
Kevin McIlhany, Grant Gillary, Reza Malek-Madani

Normal Mode Analysis of the Chesapeake Bay using FEMLAB

Abstract A Normal Mode Analysis (NMA) of the Chesa-
peake Bay was performed using Dirichlet boundary con-
ditions and FEMLAB. The lowest 100 eigenstates were
calculated and compared to a finite difference solution.
Based on the normal modes derived numerically, surface
current vector fields can be calculated. The vector fields of
the Chesapeake Bay provide tools for the solution of prob-
lems such as the diffusion of pollutants, particle transport
(bio-terrorism), tracking of crab spat, as well as providing
a basis set for decomposing real-time currents. Given the
difficulty of the boundary, attempts to measure the error in
the calculation included tests for orthogonality within the
basis set, convergence of the eigenvalue as a function of
grid chosen and a comparison to a finite difference calcu-
lation for a similar sized grid.
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1 Introduction

The study of computational fluid dynamics has a rich his-
tory and the community is still very active. The govern-
ing equations, Navier-Stokes, have yet to be analytically
solved and the question remains whether the complete so-
lution to fluid flow is even achievable from theoretical
grounds. To this end, solutions to flow related problems
have necessarily been numerical by nature and solved on
computers. The practical goal of achieving near-realtime
fluid flows is almost technologically realized through the
use of programs such as FEMLAB.

One approach to understanding flow related problems
is to employ the same techniques used by the signal pro-
cessing sector. Given a basis set which fully describes the
characteristic modes of a system (the eigenmodes), one
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can analyze the state of a system by decomposing the state
into amplitudes related to the eigenmodes. The power spec-
trum achieved for one dimensional time series has proven
to be a tremendous tool for many applications. Signal iden-
tification and classification represent the simplest of appli-
cations. Given a power spectrum, one may speculate that
the eigenmodes should evolve in time governed by rules
which allows one to forecast signals based on the time
evolution of the intensities for each eigenmode. For one
dimensional eigenvalue problems, the Fourier series and
its associated transform have been the toolset of choice
for signal processing for the last fifty years.

With increasing computer power, numerical solutions
to the eigenvalue problem in higher dimensions are be-
coming common-place. The need for computation of eigen-
modes is similar to signal processing. When studying a
system, having a knowledge of the basis set allows one
to describe the state of that system in its most compact
language. The numerical aspects of this paper were moti-
vated by a method for completing surface current velocity
fields called Normal Mode Analysis (NMA) [Eremeev et
al. 1992][1] [2],[Lipphardt et al. 2000][3] .

There have been two studies in recent years [2],[3]which
have tested methods for filling in gaps in the velocity field
for the data they obtained. Eremeev et al. used the data
received from autonomous drifting buoys (ADB) in the
Black Sea to extrapolate velocity fields for this closed body
of water using what was later termed by Lipphardt’s group
as Normal Mode Analysis. Eremeev and his collaborators
found that this process allowed one to model the large
scale currents measured by the ADBs with a relatively
small number of modes. One set of data required only 76
modes and yet still accounted for 70% of the kinetic en-
ergy associated with the observed field. Lipphardt et al.
used this same method to fill in gaps of velocity fields
for Monterey Bay. A grid of 39 by 39 was used with HF
radar data collected at each point on the grid. This grid
spacing corresponds to a minimum spacing between data
points of two kilometers. The NMA model used by Ere-
meev’s group did not account for normal flow through an
open boundary such as the Monterey Bays boundary with
the Pacific Ocean. Lipphardt’s group extended the NMA
by adding a mode to account for the flow between Mon-



Fig. 1 A ”Nowcast” during August 1999, from
http://newark.cms.udel.edu/brucel/slmapping/currents.08.1999.gif.
The white arrows come from HF data and the black arrows are from
NMA.

terey Bay and the Pacific. Combining the NMA of the Bay
with HF radar observations, they generated velocity fields
called ”Nowcasts”, which can be seen at their website[4].
Figure 1 shows a Nowcast with data taken from HF radar
overlayed. Lipphardt and Kirwan used 12 modes to de-
scribe the Bay, where each had a kinetic energy equal to
at least 15% of the mean. These twelve modes were used
to fill out the velocity field obtained by the HF radar [3].

The ability of NMA to efficiently fill in missing cur-
rent data for coastal regions has many military and civil-
ian applications. As the US Navy begins to increase its fo-
cus on the littoral environment, knowledge of surface cur-
rents in coastal waterways can significantly improve navi-
gation. Once NMA has been applied to a significant num-
ber of waterways, it will become invaluable. The Navy
could provide its ships with accurate current data for nu-
merous waterways around the world while only taking
data from a small percentage of the total area. This would
provide an efficient and cost effective method for provid-
ing useful data for both navigation and mission planning.

In the civilian context, NMA can provide a way to help
track contaminants and keep tabs on wet life in a region.
NMAs ability to complete the picture of the surface cur-
rent is necessary for accurate computation of packet tra-
jectories for a given waterway. If another Exxon Valdez
accident occurred, or chemical or biological agents were
introduced into a waterway, a complete picture of the cur-
rents in that area would for the calculation of the disper-
sion of the contaminants as well as locate the hardest hit
areas for both clean up and evacuation. Currents also play
an important part in the health of an areas wet life. For
the Chesapeake Bay, the waterway with which this project
is concerned, NOAA is currently administering a project

to restore the oyster population, which was almost fished
to extinction during the 18th and 19th centuries. For this
project, current data is important for determining place-
ment of reefs and movement of the oyster population. ”If
reefs are to be a source of spat for shell plantings, and for
sustainability of the reef itself then salinity, flow regime
and basin morphology will be important considerations.
Hydrodynamic models or drifter studies will be useful in
determining the fate of larvae from any proposed reef site”
[5].

In this paper, a comparison is made between FEMLAB
and a finite difference scheme developed in MATLAB for
solving the Laplace type eigenvalue problem with Dirich-
let boundary conditions. Given the power and flexibility of
FEMLAB, solutions to the surface currents of the Chesa-
peake Bay were obtained in a fairly straight-forward man-
ner. In order to validate the FEMLAB results, a comple-
mentary analysis using finite differences was performed.
A number of metrics have been used to compare the out-
put of these two numerical solvers including convergence
of eigenvalues, orthogonality within the basis set and the
agreement between the two solutions.

2 Normal Mode Analysis

During the past decade a surge of data has become avail-
able concerning coastal waterways and estuaries. This in-
flux of data is due to numerous methods of data collection
which are being implemented: high frequency radar, Lan-
grangian drifters, synthetic aperture radar, new generation
passive remote-sensing platforms and towed arrays which
can collect information on the current in a ships wake [3].
Each of these methods necessarily leaves holes in the data
collected due to shadows caused by waves, lack of fund-
ing and equipment to complete coverage of the area, or er-
ror in the collection and processing of the data. A method
called Normal Mode Analysis(NMA) has been developed
to fill in the gaps created in these velocity fields and pro-
vide a complete picture of the surface currents for a body
of water.

NMA separates the spatial and temporal parts of the
surface current for a body of water by developing a basis
set for the spatial domain. Just like the Galerkin method,
the basis set used in NMA already satisfies the boundary
conditions for a body of water, zero normal flow at solid
boundaries and normal flow consistent with a model or
experimental data at open boundaries with other bodies of
water. The basis set itself was derived by Eremeev et al.
from the formulation developed by Zel’dovich [6] for the
description of a three dimensional velocity field using two
scalar potentials,

u = ∇× [(n̂Ψ)+∇× (n̂Φ)]. (1)

Eremeev and collaborators showed that this formula-
tion can be broken down into two Laplace type eigenvalue



equations for a closed body of water with zero normal flow
through the boundaries.

∇2Ψ = −λΨ Dirichlet modes

Ψ |∂Ω = 0 (2)

∇2Φ = −λΦ Neumann modes

∂nΦ |∂Ω = 0

(3)

HereΨ is the stream potential where,
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andΦ is the velocity potential where,
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)
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with (u,v) representing the surface current velocities in
thex andy directions respectively. Lipphardt et al. added
a third term to account for additional flow through the
boundaries with other bodies of water,

∇2Θ (x,y,0, t) = SΘ (t) Source terms

(m̂ ·
−→∇Θ )|∂Ω = (m̂ ·umodel)|∂Ω . (6)

In equation (6) ˆm is the vector normal to the boundary with
another body of water andumodel is model or experimental
data of the fluid velocity at the boundary. Once all three
velocity

3 FEMLAB and Finite Differences

The focus of this paper will be the solution for the stream
potentials with Dirichlet boundary conditions for the Chesa-
peake Bay. The Chesapeake Bay has 11,684 miles of shore-
line but is only 189 miles long by 30 miles wide. This
provides for an extremely complicated domain forcing the
use of a numerical solution. In order to address all three
terms listed above, the Dirichlet and Neumann modes are
addressed in the standard fashion from within FEMLAB.
The source term requires input from an external reference,
in this case, the work of Tom Gross at NOAA was em-
ployed where source currents were provided from the
Quoddy finite element model of the Chesapeake Bay [7].
Although Quoddy is a model of the Chesapeake Bay’s cur-
rents, it draws data from multiple sets collected near the
mouth of the Bay (the Atlantic ocean interface) as well
as selected points from the interior of the Bay’s geometry.
For a recent review of efforts by NOAA and Tom Gross,
see reference [7].

While comparing the FEMLAB results with the finite
difference results, the same boundary was used, obtained
from Quoddy. At its lowest resolution, the default settings
from FEMLAB using the Quoddy boundary results in 8735
elements, 1111 boundary elements minimum quality of

Fig. 2 The lowest normal mode calculated for Dirichlet boundary
conditions. The color/intensity represents the height of the scalar
potential - which is later transformed into a velocity vector field.

0.5062 and 18579 degrees of freedom. At this minimal
grid setting, the lowest 12 modes were solved in 7.4 sec-
onds and all 100 modes were solved in 62 seconds end-
ing with a final error estimated at 1.9e-17. At this rela-
tively poor resolution, the progression of the eigenvalues
obtained appeared consistent until the last 15 values, at
which point the eigenvalues began to diverge, a tell-tale
sign of approaching the limit of reasonable calculations.
At the highest resolution, FEMLAB employed 139760 el-
ements, 4444 boundary elements with a minimum element
quality of 0.5062, resulting in 283962 degrees of freedom.
On a 2.2 GHz windows computer, the first 12 modes were
calculated in just under three minutes. Even with 2 Gbytes



Fig. 3 Velocity vector field(u,v)D for the lowest Dirichlet mode.

of RAM, evaluating all 100 eigenmodes was not possible.
Instead, clusters of 20 eigenstates were calculated to reach
the 100th mode. The total time required for 100 modes
was approximately 30 minutes of computer time. For the
finite difference program a standard central differencing
scheme was used,

−λΨ =
−4Ψ +Ψi+1, j +Ψi−1, j +Ψi, j+1 +Ψi, j−1

h2 , (7)

where the(i, j) notation indicates positions on the grid.
Using the Quoddy boundary as a guide, a grid of 350 x
1185 points was created. Boundary conditions were en-
forced by removing rows and columns in the differen-
tiation matrix corresponding to nodes on the boundary.
Calculation of the finite difference scheme took place in
MATLAB using eigs with considerable pre-processing in
order to accommodate the rather large differentiation ma-
trix needed to perform the calculation. As a check, sev-
eral toy models were created and solved using both FEM-
LAB and finite differences in order to compare the results
against known analytic solutions. This process helped de-
velop confidence in the trends seen as the systems began
to approach unreliable behavior.

4 Results and Conclusions

Figure 2 shows the lowest Dirichlet mode calculated us-
ing FEMLAB on the Quoddy boundary set at its high res-
olution. The eigenvalue for this mode is 1.079e-8. On a
normalized boundary such as a square, the lowest eigen-
value is typically near 20. The grid for this calculation was
not normalized, so there is a factor roughly of 1/(Lx)×
1/(Ly). The boundary size within the Quoddy frame of

Fig. 4 Normal modes, 1, 4, 7 and 10 are displayed so that the pat-
tern of decreasing wavelength while filling the space of the boundary
can clearly be seen. By node 10, the wavelength is too big to fitin
the upper Bay.

reference was approximately 10000x25000, which leads
to an eigenvalue in the range of 10−8 through 10−7. Fea-
tures of the lowest eigenmode include a central hump fill-
ing the largest space within the boundary while maintain-
ing the eigenvalue relationship and meeting the boundary
with a value of zero. Bear in mind that this large hump
does not represent a displacement of fluid, it is merely
an energetic region of space which leads to the calcula-
tion of a vorticity flow. This situation is similar to electro-
magnetism, where the electric and magnetic vector fields
can be derived from two scalar potentials. The Dirich-
let potential gives rise to vortices, as can be seen in fig-
ure 3, which shows the associated vector flow for the low-
est eigenmode.

Figures 4 and 5 depict the progression of eigenmodes
as the mode number increases from 1 up to 100. In partic-
ular, modes 1, 4, 7, 10, 12, 35, 52 and 98 were chosen to



Fig. 5 Normal modes, 12, 36, 52 and 98 are shown. By the 100th
mode, every portion of the Bay has been covered at least 10 times.
This provides a reasonable set of basis vectors for the Bay. By
adding more modes, more coverage of the Bay is possible, leading
to more terms used to describe behavior of velocity vector fields. At
some higher value, the wavelength becomes so short that variations
in the boundary prevent further calculation of modes.

demonstrate the space filling nature of eigenmodes. On a
complex boundary, there are occasions when a particular
wavelength will fit well within the boundary and as a re-
sult, fill most of the domain, which can be seen in modes
4, 10, 35 and 98. Occasionally eigenstates with eigenval-
ues very close to others which fill the domain will have
a wavelength that is not quite right, yet the wavelength
might fit exactly between a narrow region of space. Modes
7, 12 and 52 demonstrate this behavior. In total, 100 modes
were calculated for the Bay as a design goal so that any
one location in the Bay would have had at least 10 modes
calculated covering that region of space. With 10 modes
covering all regions of the Bay, based on the work of Ere-
meev et al. and Lipphardt et al., one can confidently pre-

dict that a large fraction of the total energy present in the
Bay will have been accounted for using these eigenmodes
as a basis set.

To ensure stability in the solution set, several mea-
sures were made. Figure 6 shows the relative error for
each mode calculated between the FEMLAB result and
finite differences. On average, the relative difference in
the eigenvalue calculated was three percent. The last five
eigenmodes deviated significantly, leading to the suspi-
cion that the solution was diverging. Careful inspection
of the behavior from the FEMLAB result indicates that
its behavior was smooth from modes 1 through 100. The
finite difference results typically varied more than FEM-
LAB based on toy models, so most likely the error is com-
ing from the finite difference scheme and not FEMLAB.
Although not conclusive, the agreement between the two
methods indicates stability of the solution set. Other mea-
sures, not shown here, include calculation of the deviation
of an eigenvalue as the grid resolution was varied. Orthog-
onality was also used as a measure to ensure the basis set
is complete. In both cases, FEMLAB shows superior sta-
bility over finite differences.

Although not shown in this report, the Neumann and
source terms were calculated for the Chesapeake Bay. Com-
parison with the finite difference scheme will require fur-
ther study to validate either the FEMLAB result or the
finte differences result. Given that Neumann conditions
are better suited for finite element analysis leads one to
trust the FEMLAB results, however, improvements to the
finte differences are still possible, which will help validate
the FEMLAB solution set. The solutions arising from the
source term behaved as expected. For a detailed inquiry
into the complete eigenmode set calculated to date for the
Chesapeake Bay, consult reference [8]. These results can
also be seen at the website listed at USNA [9]. Future work
on the velocity vector field for the Chesapeake Bay will in-
clude full three dimensional analysis using FEMLAB and
Quoddy in conjunction.

Concurrent with this study, the residence time of par-
ticulants was analyzed using the Navier-Stokes equations
and integrating the velocity fields [10]. By comparing trends
in velocity fields from an eigenmode calculation to a Navier-
Stokes calculation, one can analyze those parts of the ve-
locity domain that give rise to certain behaviors. This com-
parison represents the initial steps needed to perform a
full Normal Mode Analysis. Plans have begun to further
instrument the Bay, leading to the question, how many
real-time measurements are required in order to predict
important behavior within the Chesapeake. Normal Mode
Analysis will be used to help answer this question.
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Fig. 6 By comparing the modes calculated from FEMLAB and the finite difference scheme, taking the difference of eigenvalues anddividing
by the magnitude gives the relative error. The two schemes agree to within 3 percent on average. Based on experience with known boundaries
- where the analytical solution may be employed to check for accuracy, the FEMLAB result is consistently better than the finite difference
scheme, leading one to conclude that the 3 percent error is likely to be from finite differences.
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