
Solutions to the Homework Set on page 204

1(a): Surface S can be parametrized by

r(u; v) = hu; v;�1i; 0 � u < 1; 0 � v < 1;

so that
ru � rv = h0; 0; 1i:

Also, since v = h2x� y; y2; 1i, then
r� v = h0; 0; 1i:

Therefore, the ux of vorticity in this problem is

Z
1

0

Z
1

0

h0; 0; 1i � h0; 0; 1i du dv =

Z
1

0

Z
1

0

dudv = 1:

1(b): Note that v = h2xy2; zi and that the vorticity of this ow, r� v = h0; 0; 0i. Hence, the
ux of vorticity is zero over any surface, including the plane that passes through (0; 0; 0), (1; 0; 0)
and (0; 1; 0).

1(c): To determine a parametrization for the surface S we �rst need to �nd the equation for the
plane that passes through the points (0; 0; 0), (1; 0; 0), and (0; 1; 1). One way to accomplish this is
to note that the equation of any plane can be expressed as Ax+By+Cz = D where A, B, C and D

are constants. Since (0; 0; 0) must satisfy this equation, we have D = 0. Similarly, (1; 0; 0) belongs
to this plane so A = D which in turn requires that A = 0. Finally, (0; 1; 1) belongs to this plane so
B + C = 0, or C = �B. The equation of the plane now takes the form By � Cz = 0 or z = y. So
the surface S can be parametrized by

r(u; v) = hu; v; vi;

where 0 � u < 1; 0 � v < 1� u (look at the projection of S on the xy-plane). Hence,

ru � rv = h0;�1; 1i:

Also, since v = h2x� y; y2; 0i, then
r� v = h0; 0; 1i:

Therefore, the ux of vorticity in this problem is

Z
1

0

Z
1�u

0

h0; 0; 1i � h0;�1; 1i dv dv =

Z
1

0

Z
1�u

0

dvdu =
1

2
:

2: The Stokes theorem states thatZ Z
S

r� v � dA =

I
C

v � dr:

To verify this result with v = hz2; 4x; 0i and S = f(x; y; z)j � a < x < a;�a < y < a; z = cg we
start by noting that r� v = h0; 2z; 4i and that S has the parametrization r(u; v) = hu; v; ci. Note
that ru � rv = h0; 0; 1i. Hence, the left-hand-side of the Stokes theorem becomes

LHS =

Z Z
S

r� v � dA =

Z a

�a

Z a

�a

h0; 2c; 4i � h0; 0; 1i dudv = 16a2:
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The line integral on the right side of Stokes theorem is the sum of four line integrals over the
straight-line edges of the square. We apply the right-hand convention betwee the normal to S and
for direction of traversing the curve C and parametrize these four curves as follows:

C1 : r(t) = ht;�a; ci; �a < t < a:

C2 : r(t) = ha; t; ci; �a < t < a:

C3 : r(t) = h�t; a; ci; �a < t < a:

C4 : r(t) = h�a;�t; ci; �a < t < a:

Then (note that v = hz2; 4x; 0i)

Z
C1

v � dr =

Z a

�a

hc2; 4t; 0i � h1; 0; 0idt = 2ac2:

Similarly, Z
C2

v � dr =

Z a

�a

hc2; 4a; 0i � h0; 1; 0idt = 8a2:

And Z
C3

v � dr =

Z a

�a

hc2;�4t; 0i � h�1; 0; 0idt = �2ac2:

Finally, Z
C4

v � dr =

Z a

�a

hc2;�4a; 0i � h0;�1; 0idt = 8a2:

Hence, the sum of the four line integrals is 16a2, the same as LHS.

3: In this problem v = h0; 0; x cos zi while S consists of three surfaces S1, the lateral part of the
cylinder, and S2 and S3 the top and the bottom of S (imagine cutting an empty soda can in half.
Can you visualize S1, S2 and S3?) S1 can be parametrized as (why use cylindrical coordinates?)

r(u; v) = h2 cosu; 2 sinu; vi; 0 < u < 2�; 0 < z <
�

2
:

Note that the vorticity of this ow is r� v = h0;� cos z; 0i and

ru � rv = h2 cosu; 2 sinu; 0i:

Hence the �rst part of left-hand side of the Stokes theorem becomes

LHS1 =

Z
2�

0

Z �

2

0

h0;� cos v; 0i � h2 cosu; 2 sinu; 0i dvdu = �2

Z �

0

Z �

2

0

cosu cos v dvdu = �4:

Next consider S2, the "top" of this surface. Let's parametrize this surface as

r(u; v) = hu cos v; u sinv;
�

2
i:

On this surface the vorticity becomes h0;� cos �
2
; 0i = 0 so LHS2, the contribution of this surface

to the ux of vorticity, vanishes. Note that in this case we do not need to determine ru � rv .
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Finally, let us consider the contribution of S3, the "bottom" of the surface. We parametrize this
surface as

r(u; v) = hv cosu; v sinu; 0i; 0 < v < 2; 0 < u < �:

(compare this parametrization to the one we used for S2. Why the change in the order we introduce
u and v?) Note that

ru � rv = �h0; 0; vi:

So

LHS3 =

Z �

0

Z
2

0

h0;�1; 0i � h0; 0; vi dudv = 0:

Therefore, the total ux of vorticity (the sum of LHS1, LHS2 and LHS3) is �4:

LHS = �4

The right-hand side of the Stokes theorem in this case is the line integral of v over the four
straight lines

C1 : r(t) = h�t; 0; 0i; �2 < t < 2:

C2 : r(t) = h�2; 0; ti; 0 < t <
�

2
:

C3 : r(t) = ht; 0;
�

2
i; �2 < t < 2:

C4 : r(t) = h2; 0;�ti; �
�

2
< t < 0:

Let's �rst determine
R
C1

vjC1
� dr: Note that vjC1

= h0; 0;�ti so

Z
C1

v � dr =

Z
2

�2

h0; 0� ti � h�1; 0; 0i dt = 0:

Similarly,
R
C3

v � dr = 0. Let's now consider the line integral over C2:

Z
C2

vjC2
� dr =

Z �

2

0

h0; 0;�2 cos ti � h0; 0; 1i dt = �2:

Finally, we compute the line integral of v over C4:Z
C4

vjC4
� dr =

Z
0

�
�

2

h0; 0; 2 cos(�t)i � h0; 0;�1i dt = �2:

So, the sum of the four line integrals is �4, the same value we obtained for LHS.

4: Let v = hf(x; y); g(x; y)i. Let

r(u; v) = hh(u; v); k(u; v); 0i

be the parametrization of D and
R(t) = ha(t); b(t); 0i

be the parametrization of its boundary. Note that r�v = h0; 0; gx�fyi, ru�rv = h0; 0; hukv�hvkui
and R0(t) = ha0(t); b0(t); 0i. The the right-hand side and left-hand side of the Stokes theorem reduce
to Z u1

u0

Z v1

v0

(gx � fy)(hukv � hvku) dudv =

Z t1

t0

fa0 + gb0) dt:
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