
Solutions to the Homework Set on page 170
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4(a) The equation of the plane that connects (1; 0; 0), (0; 1; 0) and (0; 0; 1) is x + y + z = 1. So
the volume of the tetrahedron can be found by computing the double integalZ Z
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The integral is computed in Mathematica by entering

Integrate[1 - x - y, {y, 0, 1}, {x, 0, 1 - y}]
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The integral is computed in Mathematica by entering
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Integrate[c(1 - x/a - y/b), {y, 0, b}, {x, 0, a(1 - y/b)}]

5. The quantity
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dxdy is the volume of the region bounded by D and the plane z = 1. This

value is numerically equal to the area of D (why?).
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The jacobian of this change of coordinates is abr. Therefore
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j = 2. The square in the xy-plane is mapped into a parallelogram

in the uv-plane. For example, the edge x = 1 is transformed to the edge u� v = 1 in the xy-plane.
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7(e) Try polar coordinates.
R 1
0

R �
0
r3 d�dr = �

4 .
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Compute the jacobian J and proceed to evaluate the integral as
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