Solutions to the Homework Set on page 204
1(a): Surface S can be parametrized by
r(u,v) = (u,v,—1), 0<u<1,0<v <1,

so that
r, xr, =(0,0,1).

Also, since v = (2z — y,y?,1), then
V x v = (0,0, 1).

Therefore, the flux of vorticity in this problem is

1 1 1 1
/ / (0,0,1) - (0,0,1) dudv = / / dudv = 1.
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1(b): Note that v = (2zy2, z) and that the vorticity of this flow, V x v = (0,0,0). Hence, the
flux of vorticity is zero over any surface, including the plane that passes through (0,0,0), (1,0,0)
and (0,1,0).

1(c): To determine a parametrization for the surface S we first need to find the equation for the
plane that passes through the points (0,0,0), (1,0,0), and (0,1,1). One way to accomplish this is
to note that the equation of any plane can be expressed as Az + By +Cz = D where A, B, C and D
are constants. Since (0,0,0) must satisfy this equation, we have D = 0. Similarly, (1,0,0) belongs
to this plane so A = D which in turn requires that A = 0. Finally, (0,1, 1) belongs to this plane so
B+ C =0, or C = —B. The equation of the plane now takes the form By — Cz =0 or z = y. So
the surface S can be parametrized by

r(u,v) = (u,v,v),
where 0 <u < 1,0 <v < 1—u (look at the projection of S on the zy-plane). Hence,
r, X1, =(0,—1,1).

Also, since v = (2z — y,y?,0), then
V x v = (0,0,1).

Therefore, the flux of vorticity in this problem is

1 1—u 1 1—u 1
/ / (0,0,1>-(0,—1,1>dvdv:/ / dvdu = =.
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2: The Stokes theorem states that

//VXV-dA:?{V-dr.
S C

To verify this result with v = (22,42,0) and S = {(z,v,2)| —a <z < a,—a <y < a,z = c} we
start by noting that V x v = (0, 2z,4) and that S has the parametrization r(u,v) = (u, v, c). Note
that r,, X r, = (0,0,1). Hence, the left-hand-side of the Stokes theorem becomes

LHS://va-dA:/ / (0,2¢,4) - (0,0, 1) dudv = 16a°.
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The line integral on the right side of Stokes theorem is the sum of four line integrals over the
straight-line edges of the square. We apply the right-hand convention betwee the normal to S and
for direction of traversing the curve C' and parametrize these four curves as follows:

Cy :r(t) = (t,—a,c), —a<t<a.
Cs :r(t) = (a,t,c), —a<t<a.
Cs3 :r(t) = (—t,a,c), —a<t<a.
Cy:x(t) = (—a, —t,c), —a<t<a.

Then (note that v = (22,4z,0))

[
/ v-dr = / (c?,4t,0) - (1,0,0)dt = 2ac®.
C1
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Similarly,
/ v-dr = / (c?,4a,0) - (0,1,0)dt = 8a°.
Cz —a
And "
/ v-dr = / (c*,—4t,0) - (—1,0,0)dt = —2ac®.
03 —a
Finally,

[
/ v-dr = / (c®, —4a,0) - (0,—1,0)dt = 8a°.
Cy

—a

Hence, the sum of the four line integrals is 16a2, the same as LHS.

3: In this problem v = (0,0, z cos z) while S consists of three surfaces S1, the lateral part of the
cylinder, and S> and S3 the top and the bottom of S (imagine cutting an empty soda can in half.
Can you visualize S;, Se and S3?) S; can be parametrized as (why use cylindrical coordinates?)

r(u,v) = (2 cosu, 2sinu, v), 0<u<27r,0<z<g.
Note that the vorticity of this flow is V x v = (0, — cos z,0) and
ry X ry, = (2cosu,2sinu,0).

Hence the first part of left-hand side of the Stokes theorem becomes
2m El I B
LHS, = / / (0, — cos v, 0) - (2 cos u, 2sinu, 0) dvdu = —2/ / cosu cos v dvdu = —4.
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Next consider S3, the "top” of this surface. Let’s parametrize this surface as
.o
r(u,v) = (ucosv,usinv, §>

On this surface the vorticity becomes (0, — cos §,0) = 0 so LH S5, the contribution of this surface
to the flux of vorticity, vanishes. Note that in this case we do not need to determine r, X r,.



Finally, let us consider the contribution of Ss, the "bottom” of the surface. We parametrize this
surface as
r(u,v) = (vcosu,vsinu,0), O<v<2,0<u<m.

(compare this parametrization to the one we used for So. Why the change in the order we introduce
u and v?) Note that
ry X1, = —(0,0,0).

So
LHS; = / / -(0,0,v) dudv = 0.
Therefore, the total flux of vorticity (the sum of LHS;, LHS, and LHSs) is —
LHS = —

The right-hand side of the Stokes theorem in this case is the line integral of v over the four
straight lines
Cy :x(t) = (—t,0,0), —2<t<2.

Oy :r(t) = (—2,0,8), 0<t< g

Cs:r(t) = (¢,0, g), —2<t<2.
Oy x(t) = (2,0, —1), —g <t<o.

Let’s first determine fCl v|c, - dr: Note that v|c, = (0,0, —t) so

2
/v-dr:/ (0,0 — 1) - (—1,0,0) dt = 0.
C1 —2

Similarly, [, Ve dr = 0. Let’s now consider the line integral over Cs:

3
/ vi|g, - dr = / (0,0,—2cost) - (0,0,1) dt = —2.
Co 0

Finally, we compute the line integral of v over Cj:

0
/ v, - dr = / (0,0,2cos(—t)) - (0,0, —1) dt = —2.
Cy

_
2

So, the sum of the four line integrals is —4, the same value we obtained for LHS.

4: Let v = (f(z,y),9(z,y)). Let
r(u,v) = (h(u,v), k(u,v),0)

be the parametrization of D and
R(t) = (a(t),b(t),0)

be the parametrization of its boundary. Note that Vxv = (0,0, gz — fy), Ty Xty = (0,0, hyky —hyky)
and R'(t) = (a'(¢),b'(¢),0). The the right-hand side and left-hand side of the Stokes theorem reduce

to
up  poy t
/ / (gz - fy)(hukv - hvku) dudv = / fa’ + gb') dt.
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