
SM311O Project: Shallow Water Theory.
Poincar�e, Kelvin, and Rossby Waves

1 Introduction

In this project, we will derive a collection of simple di�erential equations from
the basic principles of ocean dynamics. In addition to our text, Chapter 3 of
Joe Pedlosky's book (which is on reserve in the Nimitz library) is an excellent
complementary source for the problems you will be asked to study in this
project.

We envision a body of 
uid of constant density � occupying the region
D = f(x; y; z)jHB(x; y) < z < HF (x; y)g, where HB de�nes the bottom of
the ocean and HF the air-ocean interface (free surface). We will think of the
x-axis as pointing in the east direction, the y-axis pointing north, and the
z-axis perpendicular to east and north in a right-handed coordinate system.

We assume that the body of 
uid in D is rotating about the z-axis with
constant angular velocity 
. Let p(x; y; z; t) denote the pressure in the 
uid, g
the constant of acceleration, p0 the atmospheric pressure (which we assume is
constant), f the coriolis parameter (typically constant, or at most changing
with y, the latitude), and v = hv1; v2; v3i the velocity of a typical 
uid
particle.

2 Equations of Motion

The quations of motion are derived from conservation of mass and the balance
of linear momentum. Assuming that the 
uid is incompressible, conservation
of mass requires that the divergence of v be zero or
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Conservation of linear momentum, or the Navier-Stokes equations, require
that
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Remark 1: We will study the derivation of equations (2) in detail later
in the semester. The form of these equations, however, should not be very
unfamiliar to you. These equations are the equivalent of Newton's second law
of motion, that mass times acceleration must equal force. In place of mass,
we are using the density of the 
uid, namely, �. We are also using the term
@v1
@t

as an approximation for the acceleration in the eastern direction (and
we will see later that we are ignoring an important convective term of the
acceleration, but this assumption is justi�able in "shallow" waters) and �fv2
as the contribution of the coriolis force to the acceleration in the horizontal
direction. In the second equation in (2), the terms @v2

@t
and fv1 have similar

interpretations. The terms � @p

@x
and �@p

@y
in the �rst and second equations in

(2) are the contributions of the pressure gradient to the forces acting on the

uid in the eastern and northern directions. Finally, the last equation in (2),
often called the hydrostatic equation, balances the component of pressure
gradient in the z direction with the weight of the 
uid. Note that we are
ignoring the component of acceleration in the z-direction in comparison with
the pressure gradient and the weight of the 
uid.

3 Problems

Throughout these problems we will make several simplifying assumptions
starting with:

(A) v1 and v2 are only functions of x and y:

(B) Atmospheric pressure p0 and density � are constant.

3.1 Due Feb 26

We now make the additional assumptions that

HB = const. and v3(x; y; 0; t) = 0: (3)

1. Show that

v3(x; y; z; t) = �z
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!
: (4)

(Hint: Start with (1) and use (3).)
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2. A surface S is called a free surface if it is always occupied by the same

uid particles. The interface between the 
uid and air, and the bottom
of the ocean are examples of free surfaces. Let the air-
uid interface
HF be de�ned by a function � as follows:

z = H0 + �(x; y; t); (5)

where H0 is constant. Show that for � to be a free surface it must
satisfy

v3jz=H0+� =
@�

@t
+

@�

@x
v1 +

@�

@y
v2: (6)

(Hint: Read page 52 of our text. Let (x(t); y(t); z(t)) be a typical
point on the interface. Note that z(t) = H0 + �(x(t); y(t); t)). Use this
identity in t to get (6).)

3. Show that � must satisfy the relation

@�

@t
+

@

@x
((H0 + �)v1) +

@

@y
((H0 + �)v2) = 0: (7)

(Hint: Evaluate (4) at z = H0 + �, then eliminate v3 from the latter
and (6) to get (7).)

4. We impose the following linearization assumption: We assume that
the quadratic terms �v1 and �v2 in (7) are small compared with the
linear terms H0v1 and H0v2. We will set them equal to zero to get
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!
= 0: (8)

5. Consider the third equation in (2), the hydrostatic equation. By in-
tegrating this equation with respect to z and evaluating the result at
z = H0 + �(x; y; t), show that the 
uid pressure p is related to the
atmospheric pressure as

p(x; y; z; t) = p0 + �g(H0 + �(x; y; t)� z):

Substitute this result into the �rst two equations in (2) to get the
following set of equations for v1 and v2:
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: (9)
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You have now proved the following theorem:
Theorem 1: The triple (v1(x; y; t); v2(x; y; t); �(x; y; t)) satis�es the set

of three partial di�erential equations (8) and (9).

3.2 Due March 5th

The goal of this part of the project is to derive a single equation for � from
(8) and (9).

1. De�ne

!1 =
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@y
�

@v2
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; !2 =

@v1
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+

@v2

@y
: (10)

Note the relationship between !1 and !2 and the vorticity and the
divergence of v, respectively. By manipulating (8) and (9), show that

@�

@t
+H0!2 = 0;

@!2

@t
+ f!1 = �g��;

@!1

@t
= f!2: (11)

(Hint: The derivation of the �rst equation in (11) is obvious. Di�eren-
tiate the �rst equation in (9) with respect to x, the second with respect
to y and add the two resulting equations to get the second equation in
(11). Next, di�erentiate the �rst equation in (9) with respect to y, the
second equation with respect to x, subtract the resulting equations to
get the third equation in (11).)

2. Let u = �t. Show that u satis�es the equation

@2u

@t2
+ f 2u� c2�u = 0; (12)

where c2 = gH0. (Hint: Di�erentiate the second equation in (11) with
respect to t, use the third equation in(11) and get @2!2

@t2
+f 2!2 = �g�u.

Now, apply the operation @2

@t2
+ f 2 to the �rst equation in (11) to get

(12)).

The equation in (12), which is called the wave equation, is a fundamental
equation in mathematical physics. This equation not only governs the motion
of �, the free surface in this case, but the motion of many other kinds of waves,
acoustic as well as electromagnetic, that one encounters in nature.
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