is a closed curve and p and p are the pressure and
density of a barotropic flow.

Solution: According to the Stokes Theorem
1 1
SVp-dr = // V x (ZVp) dA,
cp S p

where S is a surface with C' as its boundary. Using the result of 7(a), the latter surface

integral equals
1
—//S?Vpx VpdA.

But when the fluid is barotropic, the gradients of p and p are parallel, hence VpxVp = 0.
So

1
—~Vp-dr =0.
cp

8. Consider the following heat conduction problem:

Ut = DUy, u(0,t) = u(2,t) =0, u(z,0) = 1.3sin % + 3.4sin 27z,
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(a)

(b)

Describe a physical model for which the above BVP makes sense.

Solution: Heat conduction in a bar of length 2 whose ends are kept in ice and ahose
initial temperature distribution is given by 1.3 sin ZF + 3.4 sin 27z,

Assuming that u is the temperature, find the units of the physical quantity whose value
is 5 in the heat equation.

Solution: u“—‘ has dimensions of

- K/T L2

K/L2 T’
where K is the dimension of temperature, T of time, and L of distance.

Use separation of variables and find the solution to this problem.

Solution: Have done separation of variables too many times in other solution sets and
will not repeat it here. The answer is
52 w2t

u(z,t) = 1.3¢7°7 sin 7r2_:13 +3.4e~ "% sin 2n.

Use the first nonzero term of the above solution and estimate how long it takes for the
temperature at z = 1 to reach 50 per cent of its original value.

Solution: u(1,0) = 1.3sin § + 3.4sin 2w = 1.3. So we need to find ¢ so that
5m2¢

1.3e” 2 sing = 0.65.

Using logarithms, we get ¢ = # In 2.

9. Let v = (y?, 2zy) be the velocity field of a fluid.

(a)
(b)

Compute the vorticity of the flow. Is the flow irrotational anywhere in the xy-plane?
Solution: V x (y2,2zy) = (0, 0).
Compute the acceleration a of this flow. Does a have a potential p? If yes, find it.

Solution: a = %¥ +v- Vv = (4zy? 42%y + 2y%). To check to see if this vector has a
potential we compute its curl:

V x (4dxy* 422y +29°) =(0,0).

Since the curl is zero, a has a potential p. To find p, we set up the expressions

99 0¢
— =dzy?, L =42’y + 295
I Vo 3y Y+ 2y
After integrating this expressions in the standard manner, we get
4
¢ = 2zy* + Ly

2
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10. Consider the viscous geostrophic equations listed on the previous page. Assuming that u and
v are only functions of z, that p, f, and Ay are constants, and that lim, . u(z) = U, a
constant, and lim, .., v(z) = 0,

(a)

Prove that Vp must be a constant vector.
Solution: The equations of motion are:

Since p and g are constants, the third equation implies that P is constant. Differentiate
the third equation with respect to z and y to get:

Pp  Pp

oxdz  0ydz =0.

oz
well (and therefore they are constant), note that the first equation states that

Thus, 2 and g—;’ are independent of z. To see that they are independent of x and y as

0%u

op
% = fPU_PAVﬁ-

Since u and v are functions of z only, d1fferent1at1ng the above equation with respect to

¢ and y yields zero. Thus, 2 W and 3238” = 0. Thus —Z is independent of x and y. Since

we have already shown that this function is independent of z, % is constant. In a similar
manner, we have that g—z is constant. From the conditions at z — oo we have (why?)

Vp = (0, fpU, —pg).

Find the ODE that u must satisfy.
Solution: Following the above computations, the geostrophic equations become

—fv=Apu", fu= fU+ Apv".

Differentiate the first equation twice with respect to z, use the second equation to elim-

inate v and get
A%,u"" 4 f2u — f2U



