A Numerical Study of the Swirling Vortex

Reza Malek-Madani
Department of Mathematics
U.S. Naval Academy
Annapolis, MD 21402

James E. Coleman
Department of Oceanography
U. S. Naval Academy
Annapolis, MD

David R.Smith
Department of Oceanography
U. S. Naval Academy
Annapolis, MD 21412

December 4, 2003

Abstract

In this paper we present the implementation of a numerical algorithm to sim-
ulate the swirling vortex, a particular solution of the Navier-Stokes equations. All
of the computations presented, whether numerical or symbolic, are carried out in
Mathematica where the code is displayed in its entirety. Applying a fixed-point
iteration scheme in combination with the Galerkin method, we obtain an approxi-
mate solution to a boundary-value problem for the underlying nonlinear system of
integro-differential equations. The solution of this system represents the velocity
field for the motion of a viscous fluid induced by a line vortex and bounded by
a plane boundary surface perpendicular to the vortex line. We next consider the
Lagrangian dynamical system that results from this Eulerian velocity field and sim-
ulate the motion of parcels of fluid under the action of the vortex line for various
values of the parameters associated with fluid viscosity and vortex strength.

1 Introduction

The numerical study in this paper is motivated by the analysis presented in [1], by J.
Serrin, and in [2], by M. A. Goldshtik, in which a particular steady-state solution to
the Navier-Stokes equations is studied. This solution describes a viscous flow in half-
space induced by a line vortex in which fluid particles are allowed to adhere to the
bounding surface thus simulating the idealized dynamic flow of an atmospheric tornado
in contact with the ground. As a model for tornadic flow, this solution has received

attention recently in [3] and [4] where its physical significance relative to other models
are discussed in some detail.

As we will show in the next section, the analysis of this steady-state flow is reduced
to the study of a boundary-value problem for the following system of integro-differential
equations:

[+ 1= B (1)
Q" 420 = 0,

where @ is defined by

5 dt — P(z — z?), (2)

T QZ
Q(:c):2(1—:c)2/0 (f_tz dt+2/ 1+t

and where P, and k (** Add physical properties of P and k **) are nonnegative physical
parameters. Equations (1), (2) are supplemented by the boundary conditions

F0)=0, and Q(0)=0, Q(1)=1. (3)

The first goal of this paper is to present a numerical algorithm to obtain a solution
to this boundary-value problem once P and k are specified. Our second goal is to
investigate the dynamical system one obtains from the velocity field associated with f
and Q.

As suggested by Serrin in [1], our approach to obtaining an approximate solution
to (1), (3) is to apply the Picard iteration scheme to this system; At each iteration the
integral equation in (1)a, (3)a is first reduced to an initial-value problem and solved, then
the boundary-value problem in (1), (3)b is addressed by applying a shooting method
or a Galerkin scheme (both techniques will be employed in this paper). This entire
process will be carried out in Mathematica. Once an initial guess of (2 is substituted in
(2), the integrals in this term will be computed using the built-in function NIntegrate.
Next, we solve the initial-value problem (1)a, (3)a using the built-in function NDSolve.
The resulting f is then substituted in (1)b. Finally, we apply a shooting method to
(1)b, (3)b, by combining NDSolve and FindRoot, to solve this boundary-value problem.
This computation results in a new . This algorithm is repeated until one reaches a
fixed point. We will also apply this algorithm but replace the shooting method with the
Galerkin scheme to illustrate the ease by which both methods can be implemented for
this problem.

Once the above algorithm provides us with a solution pair (f,2), we use this pair
to obtain the velocity field of the flow, which in turn will lead to a dynamical system
for particle motion. We use NDSolve to monitor the evolution of parcels of fluid to gain
insight into the role of the parameters P and k and their influence in characterizing the
nature of the vortex.

Section 2 contains a description of the derivation of (1), (3) from the Navier-Stokes
equations. In Section 3 we present the details of the numerical algorithm including the
code. In Section 4 we address the problem of parcel evolution under various parameter
values. Section 5 contains a summary of our results.

2 Model Derivation

Here we present the various steps needed to arrive at (1), (3) from the steady-state
Navier-Stokes equations for an incompressible viscous fluid, namely,

1
v-Vv = —;Vp + vAv, divv =0, (4)

where v, p and v are the velocity, density and the kinematic viscosity of the fluid,
respectively. The symbols V, A and div represent the gradient, Laplace, and divergence
operators, respectively.

Let (R, ¢, 6) denote the spherical coordinates of a point of a point P, where R > 0 is
the radial distance of P to the origin of the coordinate system, ¢, taking values in (0, 7],
is the angle between the position vector and the positive z-axis, and 6, taking values in
(0, 27] is the meridian angle about the z-axis. The half-space domain is parameterized
by the set of all (R, ¢,8) for which R > 0 and 0 < ¢ < 7. The z-axis is described by
¢ = 0 and the zy-plane by z = 7

Let {eg,e,,e,} denote the standard orthonormal spherical basis at a point P,
namely,

e, = (cosfsing, sinfsing, cos¢p), e, = (—sinb, cosb, 0),
e, = (cosfcos¢, sinfcosd ,—sing).

(5)

In this basis we denote the components of the velocity field v and its acceleration
a=v-Vvby (vg,9,v,) and (ay,a,,a,), respectively. The relation between the
components of v and a can be found in many standard texts in fluid mechanics (including
[5], p. 615). Despite the fact that these relations are well-known, we dedicate Appendix
A to its derivation because of the programming challenge the transformation of the
Navier-Stokes equations from rectangular to spherical coordinates offers. This effort
parallels the one required for similar equations in geophysical fluid dynamics, whose
derivation is not as well-known as in the present case, and yet the formalism we present
in Appendix A generalizes in a straightforward fashion.

The equations in (4)a take the following form once the spherical basis in (5) is
applied:

vy v, Bup v, dvg ”:5 +”3 _ 1dp
YeorR T R s TRsng 9 — "R . —sar T
2. 2 9 Ovy 2y5cotd 9 Oy,
v(Viv, — 38 — & 3 R? R2 sing 00 26);
v Do "B v a_vu%% vpeotd _
R OR R 9¢ Rsing 00 R R 63; (6)
V(Vzv 4 2 vy,) 2cotq> 2y,
¢ R? 3¢ R2sin?¢ RZsing 06
v v, v) v, v, cot
9y | Yy Yy n L _ 1
YR T & 39 +Rsm¢ 5a + R 4+ A t— = p1251n¢aao+
2 _) 2 BUR 2cot ¢ 9%
V(V — gramrs t Tremg 06 T eng 9)

where V2 = 3R2 +3 ¢2 + 302 Similarly, equation (4)b takes the form

ia(szR)—k 1 O(v,sing) 1 Oy,
R?2 JOR Rsing 9¢ Rsin¢ 06

— 0. (7)

As suggested by Serrin in [1], we seek solutions of (6), (7) in the form

G (z) F (z) Q (x)

/UR = —,,. s ’U¢ = —T s ’U‘9 == " (8)

where F, G and (2 are as yet unknown, and the new variables x and r are defined as
T = cos @, r = Rsin ¢. (9)

The symmetry imposed by the form of the solution in (8) is partially motivated by
the boundary conditions along the z-axis, where we expect to have a line vortex, and
the behavior of the solution as r approaches infinity, where we expect the velocity field
to die out, and partially by our desire to develop a simple model of a tornado where
we expect that the dependence of v on 6 is negligible, and thus absent in this point of
view. The form in (8) also resembles closely the one suggested by Goldshtik in [2] where
cylindrical coordinates constituted in the desired frame. Overall, this special ansatz is
suggested by the study of universal solutions of Euler and Navier-Stokes equations, a
description of which can be found in the recent monograph [3].

We first substitute (8) in the continuity equation (7) (see Appendix A) and arrive
at the relation

G = F'sin¢. (10)

Next we substitute (8) and (10) into (6). The resulting equations in F', Q and p are

F'4 F2 4 E249° _ B20p 4 (oFW o5 ¢ — F" sin? ¢),

(F2+Q2s)in ¢¢ 7 QRqs) 2

! cos - sin JY " o_:

FF' + 7o = % + vF" sin® ¢, (11)
FQ = E% Q" sin ¢

Since we seek solutions that are independent of € the pressure term in (11)c vanishes
and this equation reduces to

FQ' +vQ"sin? ¢ = 0. (12)

Next we eliminate p from (11)a-b by cross-differentiating the first equation with respect
to ¢ and the second with respect to R and subtracting the resulting equations. Recalling
that = cos ¢, this and (12) lead to the following system of equations in F' and :

v(1—a?)FWV) — 4yaP" 4 FF" 4 3F'F" = —299 13)
FQ' +v(1 - 22)Q" =0.
These equations are supplemented with the five boundary conditions
Q(0) = F(0) = F'(0) = 0, F(1)=0 and Q(1)=1. (14)

Next we integrate the first equation in (13) three times with respect to z, reduce the
triple integral to a single integral by performing integration by parts and using the
boundary conditions in (14), and finally change dependent variables from F' to f by

F=(1-2%f. (15)

This results in (1).

3 Numerical Algorithm

We find an approximate solution to (1), (2), (3) by using a combination of the Picard
iteration and the shooting method. Let P and k take positive values. The algorithm is
as follows: a) We start with a guess for Q, typically Q(z) = 2% for some a. With the
function @ in (2) is now known up to a numerical integration, we solve the initial-value
problem (1)a, (3)a using NDSolve in Mathematica as described in Step 1.

Step 1 (The Initial Value Problem to Construct f):

P=1; k=1;

xfinal = 0.9999;

omega[x_]=x;

solutionl=NDSolve[{f’[x] == k"2/(1-x"2)"2*x(2(1 - x) 2%
NIntegrate[t omegalt]~2/(1 - t~2)"2, {t, 0, x},
MaxRecursion -> 10] +
2x NIntegrate[omegal[t]~2/(1 + t)~2, {t, x, xfinal},
MaxRecursion —> 10]
- P(x - x72)) - f[x]1"2, £[0] == 0}, f, {x, O, xfinal}]

The boundary condition at = 1 is replaced by z = 0.9999 to aid the internal func-
tion NlIntegrate with the singularity at that point. The output of this program is an
approximation, albeit a crude one, to the solution f of (1)a, (3)a. This expression is
then substituted into (1)b, (3)b and the resulting boundary value problem is solved by
a shooting method as follows:

Step 2 (The Boundary Value Problem - Shooting Method, to Establish ©'(0)):

Clear[omegal; newf[x_] = First[f[x] /. solutionl];

output=FindRoot [First [Evaluate [omega[xfinal]/. NDSolve [{omega’ [x]==0omegap[x],
omegap’ [x]==-2 newf [x] omegap[x], omega[0]==0, omegap[0]==a},{omega, omegap},
{x,0,xfinal}]]]-1, {a, 0.1, 0.9}];

Note the way NDSolve and FindRoot have been combined to implement the shooting
method. O nce this program accomplishes its task, we have in hand the appropriate
initial condition Q'(0), stored in output, which we now use to construct Q accurately:

Step 3 (To Construct 2):

Clear [omegal ;

solution2=NDSolve [{omega’ [x]==omegap[x], omegap’[x]==-2 newf[x] omegapl[x],
omega[0]==0, omegap[0]==a /. output},{omega, omegap},
{x,0,xfinal}, MaxSteps—->10000, WorkingPrecision->15];

omega[x_]=First [omegal[x] /.solution2];

The Q just found will serve as an update for the original guess we used in Step 1. We
are now ready to start the iteration process, namely, to execute steps one through three
until we reach satisfactory convergence. A typical run takes about 50 iterations. The

convergence is surprisingly robust with respect to the initial guess and the parameter
values k and P. Figure 5 shows the output of a typical run where the value of

[E@P + 166 + @) ds

is displayed (with 1 replaced by 0.9999) as a function of the number of iterations.

The shooting method is one way of computing an approximate solution to (1)b,
(3)b. An alternative method is to use the Galerkin scheme because of the ease by which
it can be programmed and because of its range of applicability in physical settings
where one may confront instability with the shooting method. Referring to (1)b, (3)b,
alternatively we seek a solution 2 in the form

N
Q=b(z)+) aipi(z) (16)
i=1

where ¢;s form a basis in L?(0,1) and satisfy zero boundary conditions at z = 0 and
z = 1 while the function b is any function that satisfies the boundary conditions in (3)b.
Typically we use ¢; = sinimz. Next we substitute the expression in (16) into (1)b,
take the inner product of the result with ¢; and end up with N simultaneous algebraic
equations in the unknowns a;s. This system is then solved using the standard linear
solver in Mathematica. The main challenge in implementing this technique is making the
output of step one, namely f, available to the integration routine in the inner product.
We are fortunate in this problem in that because of the way we are implementing the
iteration algorithm, the differential equation in (1)b is linear, albeit with non-constant
coefficients. It turns out, however, that the Galerkin scheme as programmed below is
considerably more general than in the setting we have introduced here and that with
some care the Gelrkin program generalizes to considerably more complex problems
including nonlinear partial differential equations in multi-dimensional domains. We
now list the alternate program whose output will be the approxiamte solution to the
boundary value problem in (1)b, (3)b.

Alternate Steps 2 and 3 (To Construct 2): The following program is written for
¢i(x) = sinwz, b(x) =z, N =10, P = 0.47 and k = 10.

nn = 10; P = 0.47; k = 10; xfinal = 0.9999; phil[i_, x_] = Sin[i Pi
x]; phiprimel[n_,x_]1=D[phil[n,x],x];
phiprime2[n_,x_]=D[philn,x],{x,2}]; Omg[x_] = x + Sum[a[n]lphil[n,
x], {n, 1, nn}]; newOmg[x_] = 1;(*first guess*) innerproduct[f_,
g_] := NIntegrate[f g, {x, 0, xfinal}, MaxRecursion -> 15];
Clear[al; equations = Table[Sum[a[n]*innerproduct [phiprime2[n, x],
phili, x]] +
2 a[n]innerproduct [f [x]phiprimel[n, x], phili, x]]1, {n, 1, nn}] ==
-2innerproduct [f[x], phil[i, x]]1, {i, nn}];
Clear[f]; vars = Table[a[n], {n, nn}]; sol = Solvelequations,
vars]; newOmg[x_] = First[Omgl[x] /. soll;

Figures 1, 2, 3 and 4 show the output of the above programs for various values of P and
k. These figures should be contrasted with the corresponding figures in [1] where Serrin

first offered a rigorous mathematical analysis of (1), (3) in terms of the two parameters
P and k. In particular, Serrin discovered three dynamically different solutions to (1), (3)
corresponding a) a vortex with an up-draft, where parcels of fluid approach the z-axis
along zy-plane and leave domain along the positive z-axis, b) a vortex with a down-
draft, where parcels of fluid are dragged down along the z-axis and leave the domain
along the zy-plane and c) a vortex that displays an intermediate state, one in which
parcels of fluid are drawn toward the z-axis along the zy-plane as well as downward
along the z-axis, but leave the domain along a slanted line. Our algorithm captures all
three states. In the next section we present a program that displays the evolution of
parcels of fluids once each of the velocity fields in Figures 1, 2, 3 and 4 are determined.

4 Dynamical Systems and Flow Visualization

A typical output of the programs in the previous section is a velocity field in the form
(vg,vg,vg). This representation, which is expressed in spherical coordinates, defines the
dynamical system

dR dp 1 o1

@ = B80T = w(R6), T =

dt = UO(Ra ¢7 9)) (17)

where (R(t), ¢(t), 6(t)) represents the parametrization of a path of a particle under the
action of the velocity field v. Once the system of differential equations in (17) is solved
numerically, we can plot the path of a typical particle in order to visualize the action of
the velocity field. In particular, by plotting the trajectories of an ensemble of particles
whose initial configuration is a familiar geometric figure, say a sphere, we can track the
deformation of the parcel and its direction of motion (updraft or downdraft) visually.

The only challenge in completing this visualization task is the management of the
data one has obtained from computing the velocity field numerically, as described in
the previous section, while solving the system in (17) whose right-hand side is given
numerically, and, the last step, to collect the information from individual particles in
the ensemble at each time slot to display the snapshot of the flow. The following program
accomplishes these steps and displays a set of snapshots that can readily be animated
to provide a convincing picture of the flow.

Visualization Program

Needs["Graphics ‘Graphics‘"];

Needs["Graphics‘Legend‘"];

el = .1; e2 = .1; e3 = 3; rad = .03;

n=12; k = 3.5; P = 0.442;

xfinal = 0.9999;

time = 5; NoofSnapshots = 12; deltat = N[time/NoofSnapshots];
parcels = 3;

colors = {RGBColor[1, 0, 0], RGBColor[0, 1, 0], RGBColor[0, O, 113};
filament = Graphics3D[Line[{{0, 0, 0}, {0, O, 3}}1];
(*Computing the Velocity Fields*)

Print ["Computing the Velocity Field"];

omegaEqgn[a_] :=
NDSolve [{omega’ [x] == omegap[x], omegap’[x] == -2 newf[x] omegapl[x],
omegal[0] == 0, omegap[0] == a}, {omega, omegap}, {x, O, xfinall},
MaxSteps -> 10000, WorkingPrecision -> 15];
Do[ClearAll[F, derF, omega, newf, f, Va, Vr, Vt]l; Print["jj =", jjl;
Clear[f, omegal;
k =k + 0.5;
omegalx_] = x;
Do[solutionl =
NDSolve [{f’ [x] ==
k"2/(1 - x72)"2%(2(1 - x)~2%
NIntegrate[t omegalt]~2/(1 - t°2)~2, {t, 0, x},
MaxRecursion -> 10] +
2x NIntegrate[omega[t]~2/(1 + t)~2, {t, x, xfinal},
MaxRecursion -> 10] - P(x - x~2)) - f[x]"2,
f[0] == 0}, f, {x, 0, xfinall}];
newf[x_] = First[f[x] /. solutionl];
Clear[omegal ;
output =
FindRoot [
First[Evaluate [omega[xfinal] /. omegaEqn[al]] - 1, {a, 0.1, 0.9}];
Clear [omegal ;
solution2 = omegaEqn[a /. output];
omegal[x_] = First[omegal[x] /. solution2], {j, 1, 20}];
Flx_] = 1/k(1 - x"2)newf[x]; derF[x_] = D[F[x], x];
Va[alpha_, theta_, r_] = (F[Cos[alpha]])/(r Sin[alphal);
Vr[alpha_, theta_, r_] (derF[Cos[alphall)/(x);
Vt[alpha_, theta_, r_] (omega[Cos[alphal]])/(r Sin[alpha]);
Print["Velocity Field is Computed"];
diffeqn[{b_, c_, d_}] :=
NDSolve[{alpha’[t] == (1/r[t]) Val[alpha[t], thetal[t]l, r[tl],
theta’[t] == 1/(r[t] Sin[alphalt]]) Vt[alphalt], thetalt], r[tl],
r’[t] == Vrlalpha[t], thetalt], r[t]], alpha[0] == b, thetal0] == c,
r[0] == 4}, {alpha, theta, r}, {t, O, time}, MaxSteps -> 100000,
WorkingPrecision -> 15];
CoordPointsCart =
Flatten[Table[{x -> N[el + 0.1 + rad*Sin[v] Sin([w]l],
y -> N[e2 + rad*Sin[v] Cos[wl]l, z -> N[e3 + rad*Cos[v]]l}, {w, O,
2 Pi, Pi/n}, {v, 0, Pi, Pi/n}], 1];
PointsCart = {x, y, 2z} /. CoordPointsCart;
SpherePoints = {N[ArcCos[z/Sqrt[x"2 + y~2 + z~2]]],
N[ArcCos[y/Sqrt[x"2 + y~2]11]1, N[Sqrt[x~2 + y~2 + z~2]]1} /.
CoordPointsCart;
MakePointsCart = Table[Point[PointsCart[[i]]], {i, Length[PointsCart]}];
graph = Graphics3D[{colors[[jj]], MakePointsCart}];

Print["Solving IVP"];
oldsolution = Flatten[diffeqn /@ SpherePoints, 1];
Print ["Finished with NDSolve ..."];

X[t_] := {r[t] Sin[alphalt]] Sin[thetalt]l],
r[t] Sin[alpha[t]] Cos[thetalt]], r[t] Cos[alphal[t]l};
FF[t_] = X[t] /. oldsolution;
Do[tt[i] = (i - 1)*deltat;
snapshot[jj, i] =
Show[{filament}, Graphics3D[{colors[[jjl], Point /@ FF[tt[il]}],
PlotRange -> {{-1, 1}, {-1, 1}, {0, 4}},
PlotLabel ->
StringJoin["k = ", ToStringl[k], ", P = ", ToString[P], ", t = ",
ToString[tt[i]1]1]], {i, 1, NoofSnapshots}], {jj, 1, 3}1;
Table[snap[i] = Table[snapshot[jj, il, {jj, 1, 3}], {i, 1, NoofSnapshots}];
Table[Show[snap[i]],{i, 1, NoofSnapshots}];

This program is written to monitor the evolution of the same parcel of fluid, a
sphere of radius 0.03 centered at (0.1,0.1,3), under the action of v when P = 0.442
while k takes on three values at 4, 4.5 and 5. We identify 325 points on the surface of the
sphere whose evolution are monitored over the time interval (0, 10). Basic mathematical
formulas are used to enable one to represent the position of each particle in rectangular
and spherical coordinates as needed.

Figures 6 — 9 show the output of this program at various instances of time. The
values of P and k chosen are in the down-draft regime so, as expected, each parcel is
sucked toward the vortex axis and pushed downward. Particles are colored according to
their value of k, red corresponding to £ = 4 and blue to k = 5. and . These figures show
that the lower the viscosity v (which is related to k according to k = %), the faster
the parcel is dragged down the z-axis. Eventually, the parcel with the higher viscosity
passes through the one with lower viscosity as the parcel approaches the zy-plane. All
parcels then leave the neighborhood around the z-axis acquiring the shape of a cone.

Figures 10 — 13 are the output of a slightly different program in which P and &
are kept fixed while the three parcels are positioned relatively close to each other and
colored according to their initial locations. Thus these figures demonstrate the degree
by which the space is deformed about the z axis as time evolves.

5 Conclusion

In the previous sections we presented an algorithm for obtaining the solution to a sys-
tem of nonlinear integro-differential equations that model fluid flows exhibiting tornadic
behavior. These equations were derived from the full Navier-Stokes equations under cer-
tain symmetry assumptions. The algorithm consisted of applying the Picard iteration
(fixed point) method together with a boundary-value solver (shooting as well as the
Galerkin mathod). The main feature of our effort is that we carry out all of our compu-
tations in Mathematica. The velocity field obtained by this technique is then the subject

10

of our investigation as paremeter values are varied and the structure of the resulting
fluid flows are visualized.

Our point of departure required transforming the standard Navier-Stokes equations
to spherical coordinates. A program was presented in Appendix A to accomplish this
task. The significance of this program is that it can be readily generalized to other
systems of partial differential equations and coordinate systems. Next we extended the
functionality of the program and applied it to the special ansatz describing the class
of velocity fields that include tornadic motions. After eliminating the pressure term
from the latter system, we arrived at the afore-mentioned system of integro-differential
equations.

We experimented with several parameter values to demonstrate that the convergence
of our iterative algorithm was rapid. The velocity field we obtained in this manner is
written in terms of standard interpolation functions available in Mathematica. Each
velocity field defines a three-dimensional dynamical system whose trajectories are the
orbits in the fluid flow. Three types of motions are observed, those in which fluid parcels
are sucked into the funnel and dragged upward (Figur 1), those in which fluid parcels
are pulled down by the line vortex and driven away from the vortex along the xy-plane
(Figure 2), and an intermediate flow in which fluid parcles are sucked in along the xy-
plane and the line vortex but leave the domain along a slanted line (Figure 3). These
three motions were predicted in the original paperof Serrin [1].

A future line of investigation is to understand the stability of each of the three
flows as a solution of the full Navier-Stokes equations. Such a study requires linearizing
the Navier-Stokes equation about each of these steady-state solutions. Although the
resulting equations will be linear, they possess nonconstant coefficients. The challenge
then is to characterize the spectrum of the linearized system. In a future effort, we will
present this analysis within the context of Mathematica.

6 Appendix A

In this section we present the program that delivers the Navier-Stokes equations in
spherical coordinates. Although these equations are available in several texts, we present
this program for the sake of completion as well as providing the blueprint for similar
derivation that are not so readily available. In that category, we mention the equations
of motion of the geophysical fluid dynamics in various geometrical symmetries. The
folowing program begins with the Navier-Stokes equations in rectangular coordinates,
transforms them into spherical coordinates and then applies the special ansatz in (8) to
derive the equations in (11) and (12).

Our strategy is very simple. We have two equivalent representation of the ve-
locity field, in rectangular and spherical coordinates. So we begin with the Navier-
Stokes equations in rectangular coordinates, substitute the spherical representation of
v in component form into these equations, simplify as necessary, and finally solve for
{ag—f, %Lf, %"}. The key to the success of this idea is in the various applications of
the simplification routines (such as Simplify, ExpandAll, PowerExpand) and the
implementation of appropriate substitutions at the right time.

11

Coordinate Transformation Program:

rect := {x -> R Cos[th] Sin[phi], y -> R Sin[th]Sin[phi],
z -> R Cos[phil};
spherical := {R -> Sqrt[x"2 + y~2 + z"2], th -> ArcTan[y/x],
phi —> ArcCos[z/Sqrt[x"2 + y~2 + z"2]1};
domain = {Sqrt[x"2 + y°2 + z~2] -> R, ArcTan[y/x] -> th,
ArcCos[z/Sqrt[x~2 + y~2 + z"2]] -> phi};
eR = {Cos[th]Sin[phi], Sin[th]Sin[phi], Cos[phil}; eth =
{-Sin[th], Cos[th], 0}; ephi = {Cos[th]Cos[phi], Sin[th]Cos[phi],
-Sin[phil}; pres = p[t, R, th, phil; vel = w[t, R, th, phi] eR +
ult, R, th, phil eth +
v[t, R, th, phi] ephi;
pressure = pres /. spherical; vrect = vel /. spherical; var = {x,
y, z}; divergence = ExpandAll[Sum[D[vrect[[il], var[[i]1]], {i,
3}]]1 //. domain; divergence = divergence /. rect; divergence =
Simplify[PowerExpand /@ Simplify /@ divergencel; // Timing acc =
Table[
D[vrect[[i]1], t] + Sum[vrect[[j]] D[vrect[[il]l, var[[j111, {j, 3}] +
1/R D[pressure, var[[i]]] -
nu Sum[D[vrect[[i]], {var[[jl1], 2}1, {j, 3}1, {i, 3}]1;
acc = ExpandAll[acc] //. domain; newacc = acc /. rect; // Timing
newsimplify[x_] := PowerExpand[Simplify[x]]; newacc =
Table [newsimplify /@ newacc[[i]], {i, 3}]; // Timing eqns =
Table[newacc[[i]] == 0, {i, 3}]; newvelt = {D[w[t, R, th, phi],
t], D[ul t, R, th, phil, t],
D[v[t, R, th, phi], tl};
NavierStokesSpherical =
Simplify /@ ExpandAll[Solve[egns, newvelt]]; // Timing
ansatz = {wl[t_, R_, th_, phi_] = G[Cos[phil]l/(R Sin[phil),
v[it_, R_, th_, phi_] F[Cos[phil]l/(R Sin[phi]),
ult_, R_, th_, phi_] = Omega[Cos[phi]]/(R Sin[phil),
plt_, R_, th_, phi_] = P[R, phil};
Cons0fMass = Solve[divergence == 0, G[Cos[phi]]l]; neweqns =
Simplify[Table[NavierStokesSphericall[1, i, 211, {i, 3}1]1;
replacement = {Cos[phi]l -> x, Sin[phil -> Sqrt[1 - x"2],
Cot [phi] -> x/Sqrt[1 - x~2], Csc[phi]l -> 1/Sqrt[1 - x"2]1};
G[x_] = First[G[Cos[phil] /. ConsO0fMass] /. replacement; equs =
Numerator [PowerExpand [Together [Simplify[eqns]]]]; DPs = First[
Solve[{eqns[[2]] == 0, egns[[3]] == 0}, {D[P[R, phil, R],
D[P[R, phil, phil}1];
neweqn = D[DPs[[1, 2]], phi] - D[DPs[[2, 2]], R]; neweqn =
Simplify [Numerator [Together [TrigExpand[neweqn] /. replacement]]];

P =03 k =10

0.2 0.4 0.6\ 0.8

Figure 1: The functions F, F' and Q when k = 10 and P = 0.3.

1

—— Orega

12

P =10.442, k =5

. 0.2—0.4 0.6 078 1

Figure 2: The functions F', F’ and Q when k£ =5 and P = 0.442.

13

P=1 k = 2236

1
F
0.75
=
0.5
0.25
0.4 0.6 0.8
0.25

Figure 3: The functions F, F’ and Q when k = 2.236 and P = 1.

14

P = 0.4775, k = 10

0.2 0.4

Figure 4: The functions F, F' and Q when k = 10 and P = 0.4775.

0.6

0.8 1

—— Orega

15

16

k =5 p=0.442

20 40 60 80 100 120

Figure 5: The graph of f00'9999 |F(z)? + |G(z)]2 + |(z)|? dz as a function of iterations
in the algorithm.

17

k =4., P=0.442, t =0 k = 4., P=0.442, t = 0.833333

Figure 6: Flow of a parcel of fluid under the dynamics defined by (F, F',Q) with P =
0.442 and k = 4,4.5and>.

18

k =4., P=0.442, t =1.25 k =4., P=0.442, t = 2.08333

Figure 7: Continued: Flow of a parcel of fluid under the dynamics defined by (F, F', Q)
with P = 0.442 and k = 4,4.5and5.

19

k =4., P=0.442, t = 2.5 k =4., P=0.442, t = 3.33333

Figure 8: Continued: Flow of a parcel of fluid under the dynamics defined by (F, F', Q)
with P = 0.442 and k = 4,4.5and5.

20

k =4., P=0.442, t =3.75 k =4., P=0.442, t = 4.58333

Figure 9: Continued: Flow of a parcel of fluid under the dynamics defined by (F, F', Q)
with P = 0.442 and k = 4,4.5and5.

21

P=0442 k=5 ---- t =0. P=0442, k=5 ---- t =0.6

Figure 10: Flow of three parcels of fluid under the dynamics defined by (F, F’, Q) with
P =0.442 and k = 5.

22

P=0.442, k=5 ---- t =12 P=0.442, k=5 ---- t =18

Figure 11: Continued: Flow of three parcels of fluid under the dynamics defined by
(F,F',Q) with P = 0.442 and k = 5.

23

P=0442 k=5 ---- t =24 P=0.442 k=5 ---- t = 3.

Figure 12: Continued: Flow of three parcels of fluid under the dynamics defined by
(F,F',Q) with P = 0.442 and k = 5.

24

P =10.442 k=5 ---- t =3.6

Figure 13: Continued: Flow of three parcels of fluid under the dynamics defined by
(F,F',Q) with P = 0.442 and k = 5.

