Application of the Finite Difference Method to Normal
Modes

RMM

January 25, 2004

In this note we apply the standard finite difference method to compute normal modes
of the Dirichlet boundary value problem

_AT/) = A’(ba X € Qa (1)
where A = % + 3%2 is the Laplace operator, subject to

¢|an =0, (2)

where (2 is a two-dimensional domain and 952 is its boundary.
The finite difference method replaces derivatives by their respective finite differences.
To motivate this idea recall the Tyalor series formula for a function of a single variable:
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We also recall the definition of f'(a):
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We can therefore approximate f’(a) by
fla+h)—f(a)
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which, using (3), results in an error of the size
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where the dots in the above expression contain terms of order h? or higher. We refer to
this term as o(h) and say that (5) is an o(h) approximation of f’(a).

Our main task is to replace the Laplace operator A with an appropriate finite differ-
ence approximation. First we learn how to replace any second derivative with its finite
difference. To that end we consider the following two Taylor series (the first is (3); the
second we get from (3) by replacing h with —h):
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Add the two equations and solve for f”(x) to get
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The above expression is called the centered finite difference approximation of f”(z).
Note that this formula gives us an o(h?) approximation of f”(z).

We are now ready to implement the finite difference method to (1). Let (z;,y;) be
a rectangular grid laid out to cover Q. Let
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denote 9 (x;,y;). Using (8) we replace Aw(z;,y;) by its centered finite difference ap-

proximation:
Vit1,j — 2% + i1 | Vi — 25 + i
where k is the stepsize in the y-direction (in most applications k& = h.). We now
substitute (10) into (1) to get
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where ¢ and j range over all the points in the grid. We have thus replaced the original
eigenvalue-eigenfunction problem (1) with a set of algebraic equations for ; ;. We note
the boundary condition (2) is automatically embedded in (11).

The set of equations (11) can be viewed in the matrix form

Ax =0 (12)

where x is the vector of v; ;s and A is the associated companion square matrix of
coefficients in (11). We emphasize that A, the eigenvalue in (1), is present in A. System
(12) typically has the trivial vetor x = 0 as its unique solution unless A is a singular
matrix. So we now choose A so that A is a singular matrix. The (nonunique) solution
to (12) is then the eigenfunction ¢ we seek. This is the fundamental idea behind using
the finite difference method to compute normal modes of the Laplace operator.

As our first example belwo will demonstarte, the matrix A is quite sparse. So
this formulation is ideal for using numerical linear algebra techniques that are already
developed in MATLAB, as well as for using parallel algorithms developed for a Beowulf
cluster system.

Example 1
Let Q = (0,1) x (0,1). With this choice of 2 the normal mode problem (1) has the
exact solution

Ymn(2,y) = Appsinnresinmny, App = (n2 + m2)7r2. (13)

We apply the finite difference method to (1) with this choise of Q2 and try to approximate
as many eigenvalues and eigenfunctions in (13) as possible.



We construct a rectangular grid in (2 be selecting an integer n and subdividing (0,1)

into n + 1 subintervals of equal length Then z; = 15, yj = —L_ for some n. So
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define the boundaries of the square. Therefore 0,5 = ¢)n+1,j = ig = Yinty1 =0
for i and j. Some of the typical equations in (11) look as follows:

i=1,j=1 : Vo1 + P12 + (A2 —4)h1 1 =0,

i=2j=1 : Y31+ Y11 + o2+ (ARZ —4)hy1 = 0.

i=3,j=1 : Ya1 + P31+ P32 + (AR2 —4)hs 1 = 0.
3<i<n,j=1 : cee e oo =0.

i=nj=1 : Y11 + Yn2 + (AR2 — L)hp 1 = 0. (14)

i=1,j=2 : VYoo + Y13+ (A2 —4)h1 2 = 0.

i=2,7=2 : 1/)3,2—|-1/)1,2+1/)2,3+1/)2,1+()\h2—4)1/)2,2ZO.
I<i<n, 3 =2 : e oo, L. =0.

t=n,j =2 : Yn-12+ Uns + ¥n1 + (AR% — 4)hp 0 = 0.

The above set of equation can now be transformed in the matrix form (12). Here the
vector x and the matrix A takes the form
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The matrix A has the value Ah% —4 on its diagonal, the value 1 on the two subdiagonals
immediately adjacent to the main diagonal, and two other subdiagonals consisting of



1’s. All other entries of A are zero. Hence, when n is large the matrix A is quite sparse
and we will use special techniques from computational matrix theory to determine A so
that its determinant vanishes.



