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Abstract. A graph G is well-covered provided each maximal independent set of vertices has the
same cardinality. The term sk of the independence sequence (s0, s1, . . . , sα) equals the number of
independent k-sets of vertices of G. We investigate constraints on the linear orderings of the terms
of the independence sequence of well-covered graphs. In particular, we provide a counterexample
to the recent unimodality conjecture of Brown, Dilcher, and Nowakowski. We formulate the Roller-
Coaster Conjecture to describe the possible linear orderings of terms of the independence sequence.

1. Introduction

This note investigates the independence sequences of well-covered graphs. We provide a coun-
terexample to a recent conjecture on the unimodality of such sequences, and we formulate the
Roller-Coaster Conjecture to describe the possible linear orderings of terms of the independence
sequence.

Let G = (V,E) be an undirected graph without loops or multiple edges. A set V ′ of vertices is
independent or stable provided no two vertices in V ′ are joined by an edge of the graph G. We say
V ′ is an independent k-set provided V ′ has cardinality k. The independence number of G is the
maximum cardinality of an independent set and is denoted by α = α(G). With the graph G we
associate the independence sequence

(s0, s1, . . . , sα),

where sk equals the number of independent k-sets of vertices in G (k = 0, 1, . . . , α). Note that
s0 = 1 (the empty set is independent), and s1 = |V |. The independence polynomial

S(G, z) = s0 + s1z + s2z
2 + · · ·+ sαz

α

of G is the generating function for the sequence (s0, s1, . . . , sα).

Examples. (a) The complete graph Kb on b vertices has α = 1 and independence polynomial
S(Kb, z) = 1 + bz.

(b) More generally, in the disjoint union αKb of α copies of Kb there are sk = bk
(
α
k

)
independent

k-sets for k = 0, 1, . . . , α. The independence polynomial is

S(αKb, z) = (1 + bz)α.
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Alavi, Malde, Schwenk and Erdős [1] investigated the possible orderings of the independence
numbers s1, s2, . . . , sα of a graph. In 1987 they showed that independence sequences of graphs are
unconstrained with respect to order in the following strong sense:

Proposition 1 (Alavi et al). For any permutation π of the set {1, 2, . . . , α} there exists a graph
whose independence sequence (s0, s1, . . . , sα) satisfies

sπ(1) < sπ(2) < · · · < sπ(α).(1)

Brown, Dilcher, and Nowakowski [3] recently considered a similar question for the class of well-
covered graphs. A graph G is well-covered provided every maximal independent set has the same
cardinality α. Well-covered graphs have been actively studied since their formal introduction by
Plummer [9] in 1970. The graphs in Examples (a) and (b) are well-covered, and their independence
sequences are unimodal, that is, there exists an index p such that

s0 ≤ s1 ≤ · · · ≤ sp and sp ≥ sp+1 ≥ · · · ≥ sα.

The motivation of this note is the Unimodality Conjecture of Brown, Dilcher, and Nowakowski [3]:

The Unimodality Conjecture. Well-covered graphs have unimodal independence sequences.

The Unimodality Conjecture is trivial for graphs with independence number α ∈ {1, 2} and is
verified below for α = 3. However, we provide counterexamples for α ∈ {4, 5, 6, 7}. We propose
a new conjecture, the Roller-Coaster Conjecture, which asserts that the independence numbers
sdα/2e, sdα/2e+1, . . . , sα of a well-covered graph are actually unconstrained in the sense of Alavi et
al. We verify our conjecture for independence numbers α ≤ 7.

Our work may be viewed as a first step toward a solution of the following difficult problem [2]:

Problem 2. Find necessary and sufficient conditions for a sequence (s0, s1, . . . , sα) to be the in-
dependence sequence of a well-covered graph.

Independence sequences of graphs have received attention in the combinatorial literature under
two alternative guises. First, the clique polynomial of a graph G is just the independence polynomial
of the complement of G. (References on clique polynomials include [4, 5].) Second, with each graph
G we may associate a simplicial complex, whose faces are the independent sets of G. Well-covered
graphs correspond to equidimensional flag complexes [10], and the independence numbers sj of a
well-covered graph are related to the terms of the corresponding f -vector (f−1, f0, . . . , fα−1) by
the index shift sj = fj−1. (See [10] and Section 4 of [11] for recent work on f -vectors of flag com-
plexes and connections to independence polynomials.) The powerful Kruskal-Katona Theorem [7, 8]
characterizes f -vectors of simplicial complexes; however, our restriction to the class of well-covered
graphs renders such a characterization more difficult. We shall focus on the more tractable problem
of obtaining results on possible orderings among terms of the independence sequence in the spirit
of Alavi et al.

2. The Roller-Coaster Conjecture

We begin by showing that there are indeed some constraints on independence sequences of well-
covered graphs.
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Theorem 3. The independence sequence (s0, s1, . . . , sα) of a well-covered graph G satisfies

s0(
α
0

) ≤ s1(
α
1

) ≤ · · · ≤ sα(
α
α

) .(2)

Proof. We employ a flag-counting argument. Let Sk denote the set of independent k-sets of vertices
in G (k = 0, . . . , α). We consider the cardinality of the set

Fk = {(Vk, Vk+1) : Vk ⊂ Vk+1, Vk ∈ Sk, Vk+1 ∈ Sk+1} (k = 0, . . . , α− 1).

On the one hand, each Vk+1 contains exactly k + 1 subsets Vk of cardinality k. Thus |Fk| =
(k + 1)sk+1. On the other hand, because G is well-covered, each Vk is contained in at least one
independent α-set and hence in at least α − k independent sets of cardinality k + 1. Thus |Fk| ≥
(α− k)sk. Therefore (α− k)sk ≤ (k + 1)sk+1, from which (2) follows.

Remarks.

(a) The inequalities in (2) are sharp for G = αK1.
(b) Theorem 3 implies that the Unimodality Conjecture is true for α = 3.
(c) From (2) one easily deduces the inequalities in the following corollary, which can also be

deduced from general results of Hibi [6] on equidimensional multicomplexes. Also see Problem
2 on page 135 of Stanley’s book [10].

Corollary 4. Let (s0, s1, . . . , sα) be the independence sequence of a well-covered graph. Then si ≤
sj ≤ sα−i for i ≤ j ≤ α− i. In particular, s0 ≤ s1 ≤ · · · ≤ sdα/2e.

We know of no constraints for independence sequences of well-covered graphs, other than those
imposed by Theorem 3. We propose a conjecture, whose name derives from the schematic in
Figure 1.
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Figure 1. The independence sequence (s0, s1, . . . , sα) of a well-covered graph sat-
isfies s0 ≤ s1 ≤ · · · ≤ sdα/2e by Theorem 3. The Roller-Coaster Conjecture asserts
that the terms sdα/2e, . . . , sα are unconstrained with respect to order.
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Roller-Coaster Conjecture. For any permutation π of the set {dα/2e, . . . , α} there exists a
well-covered graph whose independence sequence (s0, s1, . . . , sα) satisfies

sπ(dα/2e) < sπ(dα/2e+1) < · · · < sπ(α).

The Roller-Coaster Conjecture is readily verified for α ∈ {1, 2, 3}. In the next section we verify
this conjecture for all graphs with independence number α = 4 and α = 6. In Section 4 we extend
our analysis to handle the cases α = 5 and α = 7.

3. A Special Case: Flat Roller-Coasters

In this section we establish the Roller-Coaster Conjecture for graphs with independence numbers
4 and 6. We first produce a flat roller-coaster graph, that is, a graph with sdα/2e = sdα/2e+1 = · · · =
sα; we then perturb the graph to achieve all linear orderings of sdα/2e, sdα/2e+1, . . . , sα.

Let G1 and G2 be vertex-disjoint graphs. Recall that the join G1 + G2 is the graph obtained
from disjoint copies of G1 and G2 by inserting all possible edges joining vertices in G1 and G2. The
join of two well-covered graphs with the same independence number α is also a well-covered graph
with independence number α. The independence polynomial for the join of two graphs is readily
found:

S(G1 +G2, z) = S(G1, z) + S(G2, z) − 1.(3)

The subtraction of 1 ensures that the empty set is accounted for properly. (The join of two graphs
is the complement of the disjoint union of their complements, and thus had we worked with clique
polynomials in place of independence polynomials, our constructions below would involve disjoint
unions of complete multipartite graphs.)

Now we treat the case α = 4 of the Roller-Coaster Conjecture. We construct a flat roller-coaster
graph by joining copies of the graphs αKj from Example (b): let

G = G1 +G4 +G10, where Gj = (4Kj + · · ·+ 4Kj)︸ ︷︷ ︸
wj

(j = 1, 4, 10).(4)

The non-negative integers w1, w4, and w10 in (4) will be chosen soon. First observe that G is
well-covered with independence number α = 4. Moreover, from formula (3) and Example (b) we
see that the independence polynomial of G is

S(G, z) = w1(1 + z)4 + w4(1 + 4z)4 + w10(1 + 10z)4 − (w1 + w4 + w10 − 1)
= s0 + s1z + s2z

2 + s3z
3 + s4z

4.

The terms s2, s3, and s4 of the independence sequence are related to the parameters w1, w4, and
w10 by the linear system s2

s3

s4

 = A

 w1

w4

w10

 , where A =

 6 · 12 6 · 42 6 · 102

4 · 13 4 · 43 4 · 103

1 · 14 1 · 44 1 · 104

 .(5)

In particular, when w = (w1, w4, w10)T = (8000, 15, 4)T , then s2 = s3 = s4 = 51840, and G is a flat
roller-coaster graph.
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To obtain a well-covered graph G with a prescribed ordering of s2, s3, and s4, we first choose
r = (r2, r3, r4) ∈ Q3 so that the components of s = (51840 + r2, 51840 + r3, 51840 + r4) satisfy the
ordering. Because w depends continuously on s, and because 8000

15
4

 = A−1

 51840
51840
51840


is a vector with positive components, we can rescale r so that w = (w1, w4, w10)T = A−1s is a
vector of positive rationals. Clearing denominators by multiplication gives rise to a vector w∗ =
(w∗1, w

∗
4, w

∗
10)T of non-negative integers and does not alter the ordering among the components of

s∗ = Aw∗. We thus obtain a graph G∗ = w∗1 G1 + w∗4 G4 + w∗10G10 with s∗2, s
∗
3, and s∗4 in the

prescribed order.

w1 w4 w10 ordering of s2, s3, s4

1 0 0 s2 > s3 > s4

33 1 0 s3 > s2 > s4

1 1 0 s3 > s4 > s2

0 0 1 s4 > s3 > s2

1999 0 1 s2 > s4 > s3

1701 0 1 s4 > s2 > s3

Table 1. We may select the parameters w1, w4, w10 in the graph G defined in (4)
to obtain all six orderings of s2, s3, s4.

Table 1 displays the values of the parameters w1, w4, and w10 that give rise to the six orderings of
s2, s3, and s4. (The values of r1, r4, and r10 have been selected to yield convenient values of w1, w4,
and w10.) Therefore the Roller-Coaster Conjecture holds for α = 4.

Brown et al [3] conjectured that for a well-covered graph G with independence number α the
roots of the independence polynomial S(G, z) all fall in the disk |z + α

2 | <
α
2 . The well-covered

graph G corresponding to either of the last two rows of Table 1 serves as a counterexample to both
this conjecture and the Unimodality Conjecture; two of the complex roots of S(G, z) = 0 lie outside
the prescribed disk |z + 2| < 2.

We pass over α = 5 for the moment and treat the case α = 6. Consider the well-covered graph

G = G1 +G2 +G6 +G10, where Gj = (6Kj + · · ·+ 6Kj)︸ ︷︷ ︸
wj

(j = 1, 2, 4, 10).

A computation confirms that when (w1, w2, w7, w10) = (18384800, 416745, 480, 343), G is a flat
roller-coaster graph: the independence sequence (s0, s1, . . . , s6) of G satisfies s3 = s4 = s5 = s6. As
in the case α = 4, by clearing denominators of suitable rational perturbations of w1, w2, w7, and
w10, we can construct a well-covered graph for each of the 24 orderings of s3, s4, s5, and s6.
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4. Even to Odd: The Circulant Substitution

We treat the case α = 5 of the Roller-Coaster Conjecture by modifying the construction of the
flat roller-coaster graph in Section 3 for α = 4. This modification uses a special circulant graph,
which we now construct.

s0
s1 s2
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qq q
sα+ 1
sαsα− 1. . .
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��

��
��

��
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��
��
�
��

�
��
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sn− 1 sn− 2 qq q
qq qsn− α− 1sn− αsn− α+ 1. . .

...
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HH
HHH

HH
HH
HHH

Figure 2. The circulant graph Cn(α). Only edges incident with vertex 0 are shown.

Let n and α be positive integers with n ≥ 3α. Let Cn(α) = (V,E) denote the circulant graph with
vertex set V = {0, 1, . . . , n−1}, where vertex i is adjacent to vertices i+α, i+α+ 1, . . . , i+n−α,
with vertex labels taken modulo n, as indicated in Figure 2. We claim that the independence
polynomial of Cn(α) is

S(Cn(α), z) = 1 + nz(1 + z)α−1.

Vertex i is present in
(
α−1
k−1

)
independent k-subsets (k ≥ 1) of the vertex subset {i, i+1, . . . , i+α−1},

with vertex labels taken modulo n. As i runs through each of the n vertices, this scheme counts
each independent k-set exactly once. Thus sk = n

(
α−1
k−1

)
for k ≥ 1, and the above formula follows.

Note that the independence sequence of the circulant graph Cn(α) is related to that of (α−1)K1

by an index shift and a rescaling:

S(Cn(α), z) = 1 + nz(1 + z)α−1 = 1 + nz S((α− 1)K1, z).

For b ∈ {1, 4, 10} we let G(b, n) be the lexicographic product of the circulant graph Cn(5) and the
complete graph Kb. (Thus each vertex in Cn(5) is replaced by a complete graph Kb, and each edge
is replaced by a complete bipartite graph Kb,b.) Each independent k-set of vertices in Cn(5) gives
rise to bk independent k-sets in G(b, n) for k ≥ 1. Thus the independence polynomial of G(b, n) is

S(G(b, n), z) = 1 + n(bz)(1 + (bz))4 (b = 1, 4, 10).

Now we produce a flat roller-coaster graph for α = 5 from a flat roller-coaster graph for α = 4.
Recall that with (w1, w4, w10) = (8000, 15, 4) in (4) we obtain a flat roller-coaster graph G for α = 4.
Now we replace each 4Kb in G with a join of copies of G(b, nb) to produce the graph

G∗ = (4·10·n4n10w1)G(1, n1) + (1·10·n1n10w4)G(4, n4) + (1·4·n1n4w10)G(10, n10).
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The parameters have been chosen so that we obtain a common factor from the independence
polynomials of each of the joined graphs in G∗. Thus

S(G∗, z) = 1·4·10 (n1n4n10) z[w1(1 + z)4 + w4(1 + 4z)4 + w10(1 + 10z)10] + 1
= 40 (n1n4n10) z S(G, z) + 1.

Our construction shifts and rescales the terms of the independence sequence of the flat roller-
coaster graph G to produce a graph with G∗ whose independence sequence satisfies s3 = s4 = s5.
As in Section 3 we may now clear denominators of suitable rational perturbations of w1, w4 and
w10 to obtain a well-covered graph for each of the six orderings of s3, s4, and s5.

A similar modification of our construction for α = 6 establishes the Roller-Coaster Conjecture
for α = 7. More generally, whenever we can satisfy the Roller-Coaster Conjecture for an even
independence number α using joins of graphs of the form αKb, then the circulant substitution can
be applied directly to each ordering to establish the Roller-Coaster Conjecture for α+ 1.

5. Problems

Our attack on the Roller-Coaster Conjecture in Sections 3 and 4 prompts a general question.

Question 5. Does there exist a well-covered graph with any given independence number α whose
independence sequence satisfies sdα/2e = · · · = sα? In other words, do flat roller-coaster graphs exist
for all α?

A counterexample to the Roller-Coaster Conjecture would lead to an intriguing problem.

Problem 6. Suppose the Roller-Coaster Conjecture is false for well-covered graphs with inde-
pendence number α. Characterize all permutations π of {dα/2e, . . . , α} for which there exists a
well-covered graph whose independence sequence satisfies sπ(dα/2e) < sπ(dα/2e+1) < · · · < sπ(α).
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