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1 Intorduction

Because of the shape of our planet, the natural setting for studying flows in Geophysical
Fluid Dynamics is spherical coordinates. Here we begin with the description of these
coordinates and develop unit vectors in the directions of the coordinate curves. We then
determine the coordinates of a typical vector, such as €2, the rotation vectors. Finally
we write down the representation of a typical velocity field in spherical coordinates.

2 Coordinate Curves

Let P be a point having coordinates (z,y,z) in cartesian coordinates and (p, 6, @)
in spherical coordinates. Here p is the distance of P to the origin, # measures the
longitude and ranges between 0 and 2w, and ¢ is the latitude, ranging between —7%
and 7. The cartesian and spherical descriptions of P are related through the following
relations:

x =pcosfcos¢p, y=psinfcos¢p, z= psing. (1)
Problem 1: Show that

[ 2. s y : z
p= {L‘Q —+ y2 + ,2‘2’ 9 = ArcTan;, d) = ArCSan. (2)

Problem 2: Let P have coordinates (1,2,3) in cartesian coordinates. Determine its
coordinates in spherical coordinates.

By a coordinate curve in any coordinate system we mean a curve along which only
one of the three coordinate parameters varies while the other two are kept constant.
For example, the z-axis is a coordinate curve in cartesian coordinates because along
this curve x varies while y and z remain constant. Because of the special importance of
the three axes in cartesian coordinates, we are interested in identifying the correspond-
ing coordinates curves in spherical coordinates. To that end, let P have coordinates
(po, 60, o) in spherical coordinate system. Then the coordinate curve one obtains by
fixing p = po and 6 = 8y while allowing ¢ take on all values between —3 and 7 is a great
circle (a meridian circle) that passes through P and the two poles. We will refer to
this curve as the ¢-curve through P. Similarly, the coordinate curve one gets by fixing



P = po, ¢ = ¢p while allowing 8 take on all values between 0 and 27 defines the familiar
parallel circle through P. We refer to this curve as the 6-curve through P. Finally,
fixing 8 = 6y and, ¢ = ¢y while allowing p take on all values defines the coordinate curve
(the p-curve) that passes through the origin and P. These three coordinate curves play
a role similar to the role that the x, y and z axes play in cartesian coordinates.

Problem 3: Let P = (2,30 degrees, 60 degrees) in spherical coordinates. Write down
the parametrization of the three coordinate curves through P. Plot these curves on the
same graph.

3 Spherical Basis

Given a specific point P on a sphere we now determine three vectors, denoted by eg(P),
e4(P) and e,(P). These vectors will play a similar role to i, j and k of cartesian
coordinates in that they will be mutually orthogonal and have length one. By definition,
e, is a unit tangent vector to the #-curve through P, while ey is a unit tangent vector
to the corresponding ¢-curve, and e, is a unit tangent vector to the p-curve.

Since by definition e, is a unit tangent vector to a #-curve, we begin by parametriz-
ing the f-curve through the point P. Let P have coordinates (pg, 80, ¢o) in spherical
coordinates. Then the 8-curve through P has the parametrization

r(6) = (po cos € cos ¢y, po sin 8 cos ¢g, po sin ¢g).

To find e, we differentiate the above expression with respect to  and divide it by its
magnitude to get
e,(P) = —sinfoi + cos bqj. (3)

As expected e, does not have a component in the north-south direction.
Problem 4: Show that e, and e, are

e, (P) = — cos g sin ¢oi — sin O sin ¢oj + cos pok. (4)

e (P) = cos by cos ¢oi + sin by cos ¢gj + sin k. (5)

P

Note that e, unlike e,, depends on longitude and latitude. Also, as expected, e, is in
the radial direction and is therefore perpendicular to the sphere.

Problem 5: Show that e,, es and e, are mutually orthogonal.

Problem 6: Verify the following relations:
€, Xes=¢€, ezxXe,=e, €,Xe =e, (6)

The expressions in (3), (4) and (5) show the relationship between {e,,e, ,e,} and
{i,j,k}. These relations are invertible. We have

i :—sinGOee—cos90sinq$0e¢+coseocosd>0ep,
j =cosfpe, —sinby singge, +sinby cosgoe,, (7)
k =cos¢pe, +singge,.



Problem 7: Derive (7). Hint: Start with (4) and (5) and eliminate k between them.
Then consider the resulting equation with (3) and solve for i and j.

What we have accomplished so far is to introduce the concept of spherical basis
vectors eg, €4 and e,. The significance of this set of mutually orthogonal unit vectors
is that any vector v can be represented in terms of these three vectors as

vV =vie, + v2€4 + v3€),. (8)

The coefficients vy, v2 and vs are the coordinates of v in spherical coordinates.
The same vector v of course has a representation in terms of the cartesian basis
vectors {i,j,k}: There are scalars a, b and ¢ such that

v = ai+ bj + ck.

However, in oceanography and meteorology, it is the spherical representation (8) that
is most natural when one studies ocean currents or pressure fronts especially when the
study involves large scale structures.

Problem 8: Use the orthogonality properties of the spherical basis vectors to show that
v1, vo and vy in (8) are given by

vp=V-e, U3=V-e€ v3=V-e, (9)

¢’
Problem 9: The Earth’s rotation vector £ has the form Qk in cartesian coordinates.
Find the components of & in spherical coordinates, i. e., find a, b and c such that

(2=ae, +bey+ce,.

Answer: a =0, b = Qcos ¢, ¢c = Qsing. Is it intuitively clear why Q does not have a
component in the e, direction?

4 Acceleration in Spherical Coordinates

We have two options to represent the velocity of a fluid particle: one representation,
often called Lagrangian, is to write the components of the velocity as functions of ¢
and the position of the particle at . In other words, one imagines moving with the
particle and measuring its velocity as time varies. The second representation of the
velocity, called Eulerian, represents velocity at a fixed position, that is, one envisions
lowering a sensor in a fixed position in a flow and measuring the velocity of the particles
that pass through that position as ¢ varies. The Eulerian representation is by far the
most common way that fluid flows are modeled.

4.1 Eulerain Formulation of Velocity and Acceleration

Consider a particle of fluid P and its trajectory C consisting of a curve in the three-
dimensional space R3. Let us assume that the position of P at any time ¢ can be
specified by a set of differentiable functions z(t), y(¢) and z(t) so that

r(t) = 2(t)i + y(t)j + 2(t)k (10)



defines the position vector or the parametrization of the curve C. The velocity v of P
is then determined by direct differentiation of r:

v(t) =2 (t)i+y' (1] + 2 (k.

The above expression defines the Lagrangian representation of the velocity. In fluid
dynamics, however, the above components of velocity (i. e., ', ¢’ and 2') are converted
to functions of position and time, so that typically

v = v1i + v2j + vk, (11)
where each v; is a function of position and time:
Uy = ’U,’(.’E, Y, %, t)

We refer to (11) as the Eulerian formulation of the velocity field.

The Eulerian representation of velocity has an important impact on computing the
acceleration. Using the chain rule of differentiation, the acceleration a is determined
from (11) by the formula

0
a:a—:+v-vv. (12)
In Cartesian coordinates the components of a are
Bvi 3 Bvi
;= — i—, 1=1,...,3. 13
a; Bt +j:1 ’U] 6.’11'.7, ? ’ ’ ( )

Here we are adopting the convention that z; = x, xo = y and x3 = z. The operator

d 0 0

is called the total or the material derivative. In this notation (14) can be written as

o d’U,’

P = 1
a 7 (15)

4.2 Velocity in Spherical Basis

In order to write down an expression for acceleration in spherical coordinates, we first
need to write (14) in spherical coordinates. The position vector r(¢) in (10) takes the
form

r = p(t) cos 6(t) cos ¢(t)i + p(t) sin O(t) cos p(t)j + p(t) sin () k (16)

in spherical corrdinates. Differentiating (16) with respoect to ¢ yields
v = (p' cos @ cos ¢ — pf’ sinf cos ¢ — p¢’ cos O(t) sin @)i+

(p' sin® cos ¢ + pb’ cos 6 cos ¢ — p¢’ sin B sin @)j+ (17)



(p' sin ¢ + p¢' cos P)k.
Using the formulas (3), (4) and (5) it is easy to see that (17) is equivalent to
v = pf' cos e, + p¢'e¢ + p'ep. (18)

The coefficients of e,, e, and e, in the above expressions are the components of velocity
in spherical coordinates. We denote them by v,, v, and v, respectivly, i.e.,

v=ue, +v,e, tve, (19)
where
Uy = pel cos @, Uy = qu, v, = P, (20)
We note that v, is the component of the velocity in the east-west direction, v, is the
component in the north-south direction, and v, is the component in the radial direction.
We summarize the above discussion in the following theorem.
Theorem 1: When the velocity vector v is represented in spherical coordinates

as in (19) its components v,, v, and v, are related to 6(t), #(t) and p(t) through the
relations (20).

[

4.3 Dynamics of Basis Vectors

To compute the acceleration a in spherical coordinates we need to differentiate (19) with
respect to t. Unlike the Cartesian basis {i, j, k} which is independent of ¢, the spherical
basis {e,,e 51 € ,} varies with ¢ because this basis depends on position. Moreover, the
particle P, whose acceleration we seek, occupies different positions at different values
of t. Going back to (3) we note that

de, /

T e, = —6' cos i — 6’ sinbj.
But from (20) we have that 6’ = p:ifs 3 so the above expression takes the form
d
% = pcvoasd)(_ cos 0i — sin 6j). (21)

Finally, (7) relate the vectors i and j to their spherical counterparts. Replacing i and j

in (21) using the formulas in (7) yields
de, _ _ v,
dt  pcos¢

(sin ge, — cos ¢e,). (22)

Problem 10: Show that e, and ddif are orthogonal.

di
Problem 11: Show that % and ddit” are given by the formulas

de t v
e _wea —2e , (23)
dt p p’

de v, v,

d = p% T, >y

Problem 12: Use the first identity in (6) to prove (24) once (23) and (22) are derived.
Hint: Differentiate the first identity in (6) with respect to t.

di .
Problem 13: Show that Tjtd)_ is orthogonal to e, and that d—;f is orthogonal to e,.

¢



4.4 A formula for Acceleration

Going back to (19), we differentiate this relation with respect to ¢ to get

dv, de d¢ d¢ dv, de,
_ %, 2
a=-ore vl ore, T Ut ety (25)

Next we substitute (22), (23) and (24) into (25) to get

v2 2 2
dﬁ_va% vo:p) +(d¢+ s Vs d&_v +v

a= (g dt

Equation (26) defines acceleration in spherical coordinates.

Problem 14: Verify (26).



