
A Comparison of Two

Streamfunction Models of a Meandering Jet

Abstract

An equivalent barotropic potential vorticity (PV) model of the Gulf Stream
was developed to examine the meandering jet portion of the Stream. The stream-
function equation for the jet can be explicitly de�ned in terms of x, y, and t. Bower
(1991) developed a kinematic model of the Gulf Stream meandering jet. A com-
parison between the two models show that there is a phase shift and amplitude
di�erence in the jet shapes. The major di�erence between the two is that the PV
model is a dynamic model of the Gulf Stream jet, while Bower's (1991) is strictly a
kinematic model. Samelson (1992) modi�ed Bower's (1991) model to observe 
uid
exchange across a meandering jet. A similar approach is undertaken utilizing our
potential vorticity model of the Gulf Stream. The nondimensional streamfunction
of the potential vorticity model for motion in the comoving frame is determined and
analyzed for comparison to Bower's nondimensional case. Analyses of the systems
of di�erential equations for the two models show that the potential vorticity model
is di�erent from the Bower model (1991). The potential vorticity model shows that

uid parcels do not rotate and change orientation slightly as they 
ow along the
meandering jet. However, they do change shape dramatically. The Bower model
exhibits a slightly di�erent 
uid parcel pattern. The contours of the nondimensional
streamfunction for both models are divided up into regions of closed circulation and
an eastward propagating jet. Bounding streamlines which connect stagnation points
prevent 
uid 
ow across the region boundaries. There is also great di�erences in
the particle paths in the two models.
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1. Introduction

The Gulf Stream has been the topic of many research e�orts for the past several
decades. This feature, which 
ows along the east coast of the United States, is highly
dynamic. These studies have ranged from quantitative analyses of the kinematics
and dynamics of the Stream to a more qualitative description of the hydrography.
Despite the vast amount of work undertaken over the years, the 
uid exchange
across and within the Gulf Stream is poorly understood. Bower and Rossby (1989)
determined that the parcel trajectories in the Gulf Stream exhibit cross-stream
motion and are highly correlated with the meandering of the Gulf Stream jet. In
the recent past, information about the surface 
ow structure, 
uid exchange and
kinematics of the Gulf Stream has been obtained by Bower (1991), Samelson (1992)
and Dutkiewicz et al. (1993).

Bower �rst introduced a simple two-dimensional kinematic model of a mean-
dering jet in 1991. This model was developed to examine the kinematics of 
uid
exchange within the Gulf Stream region. She compared RAFOS 
oat data with 
uid
paths in a meandering jet velocity �eld. This kinematic model for the Gulf Stream
region reproduced the Lagrangian observations depicted by the RAFOS 
oat data
(Bower, 1991). The main emphasis of her paper was to de�ne a trivial kinematic
mechanism for 
uid exchange within the meandering jet of the Gulf Stream without
including any complicated dynamical processes (Bower, 1991).

Samelson (1992) modi�ed Bower's (1991) model in order to study in detail
the exchange of 
uid across a meandering jet. The modi�cations were made in
order to determine what deviations in the Gulf Stream meander pattern cause the
most e�cient exchange of 
uid across boundaries. Samelson's model is strictly a
kinematic model and has no dynamical constraints.

Mullen (1994) developed a dynamical model of the meandering jet of the Gulf
Stream. She undertook this task in order to incorporate some of the dynamics
governing the Gulf Stream. Mullen (1994) utilized this nonlinear potential vorticity
model to recover the surface 
ow structure of the meandering jet region of the Gulf
Stream through the analyses of satellite imagery and satellite-tracked drifters.

As stated above, the Gulf Stream is a very complicated kinematic, as well
as dynamic system. The number of dynamical processes associated with the Gulf
Stream is vast. The development of a dynamical model designed to incorporate all
these properties would be a very di�cult task to undertake. This is true because
of the nonlinear relationship among the di�erent dynamical properties governing
the 
ow and meandering of the Gulf Stream. However, the thrust of the paper
is the comparison between Bower's kinematic model and Mullen's (1994) potential
vorticity model.

The potential vorticity model is discussed in Section 2. The results of the
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comparison study between Bower's (1991) model results and those of the equivalent
barotropic potential vorticity model are presented in the following section. Section
5 contains the summary.

2. Dynamic Model

In this paper we will study a model of the stream where the domain in which the

uid 
ow is de�ned is divided into three regions. These regions are chosen to signify
the following properties of the 
ow: the upper region, denoted by 
u, is where the

ow characterizes the evolution of the Sargasso Sea; the lower region, 
l, is intended
to model the 
ow in the coastal region; �nally, 
i, where we expect the dominant
features of the 
ow to occur, models the Gulf Stream region. Let 
 = 
lU
uU
i.
All subregions consist of semi-in�nite domains separated by straight boundaries.
Speci�cally,


 =

8><
>:


l = f(x; y)j y < �A
2
g


i = f(x; y)j � A
2
< y < A

2
g


u = f(x; y)j y > A
2
g:

(1)

We present a nonlinear equivalent barotropic potential vorticity model of the Gulf
Stream. Since the bulk of the available data on the stream is of the surface tem-
perature �eld and since we expect that the streamfunction of the 
ow will be rep-
resentative of the surface temperature �eld in the stream, following Mullen (1994),
we introduce a streamfunction formulation of the 
ow in 
. Thus, with the same
coordinate system as Bower (1991), the governing equation for the dynamic model is
the well{known equivalent barotropic potential vorticity equation (Cushman-Roisin,
1993):

@q

@t
+ J(	; q) = �(x; y; t): (2)

Here, q is the potential vorticity and is represented by

q = r2	�
�
1

rd

�2

	+ �y; (3)

where 	 is the streamfunction and J is the Jacobian of the two functions 	 and q,
that is,

J(	; q) =
@	

@x

@q

@y
�
@	

@y

@q

@x
;

rd is the Rossby radius of deformation, f is the Coriolis parameter and � = @f=@y
represents the constant beta e�ect. Finally, � is as yet an undetermined potential
vorticity source.

Sources are unusual in potential vorticity models. The need for this term
arises in our model because the three subregions of 
 have vastly di�erent physical
characteristics. The simplest way we can capture the impact of these charactersitics
is by developing solutions of (2) that conserve potential vorticity in each respective
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subregion, but experience discontinuities across the boundaries. The source provides
the jump in potential vorticity as a particle exits one subregion and enters another.

We seek travelling wave solutions to (2) in the form

q(x; y; t) = q̂(x� ct; y); 	(x; y; t) = 	̂(x� ct; y);

whereby the streamfunction is propagating steadily in the x{direction. Substituting
these forms into (2), we obtain the following relationship

J(	̂� cy; q̂) = �(x; y; t): (4)

For future reference, let
� = 	̂� cy: (5)

Because the fundamental feature of our physical model is the discontinuity of the
potential vorticity in the three regions 
l, 
i, and 
u, we choose the following simple
ansatz for q̂:

q̂(�; y) = QlH
�
�A

2
� y

�
+QuH

�
y �

A

2

�
+

(��2� +Qi)
�
H
�
y +

A

2

�
�H

�
y �

A

2

��
; (6)

where H is the standard heaviside function. The quantities Qu, Qi, Qu, and �2 are
constants and will be determined later from the initial and boundary conditions. It
is easy to check that (6) is equivalent to

q̂ =

8><
>:

Ql when y < �A
2

��2� +Qi when � A
2
< y < A

2

Qu when y > A
2
:

(7)

Thus, the potential vorticity of this model remains constant in the regions modelling
the Sargasso sea and the coastal region but varies linearly in � in the Gulf stream.

Substitution of (6) into (4) gives

�(x� ct; y) = �
@�

@x

�
�Ql�

�
A

2
+ y

�
+Qu�

�
y �

A

2

�
+

�
��2� +Qi

�
j
y=�A

2

�
�
y +

A

2

�
�
�
��2� +Qi

�
j
y=A

2

�
�
y �

A

2

�
: (8)

Here � is the unit impulse function, i.e.,dH(z)
dz

= �(z):

The last equation empahsizes the point alluded to earlier that a source term
in terms of delta functions is needed to conform with the principle of conservation
of potential vorticity in the three individual subregions that constitute 
. It is
important to reiterate that potential vorticity is not conserved for particles that
enter or leave the region given by �A=2 � y � A=2. Thus, if a particle originally in
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the Gulf Stream were to wander out into the Sargasso Sea, it would undergo a jump
change in its potential vorticity appropriate for that region. Similarly if a particle
in the Sargasso Sea were to be entrained by the Gulf Stream, then it also would
undergo a jump change in its potential vorticity appropriate for the Stream.

3.1 Solution in the Inner Region 
i

Solutions to the potential vorticity model in the form

	(x; y; t) = Y (y) + �G(y) sin(k(x� ct)); (9)

are sought where k = 2�=L is the wavenumber with L as the wavelength. This form
was motivated by the kinematic models and has a simple physical interpretation:
The solution 	 consists of a steady background 
ow, Y , upon which �G sin, which
describes the meander perturbation, is superimposed. Note that in each region the
equations are of the form

L1(G)S + L2(Y ) = 0: (10)

From (??)
r2	 = ��(k2G(y) sin+Gyy sin+Y

00 (11)

is obtained, where k = 2�=L is the wavenumber with L as the wavelength. Using
this result and (6)in (4) gives

q = k2G(y) sin+[Gyy �
�
1

rd

�2

] sin+Y 00 �
�
1

rd

�2

Y + �y:

For the Inner region the equation to solve is

[Gyy + (�2 �
�
1

rd

�2

� k2)G]S + Yyy + [�2 �
�
1

rd

�2

]Y � (�2c� �)y �Qi = 0: (12)

From (??LGS), it is shown that the Inner region:

L1 =
d2

dy2
+ (�2 �

�
1

rd

�2

� k2); L2 =
d2

dy2
� (�2 �

�
1

rd

�2

):

Since sin is a function of x and t, the only way for (12) to be satis�ed is for L1(G) =
L2(Y ) = 0.

There are discontinuities in the three regions. Therefore, smoothness conditions
are necessary. All coe�cients are determined by requiring continuity of 	, @	=@x
and @	=@y at the boundaries of the three regions. Continuity of @	=@x and @	=@y
means that the velocities at the boundaries must be continuous. Since the derivatives
of both the Y and G portions must be smooth at the upper and lower boundaries
of the inner regions, \patches" are required at y = �A=2 and y = A=2.
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The variables for the following equations are L, the wavelength of the mean-
der; k, the wavenumber; c, the phase speed; rd, the radius of deformation; A, the
amplitude; M , the maximum distance of meander; �, the meridional gradient of
the Coriolis parameter; U , the velocity ; and 
 = �=5A. The subscripts of u, i and
l represent the di�erent regions of the model domain, the upper, inner and lower
regions, respectively.

Concentrating �rst on the Y portion of the Inner region, the solution to (??) is

Yi = Ai sin(�y) +Bi cos(�y) +
(�2c� �)y +Qi

�2
: (13)

The coe�cients Ai and Bi are obtained by focusing on the u velocity equations
for the inner region. The velocity relationship for only the Y portion is Ui =
�dYi=dy. Here, U represents the u velocity for the Y portion only with the subscript
representing the region of interest. Di�erentiation results in:

Ui = �� [Ai cos (�y)� Bi sin (�y)]�
�2c� �

�2
: (14)

By solving this equation for the conditions at the upper and lower boundaries of the
inner region yields

Ui

�
�A

2

�
= U = ��Ai cos

�
�A

2

�
� �Bi sin

�
�A

2

�
�
�2c� �

�2
(15)

and

Ui

�
A

2

�
= U � � = ��Ai cos

�
�A

2

�
+ �Bi sin

�
�A

2

�
�
�2c� �

�2
: (16)

Subtracting (12) from (10), the coe�cients obtained are

Ai =
�U + �=2� (�2c� �)=�2

� cos
�
�A
2

� ; Bi = �
�

2� sin
�
�A
2

� ;
where

� =

s
�2 �

�
1

rd

�2

> 0:

For G Inner, the relationship is de�ned in terms of cosines

Gi = cos(
y); (17)

where 
 = �=5A: Substituting Y from (13) and G from (17) into (9) leads to the
�nal form of 	i.

3.2 Solution in the Lower Region 
l

The Lower region has an equation of the form

[Gyy � (k2 +
�
1

rd

�2

)G]S + Yyy �
�
1

rd

�2

Y �Ql = 0: (18)
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Recall that in each region the equations are of the form expressed in (9). Thus,
for the Outer regions:

L1 =
d2

dy2
� (k2 +

�
1

rd

�2

); L2 =
d2

dy2
�
�
1

rd

�2

:

The Y portion for 
u and 
l regions are de�ned in terms of sinh and cosh. Y
for the lower portion is presented by


l = Al sinh
�
y

rd

�
+Bl cosh

�
y

rd

�
�Qlr

2
d: (19)

Again the coe�cients are obtained by solving the relationship�dY=dy. The velocity
for the lower region is

Ul = U = �
dY

dy
= �

�
1

rd

� �
Al cosh

�
y

rd

�
+Bl sinh

�
y

rd

��
: (20)

To meet the required boundary conditions, (20) must match Ui at y = �A=2 and it
must be equal to zero at y = �M=2. This will insure a recirculation pattern in the
lower region. By applying the above criteria to (20), the coe�cients for the lower
region become

Bl =
�Urd

cosh
�

A
2rd

�
tanh

�
M
2rd

�
� sinh

�
A
2rd

� ; Al = Bl tanh
�
M

2rd

�
:

The G portion for 
l is shown by the following equations and coe�cient de�ni-
tions where the subscript lg delineates the region of interest. G for the lower portion
is de�ned by


l = Alg sinh(
y) +Blg cosh(
y) (21)

where

Alg =
sin

�

A

2

�
+ cos

�

A

2

�
tanh

�

A

2

�
cosh

�

A

2

�
� sinh

�

A

2

�
tanh

�

A

2

� ; Blg =
cos

�

A

2

�
+ Alg sinh

�

A

2

�
cosh

�

A

2

� :

The coe�cients for G of 
l were obtained by requiring that the following rela-
tionships be satis�ed:

Gl

�
�A

2

�
= Gi

�
�A

2

�
; G0

l

�
�A

2

�
= G0

i

�
�A

2

�
:

Substituting Y from (19) and G from (21) into (9) leads to the �nal form of
	l.
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3.3 Solution in the Upper Region 
u

For 
u, the following relationship exists

[Gyy � (k2 +
�
1

rd

�2

)G]S + Yyy �
�
1

rd

�2

)Y �Qu = 0: (22)

The Y portion for 
u is

Au sinh
�
y

rd

�
+Bu cosh

�
y

rd

�
�Qur

2
d: (23)

The U velocity equation to solve for the upper region is

Uu = U � � =
�
1

rd

� �
Au cosh

�
y

rd

�
+Bu sinh

�
y

rd

��
: (24)

Similar conditions apply for determining the coe�cients for the upper region, where
(24) equals Ui at y = A=2 and zero at y = M=2. Thus, the coe�cients for this
region are

Bu =
(U � �)rd

cosh
�

A
2rd

�
tanh

�
M
2rd

�
� sinh

�
A
2rd

� ; Au = �Bu tanh
�
M

2rd
D
�
:

The G portions for the outer upper region is shown by the following equations
and coe�cients de�nitions where the subscript ug delineates the region of interest.
G for 
u is

Aug sinh(
y) +Bug cosh(
y); (25)

where

Aug =
sin

�

A

2

�
+ tanh

�

A

2

�
cos

�

A

2

�
sinh

�

A

2

�
tanh

�

A

2

�
� cosh

�

A

2

� ; Bug =
cos

�

A

2

�
� Aug sinh

�

A

2

�
cosh

�

A

2

� :

The coe�cients for the G portion of 
u were obtained by requiring that the
following relationships be satis�ed:

Gu

�
A

2

�
= Gi

�
A

2

�
; G0

u

�
A

2

�
= G0

i

�
A

2

�
:

Substituting Y from (23)and G from (25) into (9) leads to the �nal form of 	i.

The nondimensional streamfunction in the co-moving frame for the potential
vorticity model is

�(#; �) = Yi +GSi + c2p�; (26)
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where
Yi = A1 sin(�l�) + A2 cos(�l�] + Yp;

Yp =
(�2cp � �)l� +Qi

�2�
;

GSi = cos(
l�) sin(k2#);

and and k2 = kl, c2p = cpl�
�1, A1 = Ai�

�1, A2 = Bi�
�1. Ai and Bi and some of

the other parameters were de�ned previously. The parameter, l = 40km, is similar
to Samelson's (1992) and Bower's (1991) � term and was used in order to match the
scale width of his meandering jet. The nondimensional streamfunction is the focus
of this study.

4. Comparison of Models

Thus far, the authors have presented the two models and the need for the
comparison between the two. In this section, a comparison of the streamfunctions
of these two meandering jet models is undertaken.

An experiment was run to compare the behavior of the two di�erent models,
Bower's (1991) and Mullen's (1994), utilizing the same initial conditions and param-
eters. The values used are amplitude = 70 km, wavelength = 450 km, width = 70
km, and phase speed = 14 km dy�1. The scale factor 	0 is calculated by requiring
that the maximum current speed be 120 km dy�1. Within the kinematic model
these parameters can be substituted directly into the models and their e�ects on the
streamfunction �eld can be easily recognized. However, in the potential vorticity
model the substitution is not as straightforward. Therefore, a brief discussion con-
cerning these parameters in the dynamic model is necessary before the comparisons
can be presented.

Meander wavelength and phase speed are incorporated in the sin(k(x � ct))
component of the solution for the potential vorticity model. The jet width and
meander amplitude, however, are not speci�cally identi�ed in the dynamic model.
Rather, they are present implicitly in A, � and 
. Moreover, there is a non-linear
coupled relationship between these parameters. This makes it di�cult to make a
direct comparison between this model and the kinematic model. Thus, a parametric
study is undertaken to \tune" the dynamic model by systematically varying A, �
and 
 so that a good visual agreement with the kinematic model streamfunction
�elds is achieved. Overall, the determination of the correct parameter values to
substitute into the potential vorticity model is not as straightforward as the direct
substitution of parameters into the kinematic model.

A �ve-day streamfunction �eld using the same parameters is generated for the
two models Mullen (1994). Examination of the results from the two models utilizing
the above data shows that there are notable di�erences. The streamfunction �elds
are quite di�erent, however the potential vorticity model does meet the requirements
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of having amplitude and width equal to 70 km. Analyses show that there is a sharp
di�erence in the amplitudes of the two models. A phase shift is also evident.

A Mathematica program was developed to model the meandering jet of the
Gulf Stream. Three 
uid parcels are released simultaneously at t = 0 and allowed
to follow the meandering jet over a �ve day time period (Fig. 2). The top panel
represents the potential vorticity model run and the bottom shows the results from
using Bower's model. Both panels correspond to the �xed frame. The parcels are
spaced approximately 20 units distance from each other along the y axis. The time
interval between symbols along the trajectory is approximately 0.4 days in both
panels. Around each parcel are 20 speci�c points delineating the boundaries of the
parcel. This comparison is made by using the same initial conditions and parameters
for both models. The values used are amplitude = 70 km, wavelength = 450 km,
width = 70 km, and phase speed = 14 km dy�1. The scale factor 	0 is calculated by
requiring that the maximum current speed be 120 km dy�1. Calculations result in
a value of approximately 7257 km2 dy�1 for 	0. Quick analyses of the parcels shows
that as the parcels 
ow along the meandering jet, the 
uid parcels are stretched
and deformed. However, they do not rotate and only change orientation at certain
locations.

Examination of the results from the two models shows that there are notable
di�erences. The streamfunction �elds are quite di�erent, however, the PV model
does meet the requirement of having an amplitude and width equal to 70 km. In
the �rst panel of Fig. 2, which corresponds to the PV model results, three parcels
were released at di�erent locations along the y axis and allowed to evolve over
time. Starting with the northernmost parcel, the reader can see that there is drastic
stretching of the parcel. As this parcel 
ows from its initial position to the �rst crest,
it begins to stretch in the northern direction allowing it to become slightly elongated.
At the crest the particle begins to stretch more and moves at a relatively faster rate
as it 
ows along the eastern 
ank of the crest. The same type of pattern occurs
along the other meander crest and trough combination, where the parcels become
more elongated along the 
anks and less so at the peaks of the crests and troughs.
Also interesting to note is the fact that the parcel remains elongated throughout the
entire time period. The northernmost parcel converges towards the stream's center
as it 
ows towards the troughs and diverges slightly at the crests. The orientation
of the parcel does change as it 
ows along the meandering jet. It appears to 
ow
as if the top of the parcel is oriented to the north on the downswing of the crests,
while on the upswing the top of the parcel is oriented to the south.

The middle 
uid parcel for the PV model is located at the center of the Gulf
Stream meandering jet. This parcel does not stretch as much as the northernmost
parcel. It also is traveling at greater speeds throughout its course, as evidenced
by its ending position 200 km distance in the x direction from the ending point of
the upper parcel. The parcel does stretch as it 
ows along the eastern 
anks of
the crest. However, on the upswing 
ank the parcel begins to regain its starting
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shape. This parcel does not converge and diverge as drastically as the northernmost
parcel. It seems to follow the center of the jet quite closely. The orientation of this
parcel does not change as much as the northernmost parcel. This 
uid packet has
its northernmost point always pointing to the top.

Finally, the third 
uid parcel in the PV model for the �xed frame follows the
southern edge of the meandering jet. This parcel also does not stretch as much
as the northernmost 
uid packet. Unlike the other two parcels, this 
uid parcel
stretches the most on the upswing 
ank of the meanders. As the parcel 
ows along
the �rst meander it appears to maintain relatively the same shape. However, as it
continues to 
ow over time its shape becomes more distorted and does not return
back to its original shape, as was evidenced by the middle parcel. The orientation
of this parcel changes only over a long period of time. At the �rst crest its northern
most tip is still oriented to the top. However, as it reaches the second trough the
northernmost tip is now oriented toward the bottom. It continues to follow this
type of pattern over the remaining time span. The parcel tends to diverge from the
center of the stream at troughs and converges near the crests. This parcel travels
at about the same speed as the upper parcel. This can be seen by the location of
its termination point for the time span.

The bottom panel of Fig. 2 displays the 
uid parcel path for the Bower model
(1991) with the same parameters as the PV model. These three parcels follow
a similar pattern of stretching and orientation changes. However, there are some
other aspects of these parcels which are not seen in the PV model results. The
stretching of this parcels do not occur until well after the �rst crest. Before this, they
maintain their original shape and only change their orientation slightly. Observing
the northernmost parcel, one can see that the parcel follows a similar pattern as the
northernmost 
uid parcel in the PV model. It stretches dramatically along the �rst

ank, then decreases a little in the stretching on the upswing side. After that, the
parcel remains stretched. The parcel tends to converge at the troughs and diverge
at the crests. Again, the orientation is similar to the PV model. This parcel has its
northernmost tip oriented to the south when it reaches the meander troughs and
continues to 
ow up the western 
anks of the meanders in that orientation.

The 
uid parcel in the center of the jet maintains its original shape much
better than the other two parcels. Despite the fact that it is in the center of the
jet, where the speeds should be greatest, the parcel does not travel much farther
than its counterparts for the same time period. The center 
uid parcel appears
to neither converge nor diverge along its path. Its orientation also remains in its
original position, with only very slight variations at the crests and troughs. This
parcel does not stretch as much as the parcels located to its north and south.

The southernmost parcel does undergo shape and orientation changes in the
Bower model (1991). It becomes elongated on the upswing of the meanders. At
the troughs it is evident that the orientation of the northern tip of the parcel has
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shifted with it now pointing to the south. The parcel converges along the 
anks and
diverges at the troughs. The parcel speeds appear to be similar to the other parcels.
All three parcels have a termination point right around 1400 km.

There are a couple of major di�erences between the Bower (1992) and PV
model parcel paths. The distance traveled by the all three parcels in the PV model
are much greater than in the Bower model. The PV parcels obtain a distance of
approximately 1700 km, while the Bower model parcels reach only 1400 km for
the same time period. Obviously, the orientation and elongation of the parcels in
each model are di�erent. The parcels in the PV model tend to be more elongated
and change their orientation more often along its course. Both models display
convergence and divergence patterns for their three parcels.

Figure 3 displays the nondimensional particle trajectories for both the potential
vorticity model and Bower's model in the co-moving frame. Despite the fact that the
same set of constraints were used in each model, one can see the drastic di�erence
between the kinematic and dynamic models. The parameters used are the same as
in Fig. 2, however they have been nondimensionalized. The �rst panel represents
the non-d trajectories for the potential vorticity model. Forty initial points were
started at time zero on the y axis and were run for a period of 15 units of time. The
results from the potential vorticity model are very intriguing in that the particles

ow in a negative as well as a positive direction, where the x direction is positive
eastward and in the y direction is positive northward. The trajectories 
owing to
the east do follow the meandering jet pattern. It is interesting to note that there is a
recirculation area at the base of the �rst crest. The meandering jet pattern narrows
at the 
anks and broadens again at the crests and trough regions. Also evident is
the change in spacing between the particle paths as one progresses farther north or
south. It increases in the northerly and southerly directions. The most interesting
part of the potential vorticity model runs is the fact that the particle trajectories
also 
ow to the west. However, this occurs only at the regions that appear to be
outside the con�nes of the meandering jet portion. Again, a recirculation region
has developed to the right of the �rst crest. In this region, one can see how the
particles began 
owing eastward and then changed course by 
owing westward into
a recirculation core. At the outer boundaries of the model the particle trajectories
follow a slight meandering pattern to the left.

The bottom panel of Fig. 3 displays the results from Bower's model. The non-d
axes are the same as the potential vorticity model, as well as the time and initial
conditions. One can see that the meandering pattern is drastically di�erent from the
dynamic model. The majority of the 
ow is in the positive x direction, with some

ow going to the west. Bower's model follows the same meandering pattern as the
potential vorticity model. However, its crests and troughs are not as peaked. They
are more rounded. The particle trajectories are also evenly spaced, only widening
a little at the troughs. The meandering jet pattern in the Bower model is di�erent
from the PV model in the fact that it travels through two meander crests over
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the same time period. The PV model only approaches the 
ank of the second
crest, while the Bower model is already on the downswing leg for the second crest.
Evident in the Bower model are three closed circulation systems near the crests and
troughs. It also has bounding streamlines above and below the crests and troughs,
respectively. Clearly, there is a amplitude and meander phase shift between the
two model results. The di�erences between the two model's particle trajectories
show that the potential vorticity model has succeeded in incorporating more of the
gulf stream dynamics. This will aid in the understanding of particle 
ow within
and across the meandering jet. It was important to plot the two model results on
di�erent scales in order to see that there is a drastic di�erence between the two
meandering jets for the same parameters and initial conditions. The di�erent scales
allow one to see that the PV model particles do 
ow in the westerly direction, as
well as in the positive x direction.

The �nal �gure, Fig. 4, shows the contours of the non-d streamfunction, �, in
the co-moving frame. The contours in both panels correspond to the streamlines
within the moving frame. They also describe the 
ow because the system is time in-
dependent. The contours for the potential vorticity streamfunction are shown in the
upper panel. Clearly, the eastward meandering jet is illustrated with its increased
spacing as one approaches the peak of the crests and troughs. The potential vortic-
ity model can be divided into distinct regions. The regions represent the meandering
jet and two closed circulation systems near the crest and trough. Another interest-
ing feature to note in the dynamic model is the presence of bounding streamlines
which connect stagnation points above the crests and below the troughs. These
streamlines prevent 
ow from going from one region to the other.

The lower panel illustrates the streamfunction contours for the kinematic model.
Bower's 
ow model is divided into three regions: a centralized eastward 
owing me-
andering jet, exterior retrograde relative motion, and a closed circulation system
at the crests and troughs (Samelson, 1992). The meandering jet region is evenly
spaced. It is interesting to note that over the same time span the meandering jet of
Bower displays two meander crests. This streamfunction plot shows three closed cir-
culation regions, as well as the meandering jet pattern. Two bounding streamlines
separate the regimes preventing any 
uid exchange between the closed circulation
regions and the meandering jet. As stated by Samelson (1992), these bounding
streamlines connect stagnation points which are found above the meander crests
and below the troughs.

The two models display fairly similar streamfunction plots. Each shows a
eastward meandering jet with closed circulation regions near the crests and troughs.
However, a drastic dissimilarity is the fact that Bower's model exhibits two meander
crests for the same time and space scales, while the PV model only displays one.
This shows that despite the fact that the dynamic model was "tuned" to visually
agree with the kinematic model, the resulting meander wavelengths are di�erent by
a factor of two. They both are also bounded by streamlines at their northern and
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southern regions. As stated earlier, these bounding streamlines connect stagnation
points and prevent the 
ow of 
uid across the boundaries and the exchange of 
uid
between the di�erent regions.

5. Summary

Contours and particle trajectories of the nondimensional streamfunction for two
separate models have been investigated. One of the models is a nonlinear equivalent
barotropic potential vorticity model of a meandering jet, while the other is strictly
a kinematic model of the same jet. The results indicate that there are some strong
similarities and di�erences between the two models. The non-d particle trajectory
plots for each model show that there are distinct di�erences. The potential vorticity
model displays a plot which illustrates the dynamics of the meandering jet stream.
The 
uid parcels 
ow in the westerly, as well as the easterly direction, with two
major recirculation regions near the origin. However, in the kinematic model, where
the dynamics of the system is discarded, the particle trajectories are mainly 
owing
to the east in a meandering jet fashion.

Parcel trajectories for the models are similar. Two of the three parcels within
the models converge and diverge. However, the center parcel appears to 
ow strictly
along the center streamline. Parcel orientation and shape change dramatically along
the meander 
anks in both models. Again, the center parcel does not deform as
much in its shape. A major di�erence in these models is the fact that the PV model
parcel trajectories reach a length of approximately 1700 km and the Bower model
trajectories only approach 1400 km spanning over the same time period.

One of the relative dissimilarities between the two models is the �gure display-
ing the contours of the nondimensional streamfunction. Both models, kinematic
and dynamic, depict a eastward 
owing meandering jet along with closed circula-
tion systems near the crests and troughs of the jet. However, Bower's model depicts
two meandering crests and troughs for the same time period as Mullen's, which
only produces one crest/trough combination. This is despite the fact that certain
variables of the dynamic model were systematically varied to obtain a good visual
match with the kinematic model. Also, important to note is the fact that there
are bounding streamlines connecting stagnation points located above and below the
meander crests and troughs. Most probably this dynamic model would be able to
provide great insight into a better understanding of the cross-frontal exchange than
the previous kinematic models. Clearly, the PV model gives a better representation
of the Gulf Stream and its dynamics than the Bower (1991) model.

The application of dynamical systems theory (DST) to study the 
uid exchange
across and within the meandering jet of the Gulf Stream will be a future study to
be pursued by these authors. Geometric dynamical systems theory is an important
tool in studying Lagrangian trajectories. A major premise of the dynamical systems
theory is that some geometric structures can be isolated which establish the structure
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of the entire 
ow (Jones et al., 1995). Particularly, there are certain trajectories that
delineate qualitatively di�erent regions of trajectory motion. Jones et al. (1995)
show that the organization of the 
uid 
ow is partially governed by the stagnation
points of the 
ow and stable and unstable manifolds. By using di�erent dynamical
systems techniques, one will be able to determine whether the system of equations
is chaotic or not.

Perturbations to the meandering jet streamfunction were undertaken by Samel-
son (1992) in his modi�cation of Bower's model. He did this in order to answer the
question of what deviations of the Gulf Stream would cause 
uid exchange to oc-
cur between the model regions. Melnikov's (1963) method is such a perturbation
technique which was developed to research the nonlinear stability of dynamical sys-
tems and was the method utilized by Samelson. This analytical method is used to
determine whether intersections of stable and unstable manifolds exist in a system
(Ottino, 1989). This technique also is used to determine the splitting of separa-
trices under small perturbations of nonlinearities, �. The question to ask is what
happens to the 
uid parcel if the 
ow varies only slightly from the meandering jet
pattern. The authors mention this because a continued study of this potential vor-
ticity model would be to apply a perturbations technique to the meandering jet of
this model in order to determine the 
uid exchange across the jet and see whether
their conclusions agree with Samelson's (1992) model results.
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FIGURE CAPTIONS

FIG. 1. Particle trajectories within the meandering jet in the �xed frame
for the potential vorticity model (top panel) and the kinematic model (bottom
panel). Three particles are released simultaneously from the y axis. The time
interval between symbols for each trajectory is approximately 0.4 days.

FIG 2. Particle trajectories for both Mullen's (1994) (top panel) and Bower's
(1991) (bottom panel) models in the nondimensional co-moving frame. Both panels
depict evolution over the same time period of 15 units of time.

FIG 3. Contours of the nondimensional streamfunction in the moving frame.
The top panel represents the streamfunction for Mullen (1994), while the bottom
depicts results from Bower's (1991) model.
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