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Abstract 

A brief introduction to wavelets targeted to the statistician is given. Several types of wavelets are described and 
compared with the Fourier functions. It is shown how wavelets might extend the multivariate clustering technique of 
Andrews’ plots. 
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1. Introduction 

Wavelets are families of functions obtained by taking the dilations and translations of a particu- 
lar function with sufficient decay in both the time and frequency domains. Several wavelet 
functions will be described and compared with the well-known Fourier basis functions. The 
similarities and differences between these two types of analysis will be illustrated. The wavelet 
transform, which maps functions in one variable to functions in two variables, will be introduced. 
An application of wavelets will be presented, namely the use of wavelets in Andrews’ plots. 

Haar [l5] first constructed an alternative basis to the Fourier functions for L2 [O, 1). Since the 
Haar functions have point discontinuities, Franklin [13] followed with an alternative basis for 
L2 [0, 1) with continuous basis functions. It was not until the 198Os, however, that Haar’s 
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construction, and variations on Franklin’s construction [18] were to be described as wavelet 
families. 

2. Wavelets 

Wavelets, in general, are constructed by taking the dilations and translations of a single function 
with sufficient decay in both the time and frequency domains. The definition adopted here for 
“sufficient” decay is that a function Y(x) and its Fourier transform, denoted by Y(f) , both decay 
faster than 1 x I- 1 and IfI - r, respectively; see [6], i.e., 

s 

m 
_-m Ixl-‘IW)12dx < ~0, (1) 

and 

s 

4) 
_oo U-l-‘l%fN24f== 03. (2) 

A set of wavelets shares many of the properties of the particular function, Y(x) , the basic wavelet, 
known also as the mother wavelet, such as regularity (differentiability), continuity and the 
magnitude of the dilations and translations. Typical examples of basic wavelets are: 

(a) the Haar wavelet, 

1, o<x<+, 
Y(x)= - 1, +<x< 1, 

0 elsewhere; 

(b) the Franklin wavelet, 

Y(x) = 2X _ 1 

i  

0, o<x<+, 
> &x<l; 

(c) the Stetson hat wavelet, 

Y(x) = 
6x- 1, o<x<+, 

- 6x + 5, &x-Cl, 
2x - 3, l<x<$; 

(d) the Mexican hat wavelet, 

Y(x) = + nn-1/4(1 - x2)e-Xz/2. 
J 

These wavelets are illustrated in Fig. 1. 
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Let Y(x) be a basic wavelet, and let a (a # 0) and b be real numbers; the family 
corresponding to Y(x) is 

Ye,, = 1 ul- l” y {(x - @la), 

43 

of wavelets 

(3) 

where a gives the dilation and b gives the translation. The factor Ial -II2 normalizes the family of 
wavelets. A set of wavelets can be assembled by successively constructing each wavelet, Y,,,(x) for 
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Fig. 1. Examples of wavelets: (a) the Haar wavelet; (b) the Franklin wavelet; (c) the Stetson hat wavelet; (d) the Mexican 
hat wavelet. 
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Fig. l(c)-(d). 

different values of a and/or b as in (3). Wavelet families which are constructed by allowing a and 
b to vary continuously as in (3) are called continuous wavelet families. 

Discrete wavelets are constructed by constraining the values of a and b to a discrete lattice of 
points. A standard choice is to let a = 2 -j and let b = k (0 < k < 2j), wherej and k are integers. For 
a further discussion on the choice of lattice parameters a and b, see [8, p. 91 . The label discrete 
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wavelets does not imply that the wavelets are discrete-valued, but that the dilates and translates 
themselves are discretized. 

Consider, for example, the Haar wavelet family; see Fig. 2. Rewrite (3) as 

Y,,,(X) = 2j” Y(2’X - k), 

-2 
(a) 

t I -; 
-2 -1.2 -0.4 0.4 1.2 2 
(b) 

Fig. 2. Dilations and translations of the Haar wavelet: (a) the Haar wavelet: YI,O(x); (b) compression by two, zero 
translation: YI,,(x); (c) compression by two, translation by one: Y1, 1(x); (d) compression by four, translation by one: 
Y2, 1 (x); (e) compression by four, translation by three: Y2. j(x). 
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Fig. 2(c)-(d). 

where in terms of the previous notation a = 2-j and b = 2-jk on the right-hand side of (3), k and 
j being integers. The function Y r, 1 (x) is a translate of Y 1, o (x) and vice versa. The same is true for 
j held constant at a different value. The function Yz, 1(x) in Fig. 2(d) is a translate of Yz,s(x) in 
Fig. 2(e). Changing the parameter k changes the location of the wavelet in x at a fixed resolution; 
thus, changing k represents translation in time. Changing j dilates the basic wavelet and hence 
changes the frequency resolution. For discrete wavelets based upon dilates of two, changing the 
parameterj by one corresponds to a change in frequency by a factor of two. Wavelets with the same 
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Fig. 2(e). 

parameterj are at the same frequency resolution described as resolution 2j. For further information 
about the construction of wavelets, see [lo]. 

For any particular wavelet basis, one may choose to represent a function as a linear combination 
of a projection onto basis vectors. Typically, the Fourier representation over an interval of 
a function depends heavily on cancellation; see, for example, [l] or [4]. By contrast, the superposi- 
tion of wavelets in a representation is more of a stacking up of building blocks. To illustrate this 
difference, one can compare the basic building blocks of each representation; see Fig. 3. As the 
figure illustrates, the Fourier functions rely on high frequencies and low frequencies cancelling out 
to obtain convergence. The Haar unnormalized wavelets, in this example, are clearly localized. 

Wavelets have some clear advantageous characteristics over the Fourier series. One important 
idea to note is that properties of wavelet functions are translated directly into their wavelet 
coefficients unlike the situation with the Fourier series; see [19]. 

The span of a basis of arbitrary functions constructed using (3) may not be complete, and is 
unlikely to have orthogonal basis vectors. It is no accident, for example, that the Haar wavelets 
form a complete orthonormal basis for L’[O, 1). In contrast, the Mexican hat wavelets do not form 
a complete orthonormal basis for L’(R) over dilates of two, but can form a useful nonorthogonal 
span of L2(R) by dilating by powers of 2- ‘j4; see [7, 81. Further development of these theories is 
best examined formally as in [6, 81. 

Special classes of wavelets possess a transform analogous to the Fourier transform enabling dual 
time-frequency domain analysis. In many areas of signal analysis, the Fourier transform is used to 
provide a measure of the frequency content of a signal over its entire domain [4]. In contrast, the 
wavelet transform is used when a measure of the frequency content in bands localized in time is 
desired [16]. Fourier transforms and wavelet transforms are, therefore, complementary; Fourier 
transforms give the time average of frequencies in the signal and wavelet transforms give the 
frequency strengths in a signal over arbitrary intervals of time. 



48 P. Embrechts et al. J Journal of Computational and Applied Mathematics 64 (1995) 41-56 

The continuous wavelet transform is defined in an analogous manner to the Fourier transform, 
i.e., the wavelet transform [7] of the functionf(x) is 

Ji(u, b) = jm l~l-“~f(x) Y{(x - b)/a) dx; 
-CC 

(4) 

the inverse continuous wavelet transform [16] is 

f(x) = s” [m T(u, b) Y’((x - @/a) da db. 
-00 --cc 

(5) 

The discrete wavelet transform is a transform of a continuous functionf(x), but is so named 
because it is the transform relative to discrete wavelets. For orthogonal wavelets, the wavelet 
transform projects a function onto distinct frequency channels localized in time to yield a series 
representation of the function. For more on the discrete wavelet transform, see [7], and the 
inversion of nonorthogonal wavelets, see [9]. 
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Fig. 3. A comparison of Haar wavelets and Fourier functions: (a) Y,,,(x) and sin(x); (b) Y&x) and sin(2x); (c) !P1, 1(x) 
and cos(2x); (d) YzJx) and sin(3x); (e) YX, 1(x) and cos(3x). 
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For sampled or discrete signals, a third form of the wavelet transform exists. The discrete wavelet 
pyramid transform is the analog of the discrete Fourier transform. For band-limited signals that 
are sampled at greater than the Nyquist rate, and for orthogonal wavelet families, the function’s 
sample points may be reconstructed, and subsequently interpolated to regenerate the original 
signal. Because of the logarithmic structure of dyadic wavelets, there are numerically efficient 
algorithms for decomposing a sampled signal via the discrete wavelet transform; see [23]. 

Wavelet constructions can become considerably more complex than those presented thus far. 
Mallat [17] introduces a technique, known as multiresolution analysis, which allows the construc- 
tion of complete bases of orthogonal wavelets. By the use of dilates by powers of constants other 
than two, nonorthogonal bases of wavelets may be constructed [9,18]. Daubechies [S, Ch. 33 gives 
an excellent explanation of “frames”, the abstraction through which one may obtain a complete set 
of nonorthogonal vectors to span a space. 

Orthogonal, continuous, discontinuous, symmetric and antisymmetric wavelets can be construc- 
ted with known regularity and other properties. The properties of the basic wavelet and the size of 
the dilations and translations completely specify the nature of any subsequent time-frequency 
analysis. This has led many analysts to specify properties a priori and then construct a basic 
wavelet subject to certain corresponding constraints. If they exist, the resulting basic wavelets may 
be defined strictly by a recursion having no simple closed form. These wavelets are often unusual in 
form; see, for example, [7]. Further, wavelets may be orthogonal with compact support and 
arbitrarily high regularity [7]. Strang [22, p. 6181 presents a number of properties for orthogonal 
wavelets with compact support and known regularity. They may be nonorthogonal but form 
complete bases for L2(R) [9]. They may also have discontinuities [15]. It is in fact the Haar 
wavelets which have some of the most interesting properties for statistical applications. 

A related family of functions is the Walsh functions; see [21]. 

3. Andrew9 plots 

Andrews [2] proposed a method for plotting high-dimensional data in two dimensions. If the 
data are m-dimensional, each point x = (x1, . . . , x,), where xi (i = 1, . . . , m) are. the measured 
variables, is represented by the function 

fx(t) = ~r2-r’~ + x2sint + ~cost + x4sin2t + x5cos2t + .a. (6) 

plotted over the range - rr < t < 71. Andrews gave several properties of these functions, namely (6) 
preserves means, distances and variances, and gives one-dimensional projections. The ortho- 
gonality of the Fourier functions in (6) implies that plots of the functions that are close together in 
the L2-metric imply that the corresponding points of the data are close together in the Euclidean 
metric. When (6) is plotted for each point of the data, x, clustering of points will be seen by 
a banding together of the plots of the functions. Further, the plots enable one to see if points are 
close together in some projection of the m-measured variables [ll]. Although many graphical 
techniques for multivariate data analysis exist, one advantage of Andrews’ plotting technique is 
that its properties are based on mathematical theory and, therefore, the visual interpretation is 
not as subjective as some other methods [S]. As an example consider the well-known iris data; see 
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[12, 31. The data consist of measurements of the sepal length, x1, and width, x2, and the petal 
length, x3, and width, x4, of 50 irises of three species, Iris setosa, Iris oersicolor and Iris uirginica. 
Fig. 4 shows Andrews plots for the iris data with Fourier functions as in (6). 

Consider again the Haar wavelet pictured in Fig. 2. Analogously to (6), one can construct an 
Andrews plot with the Haar functions rather than the Fourier functions as 

“L(t) = Xl + x2 ~u,,o(t) + X3~1,0@) + ~4~1,1@) + **. (7) 

with 0 < t < 1, the coefficient of xl having been chosen to satisfy orthogonality constraints. The 
plots can also be formed with other families of wavelets, but the Haar wavelet has many desirable 
properties because of its piecewise constant nature. 

It is important to note here that the functional representation given in (7) does not necessarily 
yield the near-independence-of-t property of the variance offx (t) for uncorrelated data; see [ 11, Eq. 
(2)]. Intervals of the t-axis may be contained in the support of different numbers of wavelet 
functions. In this case the values offx(t) on different intervals are influenced by different numbers of 
wavelet functions, and hence different numbers of variables. For example, in a plot arising from 
five-dimensional data, the interval CO,+) is influenced by three wavelet functions, and therefore by 
three variables, and the interval [t, 1) is influenced by two wavelet functions. The idea of the 
stacking up of building blocks, Fig. 2, illustrates this comment. For a discussion of how this 
independence-of-t property can be used for constructing confidence intervals and statistical tests, 
see [2]. Besides a desirability of this property on these statistical grounds, it is not clear in general 
how the discriminating power of an Andrews-like plotting technique may depend on it. 

There are a number of possible ways to obtain the independence-of-t property. One method is to 
use a selection of translated and dilated wavelets such that for all t the number of wavelets which 
are non-zero at t is constant. In this case, the variance of the plot does not depend on t; however, 
there may be only a few linear combinations of the variables plotted. Many permutations of the 
variables are then necessary to see sufficient numbers of linear combinations. 

Another approach involves creating a new function y, which is the normalization of the sum of 
all the wavelets of resolution r, i.e. 

~I%@) = 2-r’2{ Yu,,o(Q + ‘y,,,(t) + *.* + K,,r-l(0). 

To each point, x, associate the function 

fx(t) = x1 + x2Yl(t) + X3?2(t) + X473(t) + “* (0 < t < 1). (8) 

This method is more like Andrews original method because the functions have support over the 
whole range plotted. This method has two advantages in that it both preserves the independence of 
t and gives a large number of linear combinations with coefficients 1 and - 1. Unfortunately, 
a linear combination coefficient cannot be 0 and the variance offJt) is considerably higher in this 
method than in that of the previous case. Here, the variance is ma2 versus a variance of qa2 for the 
method first suggested, where 4 < 1 + s and s is largest integer p such that 2p < m. 

Fig. 5 shows the Andrews plots with Haar wavelets, as in (7); Fig. 6 shows the Andrews plot with 
the functional representation given in (8). In Figs. 5 and 6, the Haar functions have been tapered so 
that the eye can more easily follow each line. Since all Haar wavelet functions of resolutions 1 and 
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Fig. 4. Andrews’ plots of the iris data using Fourier functions. 

2 are used in Fig. 5, the variance of the plots is independent oft. In all three figures the plots for Iris 
setosa may be distinguished from those of Iris uersicolor and Iris uirginica. This clustering seems 
most evident in Figs. 4 and 6. 

Wavelets can be used to construct an alternative functional representation to (6) for use in 
Andrews’ plots. The Haar wavelet’s piecewise constant nature may offer the researcher an 
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Fig. 5. Andrews’ plots of the iris data using the Haar wavelet. 

interesting additional way to discriminate graphically the clusters in multivariate data. It is well 
known that the eye can judge areas and distances better with straight lines than with curves. This is 
especially important when a large number of variables are included in the Andrews plots. Of the 
Haar wavelet representations, that proposed in (6) may be best. 
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Fig. 6. Andrews’ plots of the iris data with uniform variance. 

4. Discussion 

Historically, Haar [lS] was probably the first to construct a wavelet set. The form of the modern 
dyadic wavelet, however, was first used by Stromberg [24] in the development of a modified 
Franklin system. The term wavelet itself may stem from its use by Grossman and Morlet [14] and 
others since the modern study of wavelets arises from work with splines in seismic analysis. There 
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are also known applications in quantum field theory, pure mathematics and in data compression 
and the analysis of signals; see the introduction in [19]. More recent applications may be found in 
WI. 

The properties of the basic wavelet and the size of the dilations and translations completely 
specify the nature of any subsequent time-frequency analysis. Because wavelets provide localiza- 
tion simultaneously in both time and frequency, wavelets and the wavelet transform are useful tools 
in signal analysis [6]. Wavelets also have graphical properties which make them useful for the 
pictorial representation of information, such as in Andrews’ plots or in data compression and 
reconstruction algorithms. Here it has been shown that wavelets are a useful addition to the arsenal 
of pictorial representations of data. Further study is needed on how the analytic properties of more 
general wavelets may imply discriminating power in the Andrews plots based on them. For 
a discussion of some of the mathematical questions involved, see [ll]. 
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