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1 An Invitation to Begin

Of necessity these notes cannot contain a discussion but I will try to keep the
tone light and anticipate your questions. As well, these notes are not intended
as a substitute for the lectures given by Clifton Cunningham. Indeed, I propose
to take a radically different approach. In class you had to build the edifice
of mathematics from the ground up. But now that the foundations have been
laid, we can discuss the material from a sophisticated standpoint. Even so, these
notes are being written because a textbook for the course is not readily available.
The primary difficulty is that we lack a reference for the precise statements of
our definitions and theorems. These can be found in the appendix. Also, I refer
the reader to the many references listed at the end of this paper.

One of my fondest memories of my undergraduate studies is of the evenings
that I spent discussing mathematics with my mentor, Tony Geramita. In my
mind I recall the comfortable armchairs in his living room and a warm fire
keeping away the winter’s cold. Of course, I have romanticised this scene greatly
and the reality was likely far more prosaic. But I recall this story to emphasize
that mathematics is best learned by discussing our difficulties and insights with
our friends. Also, it is very important to be comfortable and relaxed; then one’s
mind is free to concentrate on the essential details of our discussion. I won’t ask
you to imagine yourself in Tony’s living room. For one thing it is summer and
too hot for a fire. But as I write these notes I imagine that I am sitting with
a friend on my roofdeck, watching the evening sky appear and talking quietly
about some of the things that we have learned. It might help you to keep a
similar picture in your mind as you read on. But now, please, let us begin.

2 Algebraic Structures: Rings and Things

Much of our course was concerned with studying rings like Z (the integers) or Q
(the rationals) or polynomial rings over them (such as Q[x]). These are among
the most elementary rings and this is no accident. It is here that we first en-
counter the notions of abstract algebra in a concrete setting. For most people
Z is the first ring that they meet: Z is a set with two binary operations, ad-
dition and multiplication, that satisfy various properties individually and some
distributive properties in conjunction (see the appendix for precise definitions).
The rationals, Q, are among the first fields that we meet: each nonzero element
of Q is a unit (i.e. has a multiplicative inverse). The ring of matrices over any
other ring (for instance May2(Z)) provide an example of a ring which is not a
an integral domain: there are nonzero matrices which multiply to give the zero
matrix (we even asked you to find some on your first assignment). It is impor-
tant that an abstract ring is just a set with two operations and these operations
need not correspond to our conventional notions of addition and multiplication
(if we define x on Z by a x b =0 for all a,b € Z then (Z, +, X) is a ring (with-
out unit)). These simple examples provide a first glimpse of some complicated
behaviour of general rings; this is apparent when we look at the ideal structure



of these rings.

Most of the rings that we will consider will have a unity element (i.e. 1) but
in general we don’t require this of our rings. The reason is that if we drop the
requirement for the existence of 1 then there is a nice relation between subrings
and ideals. Recall that a subring S is just a set which is contained in a ring
R and which is a ring in its own right under the additive and multiplicative
structure induced from R. So, for instance, Q has lots of subrings. An ideal is
just a subring S which is closed under the multiplicative action of the ring R
(i.e. rs € S for each r € R and s € S). In general this is precisely the kind
of subobject that we need to define the quotient, %. We'll talk more about
this later but for now, note that there are very few ideals of Q: just (0) and Q
itself. On the other hand, Z has many ideals. It turns out that Z is a principal
ideal domain: it is an integral domain in which every ideal can be generated
by a single element. The ideals of Z look like (n) = {kn : k € Z} where n
is any integer. The ideal structure of the ring Z[X] is not so nice though: the
ideal consisting of all polynomials with even constant term is not principally
generated (but what elements do generate this ideal?). So we must be careful
in trying to infer properties about R[X] from properties about R.

One nice property that does extend from R to R[X] is the unique factor-
ization property. This property generalizes what is known as the fundamental
theorem of arithmetic: every nonzero, noninvertible integer factors uniquely as
a product of primes (up to multiplication by a unit and up to the position of
the factors). To generalize this property to an arbitrary ring we need to have a
good notion of primality. While we might have been taught something different
in elementary school, a prime integer can be defined as a nonzero, noninvertible
integer p such that for any integers r and s: p|rs = p|r or p|s (here a|b means
a divides b). Replacing integer by element in the above defintion gives us a
defintion of a prime element of a ring. What we all learned as our first defintion
of prime number corresponds to the notion of an irreducible element of a ring
R: a nonzero, nonunit element g € R is irreducible if ¢ = rs = one of r or s is a
unit. In Z the notions of prime and irreducible coincide but this is not true in
general (I'll leave it to you to find an example where they are not the same). In
any case, the unique factorization property holds for a ring R (and we say that
R is a UFD) if any nonzero, nonunit element of R can be expressed uniquely
as a product of irreducibles (up to order of the factors and multiplication by a
unit).

This leads naturally to the related notions of Euclidean Domains, greatest
common divisors and the division algorithm. TI’ll talk about these things in
the next section. But before we move on, I'd like to tell you a little about
how ideals were discovered. Of course, we have seen that ideals can be used
to develop the quotient ring structure. This provides a typical technique to
try to solve certain diophantine equations: equations like 22 — 3y? 4+ 722 = 17
with solutions in the integers. The idea is to reduce the equation mod p for
each prime p (i.e. reduce the coefficients mod p) and then try to solve the
equation in the ring % = F,. If one has complete information about these



cases then often one can lift this information back to Z to tell us about the
integer solutions to the equation (this is called the Hasse Principle and is one
of the highlights of number theory). Another interesting thing about ideals is
that they generalize numbers. While certain rings (like Z[y/—5]) may not be
unique factorization domains, they still might have a unique factorization of
ideals. This relates to a famous false attempt to solve Fermat’s Last Theorem
(just recently proven by Andrew Wiles, who built upon hundreds of years of
work in algebra). That proof failed precisely because certain rings did not have
unique factorization. Kummer attempted to correct this problem by showing
that, in certain rings, ideals have a unique factorization property. This leads to a
notion of a prime ideal. We will return to this when we talk about commutative
algebra and algebraic geometry but for now we make an interesting defintion of
a prime ideal: an ideal P is prime if for any two ideals I and J of R we have
IJCP=1TICPorJCP. Since, in the integers, (n) C (m) < m|n we see
that this defintion of prime ideal corresponds to our notion of prime element. It
is an interesting exercise to show that this notion of prime ideal gives the same
thing as our other characterizations of prime ideals.

3 How to Divide in Z

The division algorithm gives a way of computing the greatest common denomi-
nator of any pair of integers. Indeed, reversing the steps of the algorithm gives
a representation of (f, g), the ged of f and g, as a linear combination of f and
g with coefficients in Z. So any ged of f and g is of the form af + bg with
a, b € Z. Indeed, an argument invloving the well-ordering of the integers shows
that the positive ged of f and g (which is what we mean when we write (f, g))
is the least positive element of the set {af +bg : a, b € Z}. Of course in the
assignments we asked you to show that the ged is unique up to multiplication
by a unit and that the ged operation is associative (so that we can define the
ged of any finite collection of integers). Things get interesting when we try to
generalize this notion of greatest common divisor to arbitrary rings.

First note that what we are using in proving the above results is the division
algorithm and this depends on having a good notion of size (an ordering on
the elements of the ring; for example, absolute value in Z or degree in Z[X]).
Domains with this kind of ordering are called Euclidean Domains (see the ap-
pendix for a precise defintion). In such rings we can define a division algorithm
and use this to get information about geds. The ged then turns out to be unique
up to multiplication by a unit and we generally single out a particular kind of
ged to be denoted by (f, g) (for example, the positive one in Z and the monic
one in Q[X]).

Some rings are do not have the unique factorization property; for example,
Z[\/—5] (check this as an exercise). Here we cannot say (as we might in a UFD)
that the ged of two elements is the product of all the irreducibles that appear in
both the factorization of f and of g (counted with their multiplicities). Instead
we generalize the properties of geds in Z to get an abstract definition of a ged:



an element ¢ € R is a ged of f,g € R, denoted ¢ = (f,g), if ¢|f, c|g and if
any d € R divides both f and g then d|c. Many times on the assignments we
asked you to prove results about geds. With this abstract definition of ged all
you need to do to show that an element e € R is equal to (f,g) is to show that
the properties above hold for e (in place of ¢) and that e is of the proper form
(for example, e is positive if R = Z or monic if R = Q[X]). This approach was
emphasized in the solutions to the problem sets.

It is no accident that we use the notation (f,g) for both the ged of f and
g and the ideal generated by f and g. In fact, if we are in a PID (principal
ideal domain) then these two notions coincide: d = ged(f,g) if and only if
(d) = (f,9).

Given the ease of defining the greatest common divisor in a UFD it is desir-
able to have a nice way to check whether a given ring is a UFD. Unfortunately,
I don’t know of any such method. But one set of implications is known and is
quite important: R is a Euclidean Domain = R is a PID = R is a UFD.

It is often important to be able to tell whether a certain element of a ring
is irreducible or not. In general this is a very hard problem but in certain rings
(like Q[X]) we have powerful tools to help us. For instance, Gauss’s lemma tells
us that any monic polynomial with integer coefficients is reducible in Q[X] if
and only if it is reducible in Z[X]. Often it is then possible to apply Eisenstein’s
test to the polynomial (though sometimes we must modify the polynomial P(X)
and consider instead the equivalent problem for the polynomial Q(X) = P(X+n)
(n € Z)).

Sometimes it is possible to use the so-called rational root test to check for
irreducibility of a polynomial in Z[X]. If we can assume that if our polynomial
P(X)=3"( a; X" (a, # 0) is reducible then it has a linear factor (for instance
if deg P(X) < 3) then it suffices to show that P(%) # 0 for all integers r|ag and
Slan,.

There is another method in Z[X] that never fails though it takes more work.
Suppose our polynomial is P(X) = Y"i—( a;X* (a, #0). If P(X) = F(X)G(X)
then w.lo.g. deg F(X) < %. Take N to be the integer part of § and find the
value of P(X) at N integer points {a1,...,an} (it helps if you can find values
that are prime). Then F(a;)|P(a;) and F(a;) € Z so there are a limited number
of possible values for F(a;). Since N points determine a polynomial of degree
at most n uniquely (use Lagrange’s interpolation theorem) we see that there
are a limited (though possibly large) number of possibilities for F'(X). For each
of these we test whether F'(X)|P(X) (an efficient method is to choose another
point b € Z and check whether F(b)|P(b); if this does not hold then F(X)
does not divide P(X) but if this holds for many choices of b then one should
check F(X)|P(X) directly). Note that one need not check all possible values
of F(X): symmetry among the possible values ensures that we need only check
one of F(X) and —F(X).

All of this is fairly involved but things get even more complicated in poly-
nomial rings of more than one variable. There one wishes to devise a division
algorithm that works for more than a pair of polynomials: for instance, what



should we mean by the remainder of 4X3Y245Y 3421 upon division by 2X2Y —4
and 3y — 27 This relates to the ideal structure of such rings and is an active
area of current research. For more information on the division algorithm in
polynomial rings and the related notion of Groebner bases, see [3] (this is an
excellent book, written at an accessible level, which also details some cool ways
to use algebraic techniques in the design of automobiles and robots).

4 Abstract Algebra

In the last section we discussed arithmetic in Z[X] and Q[X]. Abstract Algebra
abstracts this discussion in two ways: we will be concerned with arithmetic in
more general rings and we will concern ourselves with the manipulation not
only of elements of the rings but of the rings themselves. This will become clear
when we discuss quotient rings. One of the principles of Abstract Algebra is
that in order to understand an algebraic object, it is important to understand
the maps between these objects. What is a map between two rings?

A map between two rings is just a function f : R — S that preserves both
the additive and multiplicative structure of the rings: that is, f(a ®r b) =
f(a) ®s f(b) and f(a ®rb) = f(a) ®s f(b) for all a,b € R. This definition is
sufficient if we are considering non-unitary rings but if our rings have 1 then we
also require that f(1)=1 (note that f(0) = 0 automatically). A map between two
rings that respects the ring structures is called a ring homomorphism. A ring
homomorphism which is 1-1 is called injective and a ring homomorphism which
is onto is called surjective. A ring homomorphism which is both injective and
surjective is called an isomorphism and the two rings are said to be isomorphic.
Isomorphism is a precise way of saying that two rings are equal as rings; we
denote this relation by R 2 S.

The map f : Z[X] — Z[v/—5] which is the identity on the integers and
sends X to v/—5 is an example of a homomorphism which is surjective but not
injective (f(2? +5) = 0). The map ¢ : Z[X] — Q[X] is a homomorphism which
is injective but not surjective. Whenever we have an ideal I of a ring R we can
consider the equivalence relation on elements of R which says that two elements
are equivalent if they differ by an element of I. Denote the equivalence class of
a € R by [a]. Then we check that the operations on R induce operations on the
set of equivalence classes of elements of R. When doing this we need to ensure
that these operations are well-defined: for example, we need to check that the
operation [a] + [b] = [a + b] does not depend on our choice of representatives
for the equivalence classes [a] and [b]. (This is not as difficult as it sounds. If
[a] = [r] then a —r € I and if [b] = [s] then b — s € I. But then [a + b] = [r + s]
since (a+b) — (r+s) =(a—r)+ (b—s) € I.) Once all this is done we have
the ring of equivalence classes of R mod I, denoted ?. We also have the ring
homomorphism ¢ : R — ? defined by ¢(a) = [a]. Note that ¢ is surjective: the
image of ¢ (often denoted ¢(R)) is all of its range, %.

Just as was the case with vector spaces, both the image and the the kernel
(or nullity) of the map are important. The kernel of ¢ : R — S is the set of



elements of R that are sent to 0 under ¢ (various violent language is used to
describe the kernel; for instance, elements of the kernel are killed or annihilated
(I have even heard assassinated!) by the map ¢). Note that the kernel of the
natural map ¢ : R — % is just the ideal I. In fact this phenomenon is true for
ring homomorphisms in general: the kernel of a ring homomorphism is an ideal
of the domain ring.

We are now in a position to discuss the decomposition of ring homomor-
phisms and the isomorphism theorems. The first ring isomorphism theorem

~ _R

says that if ¢ : R — S is a ring homomorphism then I'm(R) Rer(d) (that

is, the image of R is isomorphic to the quotient ring ﬁm) In fact, any ring
homomorphism factors as a composition of a surjective and injective homomor-
phisms: f: R — S factors as f = 10¢ where ¢ : R — %(f) is the natural map

ﬁ(f) — S is map given by the identification of ﬁ(f) with Im(f). The

second and third isomorphism theorems are also important (see the appendix
for precise statements).

and ¢ :

5 Geometry

It might seem strange to be talking about geometry in an algebra course but
mathematics is a unity and the best work in one area often illuminates things
in another. I'll explain all this in a bit, but first we need to discuss prime and
maximal ideals.

Prime ideals are those ideals P C R such that % is an integral domain (ring
having no zero divisors). Equivalently, prime ideals are those rings such that
if ab € P then one of a or b is in P. We can order the ideals in a ring by
inclusion: I < J <= I C J. The largest ideals with respect to this ordering
are called maximal ideals (they exist by Zorn’s lemma - a useful lemma from
set theory; you can take this on faith if you wish). You should prove to yourself
that maximal ideals are prime and that if m is a maximal ideal then % is a
field. Both (X) and (p) (p a prime number) are prime ideals of Z[X]; the ideal
(X, p) is a maximal ideal in Z[X].

Now I'd like to explain the correspondence between ideals in C[ X1, ..., X,]
and geometric objects (curves, surfaces, etcetera) in C™. Any ideal I in
C[Xy,...,X,] is generated by a finite set of polynomials (that this generating
set is finite is the content of the famous Hilbert Basis Theorem - see David Eisen-
bud’s excellent book [4] for the statement and many proofs of this theorem). To
this ideal we can associate the set of common zeros of these generators, a set
we denote by V(I) C C™. I leave it to you to check that this set is well-defined
(it is independent of our choice of generators for I). Conversely, given a set
of points X C C™ we define the ideal I(X) of polynomials in C[X7,...,X,]
which vanish on X. Again, you should check for yourself that this is an ideal.
There is a nice correspondence between these two operations: for any ideal I:
I(V(I)) = VI. Here, we have used v/T to denote the radical of I: the ideal of

polynomials, some power of which is in the ideal I. If ideals correspond to these



zero sets of polynomials, what do prime and maximal ideals correspond to?

Prime ideals correspond to particularly nice zero sets. A zero set X is re-
ducible if it is the nontrivial union of two other zero sets (for example, V(X1 X5) =
V(X1)N'V(Xz) = the union of the X; and Xp-axes in C?). A zero set is called
irreducible if it is not reducible. Prime ideals correspond to irreducible zero
sets. Maximal ideals correspond to the simplest possible irreducible zero sets,
points (to get an idea of why this is true, note that the two operations, I and
V, are inclusion reversing).

Of course, I have only spoken about ideals in C[ X7, ..., X,,]. A similar theory
can be worked out for the polynomial rings Z[X4,...,X,] and Q[X1,..., X,].
More generally, we can define these notions for an arbitrary ring (see the dis-
cussion of Spec R in Eisenbud’s book [4]).

This discussion has wandered a bit far from the content of the course but
I think that it is important for you to get a feeling for the relationship of ab-
stract algebra to algebraic geometry. This interplay between geometric intuition
and algebraic computation has been one of the most successful (and beautiful!)
facets of modern mathematics.

6 Fields and Espionage

This is certainly the sexiest chapter in these notes. We will talk a bit about Field
theory. The most important mathematician who worked in field theory (Evariste
Galois) was a revolutionary who was killed in a duel and many of its modern
practioners currently work for various spy agencies around the world (yes, even
here in Canadal). For more on the remarkable life (and death) of Galois, see
Infeld’s entertaining novel [6] (the author’s own life was quite remarkable too).

We have already mentioned the definition of fields (rings with unity where
every nonzero element is invertible). There are two types of fields and they
are classified by their characteristic. We often denote fields by letters such as
K or L. Take the natural ring homomorphism ¢ : Z — K sending 1 to 1.
The kernel of this homomorphism is a prime ideal of Z (since the image of ¢
is a subring of K and hence is a domain). So ker(¢) = (0) or (p) (for some
prime number p). This generator of the kernel is called the characteristic. An
example of a characteristic zero field is Q while any of the finite fields have
prime characteristic. As an exercise you should produce an example of a field
of prime characteristic which is not finite.

One of the most elementary (though very subtle) ideas about fields is the
notion of a field extension. If K C L are fields then we say that L is an extension
field of K (and K is a subfield of L). The classic example is Q C R and we
will return to this in a moment. But first, what is the smallest field containing
Q and v/2? Clearly this field Q(v/2) contains all elements of the form a + bv/2
where a and b are rational numbers and then all inverses of such elements and
then all polynomial combinations in these elements and then all inverses of such
elements ... whew! In fact, all elements of the form a + b2 are elements of the

quotient ring 0 )(?2[)512) Since (X? —2) is a maximal ideal in Q[X], these elements




already form a field! So Q(v/2) %. A futher example is furnished by

C = R(v-1) = (}}iﬂ) (this last example is quite interesting: adding the
solution to X2 + 1 to R ensures that every polynomial (in one variable) over
the resulting ring (C) has a solution in that ring; this property is summed up
by saying that C is algebraically closed - this is the content of the Fundamental
Theorem of Algebra). In general to find the field Q(a) (o € C, say) we find
the minimal degree monic polynomial with coefficients in Q which has « as a

root; call this polynomial P,. Then Q(a) = %. You can generalize this to

arbitrary field extensions on your own (consider the extension K («,3) of K).

This seems fine for finite extensions of a field (where dimg L < 00). But what
about the field extension Q C R? Presumably we could write R = Q(ay, ag, . . .)
and try to make some sense out of this but we won’t do that here. In fact, R is
the completion of Q in its standard Euclidean metric. That is, R is the set of
equivalence classes of Cauchy sequences (see any reasonable Calculus textbook
for the definition of a Cauchy sequence; for example, see [8]) of elements of
Q. We add and multiply Cauchy sequences componentwise and this gives our
standard ring structure on R.

The notion of a Cauchy sequence depends on the metric that we are using
(the distance function). In the above example, the metric (usually denoted by
|-|) was the standard Euclidean metric on Q. But we can use a more arithmetic
metric on Q: let p be a prime number and for each integer m set «,(m) to
be the number of occurances of p in the prime factorization of m; then define
||, : Q — R by [, = p~ (M) =7%(n)  This also gives a metric on Q.
Two integers are close together in this metric if their difference is divisible by a
high power of p. This metric is very useful in number theoretic problems. The
completion of Q with respect to this metric is called Q,, the p-adic numbers.
The truly adventurous student might show that this field is isomorphic to the
Field of Laurent series over the finite field F,, (see a textbook on Complex
Analysis for the defintion of Laurent series; for example, see [7]). Then one can
play with the addition and multiplication of elements of this completion (which
is quite an interesting exercise).

Now I want to summarize the basic facts about finite fields. We have already
seen that they all have prime characteristic. If L is a finite field of characteristic
p we have F,, C L. Then the number of elements of L is pl“*Fr] = pdlme(L) and
so L has p™ elements. So each finite field has size p™ for some prime number p
and some nonnegative integer n. It turns out that these fields are given by the
quotient Ff}f] where f is a monic polynomial irreducible over F,, of degree n.
Also, any field of size p™ is isomorphic to any other! So finite fields are uniquely
determined by their size.

Okay, so where is all this exciting spy stuff? It has to do with coding theory.
If one wants to send secret messages then one often encodes them in a secret
code (which the enemy will try to break). This coding scheme often uses the
arithmetic of finite fields (as do most computations involving computers). The
secret code has more recently been replaced by public-key cryptography but the




mathematical ideas are still related to much of what we have been studying here.
A more serious problem for code senders is the presence of a noisy channel. For
instance, if T am sending information across a telephone line (using a modem,
say) and the line is defective and introduces garbage characters into my message
(changes the value of sent characters) then how can the receiver tell that the
message has been corrupted? How can the receiver fix the message? These are
the problems that motivated error-detecting and error-correcting codes. These
codes safeguard information by encoding the message in a redundant manner
which uses finite field arithmetic as a check for message corruption. These
ideas are important in the design of high speed modems, bar-code scanners and
internet protocols. For more on coding theory, the reader could consult [5].

Finally a few words about Galois’ beautiful theorem are in order. To state
it we must first know what a group is. This is just a set with an associative
binary operation which has a null element and an inverse for each element. For
example, (Z, +) is a group. Also, the permutations on n symbols (with the
operation being composition of permutations) is a group. Note that the group
operation need not be commutative. Given a finite field extension K C L, what
are the intermediate extensions F' (that is, fields F such that K C F C L)? To
describe the answer we must define the group of automorphisms of L fixing K:
this is the set of isomorphisms from L to itself such that each element of K is
a fixed point of the map. These maps form a group under composition and we
denote it |Gal(L/K)|. Then, under some further techical assumptions on the
extension K C L, we have that the map

® : (intermediate subfields of K C L) — (subgroups of Gal(L/K))

given by ®(F') = Gal(L/F') is a 1-1 inclusion reversing map. So the intermedi-
ate fields of this extension are classified by the subgroups of Gal(L/K)! This
amagzing relationship of field theory to group theory forms the backbone of much
of modern algebra. In particular, it relates to the factorization of polynomials
and ruler-and-compass questions posed by the ancients. A complete account of
this beautiful theorem can be found in Allenby’s book [1] or Michael Artin’s
textbook [2].

7 Conclusion and Farewell

In conclusion I would like to emphasize that mathematics should not be com-
partmentalized into disjoint fields: algebra relates to geometry, to topology and
finally to the calculus. In turn, each of these subjects informs our view of alge-
braic systems. Many of the exciting mathematical theories (Galois theory, p-adic
analysis and algebraic geometry) span more than one area of mathematics.

I appreciate this opportunity to discuss abstract algebra with you. It is an
honour to be allowed to speak about the achievements of the great mathemati-
cians of the past. I hope that some of the things that we have seen in these
notes will encourage you to take a deeper look at what we have studied. Good
luck and farewell!

10



8 Appendix: Precise Statements

In this appendix we list the precise statements of all relevant defintions and
collect the statements of important theorems that we treated in the course.
The order of the statements reflects my own sense of the logical development of
the theory.

A ring is a set R with two binary operations, addition (+) and multiplica-
tion (x) which sastisfy the following properties:

(1) There is a null element for addition: 30 € R such that for each r € R,
r+0=04+r=r.

(2) For each element r € R there exists an element —r € R such that r+(—r) =
(=r) +7=0.

(3) Addition is associative: for any three elements r, s,t € R we have (r+s)+t =
r+ (s+1t).

(4) Multiplication is associative: for any three elements r,s,t € R we have
(rxs)xt=rx(sxt).

(5) Multiplication distributes over addition and vice-versa: for any three ele-
ments r, s,t € Rwe have rx(s+t) = (rxs)+(rxt) and (r+s)xt = (rxt)+(sxt).

Often we write omit the multiplication symbol; this is standard in integer
multiplication and should cause no confusion. There are many different kinds
of rings. The most common are unitary rings: these rings possess an identity
element for multiplication (31 € R such that foreach r € R, 1 xr=7rx1=r).

Elements r in a unitary ring R which have multiplicative inverses (that is,
Js € R such that rs = 1) are called units. Rings in which every nonzero
element is a unit are called fields. A nonzero element r € R is called a zero
divisor if there is another nonzero element s € R such that rs = 0. Rings with
no zero divisors are called domains (or integral domains).

A subring S of a ring R is a subset S C R such that the binary operations
on R restrict to binary operations on S and under these induced operations,
S is a ring. An ideal is a subring I which is closed under the multiplicative
action of R: for each r € R and a € I we have ra € I. The ideal generated
by elements {ai,...,a,} C R is denoted by (ai,...,a,) and is defined to be
{>r  ria;: v € R}

One element r € R is said to divide another element s € R, written r|s, if
there exists a third element ¢ € R such that s = r{. An element r € R is said
to be prime if whenever r|(st) we have r|s or r|¢t. An element r € R is said to
be irreducible if whenever r = st then one of s or ¢ is a unit. Note that in a
domain, prime elements are irreducible but the converse is not always true. If
r = ut where u is a unit then r and ¢ are said to be associates. If d|r and d|s
then d is said to be a common divisor of r and s.

Let ¢ be a common divisor of r and s such that for every other common
divisor d of r and s, d|c, then we call ¢ a greatest common divisor of r and
s. Note that a greatest common divisor (ged) is unique up to assocaites. We
often denote a special greatest common divisor by (r,s): in the integers this is
the positive ged; in a polynomial ring it is the monic ged. Two elements r and
s are said to be relatively prime (or coprime) if (r,s) = 1. The division
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algorithm for Z says that if a,b € Z with b # 0 then there exist unique
integers m and r such that a = mb+r with 0 < r < |b|. Applying this (see the
assignments) gives that for two integers a and b (not both zero), (a,b) = ta+ sb
for some integers t and s. In fact, in the integers, (a,b) turns out to be the least
positive value of this form (ta+ sb). Associated to these ideas is the Euclidean
Algorithm for computing the ged of two nonzero integers a and b. At step one
use the division algorithm to find integers m; and 71 such that a = m1b +
where 0 < r; < |b|. Then at step two use the division algorithm to find integers
mg and ro such that b = mor; + ro where 0 < ro < |rq1]. At step three find
integers mg and r3 such that ry = mgry + r3 where 0 < r3 < |ry|. Continue in
this manner until 7, = 0. Then (a,b) = r,_1.

The integers also have a unique factorization property. Let a be a
nonzero integer. Then either a is a unit or a can be written as the product
of a unit and finitely many positive primes. Further, if a = upips...p, =
vq142 - - . ¢m Where u and v are units and p1,...,Pn, q1,- - ., ¢m are positive primes
then v = v, m = n and the p; and the ¢; can be paired off in such a manner
that paired primes are equal.

We shall assume that the student is familiar with the notion of a polynomial.
The polynomials in one variable X, with coefficients in the ring R, are denoted
R[X]. One should check that the units in R[X] are just the units in R. Polyno-
mials which are not irreducible elements of R[X] are called reducible. The ged
of the coefficients of a polynomial is called the content of that polynomial and
the polynomial is called primitive if its content is 1. A polynomial is called
monic if its leading coefficient is 1. These notions are used to prove Gauss’s
Lemma: if F € Q[X] is a monic polynomial with integer coefficients then F is
reducible in Q[X] if and only if F' is reducible in Z[X]. Furthermore, if F' = fg
in Q[X] then F = pq in Z[X] where deg f = deg p and deg g = deg q.

Eisenstein’s Test is a useful way to conclude that a polynomial is irre-
ducible. Let F = """ ;a; X" be a polynomial in Z[X] such that there is a prime
integer p with (1) plag, plai, ..., plan—1, p /la, and (2) p*> Jao, then F is
irreducible in Q[X]. Note that the converse to Eisenstein’s Test does not hold.

There is an analogue of the unique factorization theorem for the integers for
the two polynomial rings Z[X] and Q[X] (just make the obvious modifications in
the above statement for Z - change prime to irreducible polynomial). Similarly
there is a division algorithm in Q[X]: if f,g € Q[X] with g # 0 then there exist
m,r € Q[X] such that f = mg + r and either r =0 or 7 # 0 and deg r < deg
g. This gives a Euclidean algorithm for Q[X].

A polynomial f(X) € R[X] is said to have a root at a if f(a) = 0. The
remainder theorem says that if a is a root of f, then (x —a)|f. The rational
root test say that if © is a rational root of the polynomial ag + a1 X + ... +
an X" € Z[X] where (r,s)=1 then r|ag and s|a,. This helps in determining
whether cubic polynomials are irreducible. The Fundamental Theorem of
Algebra describes the factorization of polynomials in C[X]: every nonconstant
polynomial over C has a root in C. It follows from the remainder theorem that
every nonconstant polynomial in C[X] can be expressed as a product of linear
terms.
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In using Kronecker’s test for irreducibility (see section 3) we need to
use Lagrange’s Interpolation Theorem. This states that if uq,...,u, 1 are
distinct rationals and vy, ...,v,41 are rationals (not necessarily distinct) then
there is exactly one polynomial f € Q[X] such that (1) deg f < n and (2)
f(u;) = v; for each i. The actual polynomial is:

(X ) (X = wm1)(X = wign) (X — tnan)

f(X) = 2 U s — ) - (s — i) (s — i) - (s — 1)

A binary operation on a set A is a map f: A x A — A. This is distinct
from the notion of a binary relation on a set A, which is a subset R of Ax A. If
(a,b) € R then we write aRb. The relation R is: reflexive, if 2Rz for all x € A;
symmetric, if Ry = yRz for all z,y € A; transitive, if tRy and yRz = xRz
for all z,y,z € A. If R is reflexive transitive and symmetric then we call R an
equivalence relation. The classic example of an equivalence relation is the
relation of equivalence mod n on the set of integers. A partition of a set is
a collection of nonempty sets which are pairwise disjoint and whose union is
the whole set. Each equivalence relation gives rise to a partition of our set A.
Also, each partition gives rise to an equivalence relation on A. The subsets in
the partition are called equivalence classes of the associated relation. Given
a ring S and a relation R on S we often can check that the opertaions on S
devolve to operations on the equivalence classes of R. This gives us a new ring
whose set is the equivalence classes of R and whose operations are induced from
the operations on S. The best example of this is the quotient ring (see below).

Using these ideas we can obtain some results in number theory. For instance,
Fermat’s Little Theorem says that if p is a positive prime integer and n is a
positive integer then p|(n? — n) (that is, n? = n (mod p)). For a postive integer
m, let ¢(m) be the number of integers between 1 and m which are relatively
prime to m. This function is called Euler’s ¢-function or the totient function.
Then we have: let @ and m be positive integers which are relatively prime, then
a?™ =1 (mod m). Finally, we have Wilson’s Theorem: let p be a positive
prime; then (p — 1)! = —1 (mod p).

We now deal with types of rings which relate to unique factorization. A
Euclidean valuation on a ring R is a map ¢ : R\ {0} — Z* U {0} such that:
(1) for all nonzero a,b € R, §(a) < §(ab) and (2) if a,b € R with b # 0 then there
exist m,r € R such that a = mb+ r and either » = 0 or r # 0 and d(r) < 6(b).
A domain with a Euclidean valuation is called a Euclidean Domain (ED).
There are a number of examples of Euclidean valuations. The absolute value
on the integers is one such function. The degree function on Q[X] is another.
A somewhat different kind of function is given by the map N : Z[\/—5] — Z
defined as N(a + bv/d) = |a® + db?|. This is called the norm map. Note that
N(a) =0 < a=0and N(af) = N(a)N(B).

Domains which have the unique factorization property are called UFDs.
Domains in which every ideal is principally generated (generated by a single
element) are called Principal Ideal Domains (PIDs). We have the theorem
that: ED = PID = UFD.
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Given a domain R we can form a new ring of fractions S = {%f : r,s €
Rands # 0}. We say that two fractions = and ¢ are equal if br —as = 0. Given
a field the intersection of all of its subfields is also a field (the smallest subfield)
and is called the prime subfield. If K has characteristic 0 then this prime
subfield is Q and if K has characteristic p then this prime subfield is F,, (see
section 6 for the definition of the characteristic of a field.

Given an ideal I of a ring R we can form the equivalence relation of equality
mod I: a =b <= a— b € I. The equivalence classes of this relation have a
ring operation induced from the ring operation on R (see my comments about

factor rings in section 4). This new ring is called a factor ring and is denoted
R

! An ideal P of aring R is prime ifabe P=a € Porbe P for all a,b € R.
Equivalently, an ideal P is prime if and only if % is an integral domain. An
ideal m of R is maximal if there are no larger proper ideals in R: that is, if T
is an ideal of R and m C I C R then I = m or I = R. Note that m is maximal
if and only if % is a field.

The concepts of ring homomorphism and ring isomorphism are treated
in section 4 of these notes. We have three important ring isomorphism the-
orems. The first ring isomorphism theorem is treated in section 4 of the notes.
For the second ring isomorphism theorem we need the concept of the sum of an
ideal and a subring. Let A be an ideal and B be a subring of the ring R. Define
A + B to be the subset {a +b:a € Ab e B} of R and check that A+ B is a
subring of R, A is an ideal of A+ B and AN B is an ideal of B. Then we have
that A‘LTB >~ _B_ (= denotes ring isomorphism). The third ring isomorphism

= AnB
theorem says that if I C J are ideals of a ring R then % ={j+1I: jeJ}isan
ideal in % and };T/II ~ %

These ideas are used in the construction of finite fields and field extensions.
For more on this, see section 6 of the notes.
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