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William N. Traves

Abstract Following Weyl’s account in The Classical Groups we develop an ana-
logue of the (first and second) Fundamental Theorems of Invariant Theory for rings
of differential operators: when V is a k-dimensional complex vector space with the
standard SLkC action, we give a presentation of the ring of invariant differential
operators D(C[V n])SLkC and a description of the ring of differential operators on
the G.I.T. quotient, D(C[V n]SLkC), which is the ring of differential operators on the
(affine cone over the) Grassmann variety of k-planes in n-dimensional space. We
also compute the Hilbert series of the associated graded rings GrD(C[V n])SLk and
Gr(D(C[V n]SLkC)). This computation shows that earlier claims that the kernel of
the map from D(C[V n])SLkC to D(C[V n]SLkC) is generated by the Casimir operator
are incorrect. Something can be gleaned from these earlier incorrect computations
though: the kernel meets the universal enveloping algebra of slkC precisely in the
central elements of U(slkC).

1 Introduction

If R = C[V ] = C[x1, . . . ,xn] is a polynomial ring then the ring D(R) of C-linear
differential operators [7, 12] on R, is just the Weyl algebra on V . That is, D(R) =
C�x1, . . . ,xn,∂1, . . . ,∂n�, where ∂i = ∂/∂xi should be interpreted as the derivation on
xi and most of the variables commute, but we impose the relations

[∂i,xi] = ∂ixi− xi∂i = 1,

which just encode the usual product rule from Calculus. More generally, if X is an
affine variety with coordinate ring R = C[X ] = C[V ]/I then the ring of differential
operators on X can be described as
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2 William N. Traves

D(R) = D(C[V ]/I) =
{θ ∈ D(C[V ]) : θ(I)⊂ I}

ID(C[V ])
. (1)

In either setting, the ring of differential operators is a filtered algebra, with filtration
given by the order of the operator. The associated graded ring GrD(R) is a commu-
tative ring and there is a map, the symbol map, from D(R) to GrD(R). We’ll write
ξi for the symbol of ∂i.

When a group G acts on V , it not only induces an operator on the coordinate ring
C[V ], but also on the Weyl algebra D(C[V ]): if θ ∈ D(C[V ]) and g ∈ G then for all
f ∈ C[V ],

(gθ)( f ) = g(θ(g−1
f )).

Our aim in the first part of this paper is to describe the ring of invariant differential
operators D(R)G and the ring of differential operators D(RG) for certain classical
rings of invariants R

G (with R = C[V n] for a k-dimensional complex vector space V

equipped with the usual G = SLkC action). Though we might try to express R
G in

the form C[V ]/I and use (1), it is difficult to describe the set {θ ∈D(C[V ]) : θ(I)⊂
I}, so this is impractical. Rather, we exploit the natural map π∗ : D(R)G → D(RG)
given by restricting invariant operators to the invariant ring. The properties of this
map are quite subtle – the reader is referred to Schwarz’s detailed exposition [15] –
but in general π∗ need not be surjective and is almost never injective. Fortunately,
Schwarz showed that in the cases that we are interested in, π∗ is surjective with
kernel equal to D(R)slkC∩D(R)G. We exploit this to describe generators for D(RG).
This is particularly interesting since R

G = C[V n]SLkC is the coordinate ring of the
Grassmann variety G(k,n) of k-planes in n-space (which is a cone over the projective
Grassmann variety).

The Fundamental Theorem of Invariant Theory gives a presentation of the co-
ordinate ring C[G(k,n)] = R

G. Following a path strongly advocated by Weyl [19]1

we extend the Fundamental Theorem to D(R)G, giving a presentation of the invari-
ant differential operators on the affine variety G(k,n). Because the action of G on
R preserves the filtration, we also have graded rings Gr(D(R))G = Gr(D(R)G) and
GrD(RG). Applying the Fundamental Theorem to GrD(R)G, we obtain generators
and relations of the graded algebra. These lift to generators of D(R)G and each of
the relations on the graded algebra extends to a relation on D(R)G.

In conference talks based on two earlier papers [17, 18] I claimed that ker(π∗)
was generated by the Casimir operator. This is false. In the second part of this pa-
per, we show that this cannot be true by computing the Hilbert series of GrD(R)G,
GrD(RG) and the graded image of ker(π∗). However, the earlier computations were
not entirely without merit: they predict that ker(π∗)∩U(slkC) = Z(U(slkC)), a
result that we prove using infinitesimal methods. The Hilbert series computations
suggest that GrD(RG) may be Gorenstein; however, this remains an open question.

The invariant-theoretic methods of this paper are described in Derksen and Kem-
per’s very nice book [3]. As previously mentioned, this paper also makes crucial use

1 Also see the references in Olver [13], particularly those in Chapter 6.
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of Schwarz’s results in [15]. It is a pleasure to dedicate this paper to Gerry Schwarz
on the occasion of his 60th birthday.

2 A Fundamental Theorem

Let V be a k-dimensional complex vector space and let V
∗ be the dual space of V .

Then C[V r⊕ (V ∗)s] is generated by the coordinates xi j (1≤ i≤ k,1≤ j≤ r) and ξi j

(1 ≤ i ≤ k,1 ≤ j ≤ s). Moreover, we have a natural SLkC action on C[V r⊕ (V ∗)s]:
SLkC acts diagonally, on the V ’s by the standard representation and on the V

∗’s by
the contragredient representation. To be explicit, if ei is the i

th standard basis vector
then A ∈ SLkC acts via:

A · xi j = (x1 j,x2 j, . . . ,xk j)Aei

and A ·ξi j = (ξ1 j,ξ2 j, . . . ,ξk j)(A−1)T ei,

where B
T is the usual transpose of B, B

T

i j
= B ji. To clarify with a simple example,

if r = s = 1 and k = 2, then the matrix A =
�

a b

c d

�
∈ SL2C acts on the variables

x11,x21,ξ11,ξ21 to give

A·x11 = ax11 +cx21, A·x21 = bx11 +dx21, A ·ξ11 = dξ11−bξ21, A ·ξ21 =−cξ11 +aξ21.

If �·, ·� : V ×V
∗ → C is the canonical pairing, for each i ≤ r and j ≤ s we have

an invariant �i j� : V
r ⊕ (V ∗)s → C that sends (v1, . . . ,vr,w1, . . . ,ws) to �vi,w j�. In

coordinates �i j�= ∑k

�=1 x�iξ� j.
There are other invariants too. If I = (I1, I2, . . . , Ik) is a sequence with 1 ≤ I1 <

I2 < · · · < Ik ≤ r, then we have a bracket invariant [I] = [I1I2 · · · Ik] : V
r⊕ (V ∗)s →C

given by
(v1, . . . ,vr,w1, . . . ,ws)→ det(vI1 vI2 · · ·vIk

).

This is a polynomial of degree k that only involves the xi j. As well, if J = (J1, . . . ,Jk)
is a sequence with 1 ≤ J1 < J2 < · · · < Jk ≤ s, then we have an invariant |J| =
|J1J2 · · ·Jk| : V

r⊕ (V ∗)s → C given by

(v1, . . . ,vr,w1, . . . ,ws)→ det(wJ1 wJ2 · · ·wJk
).

This is a polynomial of degree k that only involves the ξi j.
The Fundamental Theorem of Invariant Theory describes the SLkC-invariants in

the ring C[V r⊕(V ∗)s] and the relations among them (see [14, Sections 9.3 and 9.4]).

Theorem 1 (Fundamental Theorem of Invariant Theory). Let V be a k-dimensional

complex vector space. The invariant ring

C[V r⊕ (V ∗)s]SLkC
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is generated by all �i j� (1≤ i≤ r,1≤ j≤ s), all [I] = [I1I2 · · · Ik] (1≤ I1 < I2 < · · · <
Ik ≤ r) and all |J| = |J1J2 · · ·Jk| (1 ≤ J1 < J2 < · · · < Jk ≤ s). The relations among

these generators are of five types:

(a) For 1≤ I1 < I2 < · · · < Ik ≤ r and 1≤ J1 < J2 < · · · < Jk ≤ s:

det(�IJ�) = det(�IaJb�)k

a,b=1 = [I1I2 · · · Ik]|J1J2 . . .Jk|
(b) For 1≤ I1 < I2 < · · · < Ik+1 ≤ r and 1≤ j ≤ s:

∑k+1
�=1(−1)�−1[I1I2 · · · Î� · · · Ik+1]�I� j�= 0

(c) For 1≤ J1 < J2 < · · · < Jk+1 ≤ s and 1≤ i≤ r:

∑k+1
�=1(−1)�−1�iJ��|J1J2 · · · Ĵ� · · ·Jk+1| = 0

(d) For 1≤ I1 < I2 < · · · < Ik−1 ≤ r and 1≤ J1 < J2 < · · · < Jk+1 ≤ r:

∑k+1
�=1(−1)�−1[I1I2 · · · Ik−1J�][J1J2 · · · Ĵ� · · ·Jk+1] = 0

(e) For 1≤ I1 < I2 < · · · < Ik−1 ≤ s and 1≤ J1 < J2 < · · · < Jk+1 ≤ s:

∑k+1
�=1(−1)�−1|I1I2 · · · Ik−1J�| |J1J2 · · · Ĵ� · · ·Jk+1| = 0.

Example 1. When r = n and s = 0, Theorem 1 shows that C[V n]SLkC is generated by
brackets [I] satisfying the relations in (d). This invariant ring is the bracket algebra,
the coordinate ring C[G(k,n)] of the Grassmann variety of k-planes in n-space. In
this context, the generators are called the Plücker coordinates and the relations in
part (d) are called the Grassmann-Plücker relations.

Now if V is a k-dimensional vector space, (GrD(C[V n]))SLkC = C[V n⊕(V ∗)n]SLkC

so we can apply Theorem 1 in the case r = s = n to compute (GrD(C[V n]))SLkC. By
[17, Theorem 1], Gr(D(C[V n])SLkC) = (GrD(C[V n]))SLkC, so the lifts of the gener-
ators for C[V n⊕ (V ∗)n]SLkC generate D(C[V n])SLkC. Lifting the generators is easy
since we only need to replace ξi j with ∂i j.

Together with some very subtle work by Schwarz [15], this remark is also suffi-
cient to determine the generators of the ring of differential operators D(C[V n]SLkC)=
D(G(k,n)) on the affine cone Spec(C[V n]SLkC) over the Grassmann variety G(k,n).

Theorem 2. The ring of differential operators D(C[G(k,n)]) on the affine cone over

G(k,n) (0 < k < n) is generated by the images under π∗ of the lifts to D(C[V n])SLkC

of the operators �i j�, [I1I2 · · · Ik] and |J1J2 · · ·Jk|.
Proof. Using Theorem 1 we see that these are the operators (with ξi j replacing
∂i j) that generate (GrDC[V n])SLkC = C[V n⊕ (V ∗)n]SLkC. These lift to generators of
(D(C[V n]))SLkC. Though SLkC does not in general satisfy the LS-alternative, this
representation of SLkC does satisfy the LS-alternative (see Schwarz [15, 11.6]) and
so π∗ : (D(C[V n]))SLkC →D(C[V n]SLkC) is surjective or C[V n]SLkC is smooth. Since
the affine cone over G(k,n) is singular for 0 < k < n, π∗ must be surjective. Thus
these generators restrict to generators of D(C[V n]SLkC) = D(C[G(k,n)]). ��

Now we turn to the relations among the generators of D(C[V n])SLkC. Each of
the relations in Theorem 1 extends to an ordered relation on D(C[V n])SLkC. The
relations in (b), (c), (d) and (e) apply unchanged in the noncommutative ring
D(C[V n])SLkC. However, the relations in part (a) need to be modified: the mean-
ing of the determinant in a noncommutative ring needs to be clarified2 and there are
2 If S is a noncommutative ring and A ∈ Mk×k(S) is a square matrix with entries in S then by the
determinant of A we mean
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lower order terms that need to be added to extend the relations to the non-graded
ring. Fortunately, Capelli [1] found a beautiful way to incorporate the lower order
terms by changing some of the terms in the determinant.3 For each k ∈ I ∩ J, the
term �kk� in the matrix �IJ� should be replaced by

�kk�+(τI(k)−1),

where τI(k) is the index of k in the sequence I – that is, IτI(k) = k.

Example 2. When n = 4 and k = 3, the extension of identity (a) for [I] = [123] and
|J| = |124| is

det




�11�+0 �12� �14�
�21� �22�+1 �24�
�31� �32� �34�



 = [123]|124|.

Example 3. When n = 4 and k = 3, the extension of identity (a) for [I] = [123] and
|J| = |234| is

det




�12� �13� �14�
�22�+1 �23� �24�
�32� �33�+2 �34�



 = [123]|234|.

To describe a presentation of the ring D(C[V n])SLkC in terms of generators and re-
lations we also need to incorporate the commutator relations. The ring D(C[V n])SLkC

is generated by the same operators that generate C[V n⊕(V ∗)n]SLkC. To present such
a ring, take a noncommutative free algebra F in generators with the same names as
the generators of D(C[V n])SLkC. The kernel K of the map F → D(C[V n]SLkC) given
by the natural identification of generators is a two-sided ideal of F .

Theorem 3. The ideal K of relations is generated by the commutator relations and

the extensions of each of the relations in Theorem 1.

Proof. Let C be the two-sided ideal of F generated by the commutator relations
among the generators of D(C[V n]SLkC). Then F/C is a filtered ring in which each of
the generators �i j� ([I], |J|,respectively) has order 1 (0, 2, respectively). The associ-
ated graded ring Gr(F/C) is a commutative polynomial ring whose variables have
the same names as those in F . Because the filtrations on F/C and D(C[V n]SLkC)
are compatible, there is a surjective map δ : Gr(F/C)→ GrD(C[V n]SLkC) and the
kernel of δ is the image of the ideal K in the associated graded ring Gr(F/C). How-
ever, the generators of ker(δ ) are given by the relations in Theorem 1. The lifts of
these generators to F/C generate the kernel of the map F/C → D(C[V n]SLkC) and

det(A) = ∑
σ∈Sk

sgn(σ)A1σ(1)A2σ(2) · · ·Akσ(k).

3 I’m grateful to Minoru Itoh for pointing out Capelli’s identity to me at a workshop held at
Hokkaido University. In my original research I discovered a less elegant extension for the relations
through experiments with the D-modules package of Macaulay2 [11, 4] and the Plural package of
Singular [5, 6].
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so these lifts, together with the commutator relations, generate the kernel of the map
F → D(C[V n]SLkC). ��

The generators and relations described so far are enough to give a presentation
of D(C[V n])SLkC; that is, to determine the invariant differential operators. The map
π∗ from D(C[V n])SLkC to D(C[V n]SLkC), the differential operators on the coordinate
ring of the geometric quotient C[V n]SLkC, is not injective. Its kernel is a two-sided
ideal in D(C[V n])SLkC. Schwarz [15] showed that this kernel consists of the SLkC-
stable part of the left ideal of D(C[V n]) generated by the operators in the Lie algebra
slkC. In several conference talks based on two previous papers [17, 18] I described
an elimination computation in the case k = 2, n = 4 that seemed to show that this
kernel is generated by a single element, the Casimir operator. However, I interpreted
the results of this computation incorrectly: in fact ker(π∗) requires many generators.
We’ll show this by computing the Hilbert series for the graded image of ker(π∗) in
the next section.

The elimination computation mentioned earlier actually shows something inter-
esting that holds more generally: the center of the universal enveloping algebra of
sl2C is the part of the kernel of π∗ that lies in U(sl2C).

Theorem 4. ker(π∗)∩U(slkC) = Z(U(slkC)).

Proof. Note that ker(π∗)∩U(slkC)=U(slkC)SLkC since ker(π∗)= (D(C[V n])slkC)SLkC.
An element of U(slkC) is SLkC-stable if and only if it is annihilated by the adjoint
action of the Lie algebra slkC (see, for example, Sturmfels [16, Lemma 4.5.1]). But
if δ ∈U(slkC) then

ad(σ)(δ ) = [σ ,δ ] = 0 for all σ ∈ slkC ⇐⇒ δ ∈ Z(U(slkC)).

This shows that U(slkC)SLkC = Z(U(slkC)), as desired. ��

To close this section we emphasize that both D(C[V n]SLkC) and D(C[V n])SLkC

are noncommutative rings. This distinguishes these rings from the rings of operators
considered in [8], which are commutative. For instance, when k = 2 and n = 4, let
θ • f represent the result of applying the operator θ to f and compute

(�12�[23])• [23] = (x11∂12 + x21∂22)• (x12x23− x22x13)2 = 2[23][13]

and [23]�12�• [23] = [23][13]. It follows that the operators [23]�12� and �12�[23] are
not equal in D(C[V n]SLkC) and D(C[V n])SLkC. So both rings are noncommutative.

3 The Hilbert Series of GrD(R)G and GrD(RG)

We use the method described in sections 4.6.2, 4.6.3, and 4.6.4 of Derksen and
Kemper’s book [3] to compute the Hilbert series of GrD(C[V 4])SL2C. We sketch the
method here, simplified to the SL2C case, but the reader is referred to their book
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for details. Let T be a 1-dimensional torus acting on an n-dimensional vector space
W . The set of characters X(T ) is a free rank 1 group; let z be a generator of X(T ),
which we write in multiplicative notation. After a convenient choice of basis, the
action of T on W is diagonal, given by the matrix

ρ =





z
m1 0 · · · 0
0 z

m2 0 0
...

. . .
...

0 0 · · · z
mn




,

where the mi are integers. The character of W is defined to be the trace of this rep-
resentation, χW = z

m1 + z
m2 + · · ·+ z

mn , and it follows that dimW
T is the coefficient

of z
0 = 1 in χW . If W = ⊕∞

d=0Wd is a graded vector space and Wd is a rational
representation of T for each d, then define the T -Hilbert series of W to be

HT (W,z, t) =
∞

∑
d=0

χWd t
d .

It follows that the Hilbert series H(W T , t) = ∑∞
d=0 dim(W T

d
)td is just the coefficient

of z
0 = 1 in HT (W,z, t).

Now fix a maximal torus T in SL2C and a Borel subgroup B of SL2C containing
T . Because the simple positive root of SL2C is just twice the fundamental weight, we
find that if W =⊕∞

d=0Wd is a graded vector space and Wd is a rational representation
of T for each d, then the Hilbert series of the invariant space H(W G, t) is just the
coefficient of z

0 = 1 in (1− z
2)HT (W,z, t); we are omitting a significant amount of

detail here, the interested reader is referred to the argument on pages 186 and 187
of [3].

Example 4. Let V be a 2-dimensional complex vector space. If W = GrD(C[V 4]) is
made into a graded vector space using the total degree order then we can compute
the Hilbert series of GrD(C[V 4])SL2C as follows. First, note that GrD(C[V 4]) =
C[V 4⊕ (V ∗)4] is a polynomial ring in 16 variables x11, . . . ,x24,ξ11, . . . ,ξ24 and that
SL2C contains a torus that acts on these variables with weight 1 (for x1i and ξ2i) or
weight -1 (for x2i and ξ1i)). Choosing the variables as a basis for the degree one part
of GrD(C[V 4]), we see that a maximal torus T acts diagonally on the degree one
part of GrD(C[V 4]) via a diagonal matrix with eight z’s and eight z

−1’s along the
diagonal. Since W = GrD([V 4]) is a polynomial ring generated by its degree one
variables, we find that

HT (W,z, t) =
∞

∑
d=0

χWd t
d =

1
(1− zt)8(1− z−1t)8 .

Now we see that the Hilbert series of GrD(C[V 4])SL2C is the coefficient of z
0 = 1

in the series expansion of 1−z
2

(1−zt)8(1−z−1t)8 . To compute this, we note that the series
converges if |z−1

t| < 1 and |zt| < 1. We will assume that |z| = 1 and |t| < 1. To find
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the coefficient of z
0, we divide by 2πiz and integrate over the unit circle C in C (in

the positive orientation). So

H(GrD(C[V 4])SL2C, t) = 1
2πi

�
C

1−z
2

z(1−zt)8(1−z−1t)8 dz

= 1
2πi

�
C

(1−z
2)z7

(1−zt)8(z−t)8 dz.

This is the same as the sum of the residues inside C by the Residue Theorem. Since
C has radius 1, and |t| < 1, there is only one singularity of (1−z

2)z7

(1−zt)8(z−t)8 inside C,
namely at z = t. The residue there is the seventh coefficient in the Taylor series
expansion of g(z) = (1−z

2)z7

(1−zt)8 about z = t. Computing g
(7)(t)/7! gives

H(GrD(C[V 4])SL2C, t) =
1+15t

2 +50t
4 +50t

6 +15t
8 + t

10

(1− t2)13 .

This has expansion 1+28t
2 + · · · . The coefficient 28 refers to the 28 generators for

GrD(C[V 4])SL2C: the sixteen �i j�, the six brackets [i j] and the six graded versions
of the |i j|, ξ1iξ2 j−ξ1 jξ2i.

Now we compute the Hilbert series of the ideal Gr(ker(π∗)), the image of
ker(π∗) in the graded ring GrD(C[V 4])SL2C. This ideal is generated by the ele-
ments of GrD(C[V 4])sl2C that are invariant under the action of SL2C . The left
ideal GrD(C[V 4])sl2C is generated by three operators

g12 = x11ξ21 + x12ξ22 + x13ξ23 + x14ξ24,
g21 = x21ξ11 + x22ξ12 + x23ξ13 + x24ξ14,

g11−g22 = x11ξ11 + x12ξ12 + x13ξ13 + x14ξ14− x21ξ21− x22ξ22− x32ξ32− x42ξ42.

These are all eigenvectors under the torus action and the torus acts with weights
2,−2 and 0 on g12, g21 and g11−g22, respectively. These three polynomials form a
regular sequence in GrD(C[V 4]) and we have an SL2C-equivariant resolution

0 → GrD(C[V 4])(−6) → GrD(C[V 4])(−4)3

→ GrD(C[V 4])(−2)3 → GrD(C[V 4])sl2C → 0.

The rightmost map sends the generators of GrD(C[V 4])(−2)3 to the three gen-
erators of GrD(C[V 4])sl2C and so the three generators of GrD(C[V 4])(−2)3 are
equipped with torus weights−2, 2 and 0. Similarly, the three generators of GrD(C[V 4])(−4)3

have torus weights−2, 2 and 0, while the generator of the leftmost module has torus
weight 0. The T -Hilbert series of these modules are:

HT (GrD(C[V 4])(−6),z, t) = t
6

(1−zt)8(1−z−1t)8

HT (GrD(C[V 4])(−4)3,z, t) = t
4(z2+1+z

−2)
(1−zt)8(1−z−1t)8

HT (GrD(C[V 4])(−2)3,z, t) = t
2(z2+1+z

−2)
(1−zt)8(1−z−1t)8 .
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As in Example 4, to find the Hilbert series of the SL2C-invariants, we multiply by
(1−z

2) and find the z
0 = 1 coefficient in the resulting expression. This produces the

Hilbert series:

H(GrD(C[V 4])(−6)SL2C, t) = t
6+15t

8+50t
10+50t

12+15t
14+t

16

(1−t2)13

H([GrD(C[V 4])(−4)3]SL2C, t) = 36t
6+162t

8+162t
10+36t

12

(1−t2)13

H([GrD(C[V 4])(−2)3]SL2C, t) = 36t
4+162t

6+162t
8+36t

10

(1−t2)13 .

Since the resolution was SL2C-equivariant, we get a resolution of the invariant mod-
ules:

0 → GrD(C[V 4])(−6)SL2C →
�
GrD(C[V 4])(−4)3�SL2C

→
�
GrD(C[V 4])(−2)3�SL2C →

�
GrD(C[V 4])sl2C

�SL2C → 0.

Since the alternating sum of the Hilbert series over an exact sequence is zero, we can
use this data to determine the Hilbert series for Gr ker(π∗)=

�
GrD(C[V 4])sl2C

�SL2C,

H(Gr ker(π∗), t) = 36t
4+162t

6+162t
8+36t

10

(1−t2)13 − 36t
6+162t

8+162t
10+36t

12

(1−t2)13

+ t
6+15t

8+50t
10+50t

12+15t
14+t

16

(1−t2)13

= 36t
4+127t

6+15t
8−76t

10+14t
12+15t

14+t
16

(1−t2)13 .

In two previous papers [17, 18] I claimed that ker(π∗) was generated by the Casimir
operator, an operator of total degree 4. However, the degree 4 part of this ideal is
a 36-dimensional vector space (rather than a 1-dimensional space), so this claim is
false. In fact ker(π∗) requires many generators.

Finally, by taking the difference of the Hilbert series for GrD(C[V 4])SL2C and
Gr ker(π∗), we find the Hilbert series for GrD(C[V 4]SL2C) = GrD(G(2,4)) in the
total degree order,

H(GrD(G(2,4)), t) =
1+18t

2 +65t
4 +65t

6 +18t
8 + t

10

(1− t2)10 .

The form of this Hilbert series prompts us to ask whether GrD(C[V 4]SL2C) is
Gorenstein. By a result due to R. Stanley (see [2, Corollary 4.4.6]) it is enough to
show that GrD(C[V 4]SL2C) is Cohen-Macaulay. By the Hochster-Roberts Theorem
[9] (or see [10, Theorem 3.6]), GrD(C[V n])SLkC is always Cohen-Macaulay, but I
see no particular reason for the same to be true of GrD(C[V n]SLkC).

Open Question: When are the graded rings GrD(C[V n]SLkC)= GrD(G(k,n)) Goren-
stein?
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