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Abstract 

Rings of differential operators are notoriously difficult to compute. This paper computes the 
ring of differential operators on a Stanley-Reisner ring R. The D-module structure of R is 
determined. This yields a new proof that Nakai’s conjecture holds for Stanley-Reisner rings. An 
application to tight closure is described. @ 1999 Elsevier Science B.V. All rights reserved. 

AMS Clas.@cation: Primary 13NlO; secondary 13A35,16S32 

1. Introduction 

Differential operators are a fundamental tool in many areas of mathematics. Un- 

fortunately, their use in commutative algebra has been frustrated by the difficulty of 

computing rings of differential operators in general (see [l]). This paper computes the 

ring of differential operators of a ring R that is the coordinate ring of a reduced affine 

variety defined by monomial equations, otherwise known as a Stanley-Reisner ring. 

Particular attention is paid to the case where the variety is defined over a field of 

positive characteristic. Dealing with the characteristic p case presents extra difficulties 

but it also suggests new applications: there is a general philosophy that differential 

operators are related to tight closure (see [17, 181). One of the goals of this paper is 

to illustrate this connection in the case of Stanley-Reisner rings. 
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Differential operators are defined in Section 2. In Section 3, the ring of differential 

operators D(R) of a reduced monomial ring R is determined. This follows easily once 

we know that the R-module D(R) has a direct sum decomposition (Theorem 3.3). 

The proof of this fact is interesting because different (and incompatible) techniques 

are used in the positive and zero characteristic cases. The characterization of D(R) 

generalizes Brumatt and Simis’s description of the module of derivations Do-k(R) in 

[2, Theorem 2.2.11. 

Using other methods, Tripp [22] also described the ring of differential operators 

on a Stanley-Reisner ring defined over a field of characteristic zero. I would like 

to thank both Martin Holland and the referee for bringing Tripp’s work to my attention. 

The D-module structure of R is determined in Section 4. This project was motivated 

by the fact that the test ideal for tight closure is a D-module (see [ 18, Theorem 

2.21). The description of the D-module structure of R is used to show that reduced 

monomial rings satisfy an extension of Nakai’s conjecture to arbitrary characteristic. In 

particular, for a reduced monomial ring R, if D(R) is generated by derivations, then R is 

regular. 

Tight closure is defined in Section 5 (see [6] for a complete treatment). There, I 

show that reduced monomial rings are F-split and I give an explicit description of the 

splitting of Frobenius in terms of differential operators (Theorem 5.2). The test ideal of 

a reduced monomial ring is also computed. The proof of this result (which is originally 

due to Cowden - see [3, Theorem 3.61) uses the description of the D-module structure 

of R from Section 4. 

2. Preliminaries 

Throughout this paper, unless stated otherwise, k will denote a commutative domain 

and R will be a commutative k-algebra of finite type. The main case of 

interest is when k is a field. However, the theory is developed in this generality 

because we eventually want to study differential operators on families of varieties 

arising from using the technique of reduction to characteristic p on an algebraic 

variety defined over a field of characteristic zero. This involves studying Z-algebras of 

finite type. Smith and Van den Bergh [20, Section 51 motivate and study this problem. 

Recall that a k-derivation 6 of R is a k-endomorphism of R which satisfies 

&KY) = S(r)s + r&s) (2.1) 

for any Y,S E R. It follows that [a, r] = 6(r) for any r E R and hence [[6, Y],s] = 0 for 

any r,s E R. This motivates the following definition. A k-linear differential operator on 

R of order <n is a k-linear endomorphism 6 of R such that 

[. . . [[a, rol, r11,. . . > ml = 0 (2.2) 

for any ro,rl , . . . , r, E R. The collection of all differential operators D(R) on R forms 

a subring of Ends, so that R is clearly a D(R)-module. Good references for this 

material are MiliEiC’s notes [14] and McConnell and Robson’s book [ 12, Ch. 151. 
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When R=k[x,,..., x~], D(R) is generated as an R-algebra by the divided powers 

on the derivations (see [ 17, p. 1761); that is, D(R) is generated by 

In characteristic 0 this is the same as the algebra generated by the derivations, but in 

characteristic p this is strictly larger. The ring W = D(R) is called the Weyl algebra. 

Write S*f for S(f). When R=k[xl,...,xN]/J, then 

D(R)= (6E w: S*JcJ} 

JW 

The operators 6 E W such that 6 *J c J are said to be in the idealizer of J, written 

O(J). This definition of idealizer agrees with the usual notion of idealizer (see [ 12, 

Theorem 15.5.131). 

We grade the Weyl algebra in the following way: k[xl, . . . ,XN] is f@-graded, hence 

so is the ring of graded endomorphisms, *Erzdk(k[xl, . . . ,xN]). This ring consists of all 

k-endomorphisms of k[xl , . . . ,XN] that can be written as a sum of homogeneous endo- 

morphisms. Here, f E *Erzdk(k[xl,. . . ,xN]) is homogeneous of degree i if de&(x)) = 

deg(x) + i for all homogeneous x E k[xl, . . . ,xN]. In particular, 8; has degree (0,. . . , --n, 

0,. . ,O). The Weyl algebra is a graded subring of *Endk(k[xl,. . . ,x~]). Note that any 

element of the Weyl algebra can be uniquely written in the form C.,a xbaa since 8: o 

x; = cflo (3)x/a;~-c~+~. Here, a, b E NN and xbP = x!I . . x2 a:’ . . ‘8:. A nonzero 

term k,,bX”a” is said to have degree b - a and a sum ca,b k,.bxbda (kn,b Ek) is said 

to be a differential operator of degree u E Z N if each term in the sum has degree u. 

3. D(R) for monomial rings R 

A monomial ideal J is an ideal of a polynomial ring k[x] = k[xl,. . ,XN] (where k 

is a commutative domain) that is generated by monomials in xl,. . . ,xN. If J is such an 

ideal, we call the quotient ring k[x]/J a monomial ring. Reduced rings of this type are 

called Stanley-Reisner rings. A monomial term is the product of a nonzero element of 

k with a monomial in k[x]. 

Monomial ideals are prime if and only if they are generated by some subset of the 

variables. Monomial ideals are radical if and only if they are generated by square-free 

monomials. Obtaining the minimal primes in a monomial ring is facilitated by the 

following well-known result. 

Proposition 3.1. The minimal primes over a monomial ideal I = ({x”}) are all of the 

form p = (xi,, . . . ,xi,) where 

(1) Every minimal generator xp of I is divisible by some xi,. 

(2) For each xi,, there exists a minimal generator xp such that xi, divides xl’ and 

no other xik divides xl. 
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In what follows, we will often be working in characteristic p>O. A basic result in 

characteristic p which we shall rely on throughout the paper is that binomial coefficients 

satisfy a nice identity modulo p (see [4]). 

Lemma 3.2. If a = C:=, aip’ and b = xi=, hip’ (0 5 ai, bi < p) are two nonnegative 

integers then 

(0 = ($0 (1:) ... (ii) (modpI. 

Here, (‘j) = 0 when c cd. 

Proof. In the ring (Z/pZ)[x], we have 

(1 +x)“=(l +x)“O(l +x)a’p.. .(I +X)@p+l +x)“0(1 +Xp)a’. . .(l +&a,. 

Consider the coefficient of .xb = nf=, xPlbl occurring on each side of this identity. On 

the left-hand side the coefficient is (3 and on the right-hand side it is (i:) (1:) . . (2). 

Hence, these integers are equal module p. 0 

Now, let J be a monomial ideal of k[xl,. . . ,XN] = k[x]. Let R =k[xl,. . . ,xN]/.J. To 

determine D(R) it suffices to determine the idealizer of J. The next result shows that 

when R is reduced, it suffices to determine which terms xbaa are in the idealizer of J. 

Theorem 3.3. Let J be a radical monomial ideal of the ring k[xl,. . .,xN], where k 

is a commutative domain. Then an element 6 = c8,b ka,bxbaa (ka,b E k) is in U(J) if 
and only if each term of 0 is in U(J). 

Proof. Let 0 = C, 8, be an element of the Weyl algebra, where & is a differential 

operator of degree u E ZN. Since J is a homogeneous ideal in the NN-graded ring 

k[xl , . . .,xN], 8 E U(J) if and only if each graded piece of 19 is in U(J); that is, if 

and only if each 8, E O(J). So, without loss of generality, we can assume that all the 

terms in 8= C, b k,,bXbda are of degree v. Then 8= zaESCNN kpxa+‘an. Aiming for 

a contradiction, ke can assume that no term of 8 is in O(J). 
Pick one term k, xefvdc of 0 = CnES kaxa+“aa. As this term is not in O(J), there is 

a monomial 9 E J such that kCxc+“ac *xv = k, (z:) . . . (~~)x~+” $ J. As J is radical, J 

is the intersection of its minimal primes. So k,, xc’+“8” xxv is not in some minimal 

prime P of J. Relabel if necessary to get P = (xl,. . . ,xd). 

Let m=(O ,..., O,md+l,..., mj,+@ and note that xm$(, ,,..., xd)=P. As x’l~J, 
xV+~ E J. Since 0 E II(J), 

~*x~+~z c,&,(;:) . . . (z;) (4d+;;+-) . . . (4N~mN)x~+r+mE Jcp. 

Together with xq+v+m 6 P, this implies that 

C”(E) ... (2:) ( 
. . . (VN?) =O (3.1) 

for all mi > 0 (i 2 d + 1). 
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We make some remarks that simplify the sum (3.1). To start, observe that for each 

term k, xn+‘Za in 0 = CaES kaxaivaa, we have ai > vi for i 5 d. To see this first note 

that ai +vi > 0 for all i and so ai > -ui for all i. Then, since k, xc+“? *xv 4 P = (x1,. , 

xd), we have xv+” 4 (XI,. . . ,xd) and SO vi + vi = 0 for i 5 d. Together with our previous 

result, this gives ai > -Vi = vi for i 2 d. 

Also, ci = vi for each i < d since if ci > qr then (1:) = 0 and so k, xcf”ac *xv = 0 E P 

(a contradiction). 

Now, many of the terms in sum (3.1) are zero, resulting in 

(*I 

for all mi 2 0 (i 2 d + 1). Note that this sum is nonempty since k, appears. 

Now, our proof diverges into two cases, depending on the characteristic of k. 

If the characteristic of k is 0: Let F = frac(k) be the fraction field of k. Eq. (*) con- 

tinues to hold in F. The key point is that Eq. (*) holds for all (0,. . . ,O,md+r,. . . ,rnN) E 

NN, so we can think of (*) as a polynomial in the indeterminates md+t , . . . , mN with 

coefficients in F. Here we are using the fact, over a characteristic zero field, (d) is 

a polynomial in the variable x of degree d. Since the polynomial (*) is zero on all 

natural numbers, it is the zero polynomial. 

The polynomial 

(il”+;:,:‘“+‘) . . . y++.) 

is an element in the multi-graded ring F[md+l, . . , mr\i] which has a unique nonzero 

term of multi-degree (ad+l,. . . , aN) (its leading term). It follows that the polynomials 

( 
VdC;;+yl) . . (VN+$y are linearly independent over F. Interpreting (*) as an equality 

of polynomials, linear independence implies k, = 0. This contradicts kCxct”ac $ O(J). 

If the characteristic of k is p >O: Partially order the indexing set S of the sum 

(I== CaES $xn+‘aa as follows. We say a = (al,. . . ,aN) 5 b = (bl,. . . , bN) if (ad+,, . . . , 

aN)<(bd+l,..., bN ) in the lex-order induced by the following ordering on the inte- 

gers: II= Ci_o?Zip’Lm= Cizomip’ (O<ni,mi<p for all i) if (no,nl,...,nt)l(mo, 

m 1,. . . , mr ) in the lex ordering induced by the usual ordering on the integers 0, 1, , 

p- 1. 

Let T be the set of indices a which agree with ye in their first d components and 

such that kaxa+“iY * xq $ J (that is, k, (z{) . . . (g;) # 0). This is not an empty set since 

c E T. Note that 3 restricts to a total ordering on T. Let c’ be minimal in T. 

Note that k,! appears in the sum (*). We will show that for a particular choice 

of the mj, the sum (*) has only one summand, k,!, and so k,! = 0. This will be a 

contradiction to k,, xc’+“ac’ *xv $ J. 

If aES\T but al=yl,...,ad=Yd, then 

k,, xa+‘aa *Xv = k, (lid+;;+;+‘) . . . (vN;mN)x,+n EJ. 
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Together with xv+” 4 J, this implies k, (46+hT+yi ) . . . (qN,+,““) = 0. This implies that the 

indexing set in Eq. (*) simplifies further 

vd+l + md+l 

ad+1 

) . . . (ymN) =O (3.2) 

for all mi > 0 (i > d + 1). 

Recall that c’ is minimal in T under 5. Then for large e, Eq. (3.2) holds for 

mi= C: -vi + pe, SO that 

zk,,(Cki;d;pe) ... ya;p’) =O. (3.3) 

Writing base p expansions of cj and ai, we have ci = cf=, c$pj and ai = Cl=, aijpj 

(0 5 aij, CL <p). SO Eq. (3.3) becomes 

(3.4) 

Here we have used the expansion of binomial coefficients in characteristic p (Lemma 

3.2) and the fact that (i) = 1. 

The sum in Eq. (3.4) has only one nonzero term, indexed by c’. This follows from 

the minimality of c’. TO see this, observe that for each a E T, a k c’ so if ai,j < ci j for 

all i=d+ 1 ,..., N and j=O ,..., t then a = c’. The only instance in which the product 

does not vanish is when ai,j = c:,~ for all i =d + 1,. . . ,N and all j = 0,. . . , t; that is, 

when ai = cf for all i > d + 1. This condition is only satisfied by c’. It follows that kc! 

is the only term in sum (3.4). This gives kc! = 0, a contradiction. 0 

Example 3.4. Theorem 3.3 is not true when the ring R is not reduced. For example, let 

R = k[x, y]/(xP, xp-’ y), where p is the characteristic of k if k has positive characteristic 

and is an integer 

see this, first note 

and b2 1. Then 

((P - lF% - 

22 if k has characteristic 0. Then ((p - l)& - xi?l&)~D(R). To 

that ((p - I)& -xdr&) *xN=O.Now,letxayb~Jwitha>p-1 

xd~&)*xayb=((p - 1)b - ab)xayb-’ 

and x”yb-’ EJ unless a=p - 1 and b=l, in which case, (p - 1)b - ab=O. So 

((p - l)& -xdl&)~D(R). However, (p - l)& and -x&a2 are not in D(R) since 

they send xP-‘y E J to %(p - l)xP-’ @J. 

We are now in a position to determine the ring of differential operators on a reduced 

monomial ring, R = k[x]/J. 
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Theorem 3.5. Given a reduced monomial ring R = k[x]/J, an element of the Weyl 

algebra xbaa is in D(R) if and only if for each minimal prime P of R, we have either 

xb E P or xa 4 P. In particular, D(R) is generated as a k-algebra by {xba”: xb E P or 

x” q! P for each minimal prime P of R), and these are a ,free basis for D(R) as u left 

k-module. 

Proof. The last statement follows immediately from the first claim and Theorem 3.3. 

It remains to prove the initial claim. 

Suppose that x68“ E D(R). Let P be a minimal prime of J. Relabeling, if necessary, 

P=(x,,... ,~~).Ifx~~Pthen~~x~+~~~~~~~J.Asx~~~fixesJ,x~d~*x”x~+~~~ X,\’ = 

xbxd+,...x~EJcP. Asxd+i.. . xN $ P and as P is prime, xb E P. 

Now, suppose that x6? is such that for each minimal prime P of J, xb E P or 

xa $ P. We show that x6? E O(J) (so xbaa restricts to a differential operator on R). 

Suppose that xc E J. As R is reduced, J is radical and hence J is the intersection of its 

minimal primes. Then for each minimal prime P of J, xc E P. If x” $8 P then 8’~’ E P (if 

daxc $! P then x’jx’ and we have the contradiction xa(aaxc) = nx’ E P for some it E Z). 

Also, if xb E P, then xbaa *xc E P. Since these results hold for each minimal prime of 

the radical ideal J, xbda *xc E J. Hence, xbaa E O(J) and xb? restricts to a differential 

operator on R. 0 

Remark 3.6. Theorem 3.5 can be applied in practical examples because Proposition 

3.1 allows us to easily compute the minimal primes of R. Theorem 3.5 also holds when 

J is not a monomial ideal but becomes a monomial ideal after tensoring with frac(k); 

for example, the theorem applies to R = Z[x, y]/(2x,xy). We omit the details. 

There is an alternate statement of the theorem using double annihilators. 

Corollary 3.7. Given a reduced monomial ring R = k[x]/J, xbaa is in D(R) if and 

only if x” E (J: (J: x”)). That is, D(R) = @(J: (J: x’))/J aa (colons here are being 

computed in k[x]). 

Proof. As J is radical, J is the intersection of its minimal primes, J = Pi n . . n Pt n 

Pt+l n . . f~ F’,. Suppose that x” $! P, (1 < i 5 t) and x” E Pj (j > t). Then 

(J: (J: x”)) = J. nP ( .( p :xa))=(J: &Pj:x@)) 

=(J:(fiP&))=(J: fiP)=(@: @Y 

=c (Pi: iI+ =;G1 (+ @) =;_il,i:. 

Now, the result follows from Theorem 3.5. q 
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Corollary 3.7 partially extends a result due to Brumatt and Simis [2, Theorem 2.2.11. 

Theorem 3.8. Let J c k[x] be an ideal generated by monomials whose exponents are 
relatively prime to the characteristic of k. If R = k[x]/J then Derk(R) = @ Ija/&j 

where Ij = (J: (J: xj))/J. 

Proof. First, we show that Derk(R) is a direct sum @Ija/axj, where the Ij are ideals 

of R. Let 0 = c g$/axj E Derk(R) and suppose that gjafaxj $! Derk(R). Then there is 

a monomial xm E J with gja/axj *x”’ $ J. In particular, mj> 1 and Xj )lgj. Then 

e*Xm= c a 
SiT& *P= c mig$‘/xi E J (3.5) 

but xy’](migix”/xi) = g$/axi *x”’ for all i # j. So, reducing (3.5) modxy gives [e *xm] 

= [mjg$“/xj] E J + (x?). But mjgjXnt/xj @ (x?) and g$/axj *xrn = mjgjx”/xj 6 J, SO 

mjgjXm/Xj $ J + (xy ), a contradiction. So gja/axj E Derk(R) and Derk(R) = c Ija/axj. 
It is clear that the sum is direct. 

The reader can easily check that Ij = (J: (J: xj))/J. 0 

4. The D-module structure of R 

Having characterized D=D(R) for reduced monomial rings R, it is natural to inves- 

tigate the D-module structure of R. One place where such an investigation might prove 

useful is in the theory of tight closure (see [6] for an introduction to tight closure). In 

the next section we will prove a result in this direction, but for now we remark that it 

is the fact that test ideals are D-modules that is relevant here (see [18, Theorem 2.21). 

When R = k[x]/J is a reduced k-algebra and k is a field, then there is a particularly 

nice description of the D-submodules of R in terms of the minimal primes of R (see 
Theorem 4.6). However, when k is not a field, things are more complicated. This is 

essentially because elements of D = Dk(R) are k-linear endomorphisms of R so any 

ideal of R extended from an ideal of k is a D-submodule of R. 
Eventually, we will prove a result relating D-submodules of R to the primary com- 

ponents of R. In a generous redundancy of notation, we call a D-submodule of R a 

D-ideal or a D-stable ideal. To start, we note that D-stability passes to minimal primary 

components. 

Proposition 4.1. If I is a D-stable ideal, then the minimal primary components of I 
are also D-stable. 

Proof. The P-primary minimal component of I is IRp n R. Since D(Rp) = D(R) @R Rp, 
if I is D-stable, IRp is D(Rp)-stable. It is also easy to show that if J c Rp is a D(Rp)- 
stable ideal then J fY R is a D(R)-stable ideal. Indeed, if x E J n R and (3 E D(R) then 

~~l~Jand8/1~D(R~).Then(~~x)/l=8/1~~jl~Jandso8*x~JnR.Itfollows 

that J n R is D(R)-stable. Together, these results imply that IRp n R is D(R)-stable. 0 
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Example 4.2. The embedded components of a D-stable ideal need not be D-stable. 

For example, let R = k[x,y]/(x2,xy). Then (0) is a D-stable ideal with primary de- 

composition (0) = (y) n(x). Here, (x) is a minimal component and (y) is an embed- 

ded component. It is easy to check that 0 = xd, 82 - 82 E D(R): (x8, d2 - &) * xN = 0; 

(xa,a2-a,)*xayb=(ab-b)xayb-’ and x a y b-’ is zero unless a = b = 1, in which case, 

ab - b= 0. On the other hand, y is in the embedded primary component q=(y) of 

(0) and 0 * y = - 1 $! q. So q is not D(R)-stable. This example is independent of the 

characteristic of k. 

Example 4.3. In this example, we determine which radical monomial ideals of 

R = k[x, y,z]/(xy, yz) are D-stable. Here J = (xy, yz) = (x,z) n (y). Then D(R) is the 

R-algebra generated by {xa;a,m,za;a,m, ya;},,,lO. The lattice of radical monomial ideals 

of R consists of the following ideals: (xy, yz), (y), (xy, yz,xz), (x, yz), (z,xy), (x,z), (z, y), 

(x, y), (x, y, z). Of these, only (xy, yz), ( y), (x, z), (x, y, z) are D(R)-submodules of R. 

Are there any more D-stable ideals 1 when we relax the requirement that the ideal 

I is a radical monomial ideal? The answer turns out to be a qualified no. 

Lemma 4.4. In a reduced monomial ring R, every D(R)-submodule of R, I, is an 

ideal generated by monomial terms that is equal to a radical monomial ideal after 

tensoring with frac(k). In particular, when k is a field, every D(R)-submodule of R is 

a radical monomial ideal. 

Proof. If f is in some D-stable ideal, I, and cx’ is a term off of maximal total degree, 

then x”d’ E D(R) (by Theorem 3.5) and x“? * f = CX“ E I. It follows that every term 

of f is in 1 and hence I is generated by monomial terms. Again, Theorem 3.5 implies 

that x,$ E D(R). If hx” E I (h E k), then let d E NN be given by di = 0 if ai = 0 and 

di = 1, if ai # 0 (that is, di = 1 - a,,,~). Then xdaa E D(R) and so hxd =xdaa * hx” E I. 

If k is a field then xd E I and I is radical. 0 

Example 4.5. We investigate the D-module structure of R more closely. Let 

R = k[x, y,z, w]/(xz, yw, yz), k a field. Then J = (xz, yw, yz) = (x, y) n (y,z) n (w,z). The 

R-algebra D(R) is generated by {x8;, ya;@,za;a~, ~a;},,,,,. There are 34 radical 

monomial ideals in R and among these, 14 are D-stable. The 14 D-stable ideals are all 

ideals which can be obtained by taking sums and intersections of the minimal primes 

of R. 

This suggests the following result. 

Theorem 4.6. When k is a jield, every D-submodule of the reduced monomial ring 

R = k[x]/J is the intersection of sums of minimal primes of R. 

Proof. As (0) c R is D-stable, Proposition 4.1 shows that all minimal primes of R are 

D-stable. Clearly, sums and intersections of D-stable ideals are D-stable. So 

intersections of sums of minimal primes are D-stable. 
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Conversely, let I be a D-stable ideal of R. Then 1 is a radical monomial ideal by 

Lemma 4.4. Write I as the intersection of its minimal primes. Each minimal prime 

is D-stable (by Proposition 4.1) so it suffices to establish the result for I, a prime 

ideal. 

Consider the D-stable prime ideal 1 as an ideal of k[x] and note that 1~ J = PI n. .n 
P,.. Relabeling if necessary, we may assume that I 3 P,, . . . , I 3 Pt, I 3 P,,,, . . . , I $ P,. 

Note that I must contain at least one minimal prime of J since Z contains J and is 

prime itself; so we have t2 1. 

We claim that I=Pl + ... + Pt. By hypothesis, 12 PI + . . + Pt. Assume that 

I #PI +. . .+P,; we aim to produce an operator xbda in O(J) and not in O(I). Then xbda 

restricts to an element of D(R) which does not stabilize I. This will be a contradiction 

as Z is D(R)-stable. 

As I;64 (i 2 t + I), there is a monomial in P, which is not in 1. The product of 

such monomials is a monomial xb which is in each Pi (i > t + 1) and not in I. 

As IfP, $ ‘.. + Pt, and I is a monomial ideal, there is a monomial x” ~1 with 

X”$Pi ,.,.,Xn$P*. 

Using the criterion of Theorem 3.5, one checks that xbdn E U(J). As I is prime, 

Theorem 3.5 also shows that xbaa E O(I) if and only if xa $ I or xb E 1. As neither 

of these conditions are satisfied, xbda @ O(I). This shows that I could not have been 

D-stable, so I = PI + . . + Pr after all. 0 

Remark 4.7. In fact, this argument shows that the collection of D-ideals equals the 

lattice of ideals generated by the minimal primes of R under the operations of addition 

and intersection. However, this does not improve the theorem: any ideal in this lattice 

is the intersection of sums of minimal primes of R. 

Remark 4.8. As expected, Theorem 4.6 must be modified when k is not a field. For 

example, (0) c R = Z[X]/(~X) is clearly D-stable, but (0) is not the intersection of sums 

of minimal primes of R. Still, this becomes true after tensoring with Q = frac(Z). In 

general, when k is a commutative domain, the D(R)-submodules of R become the 

intersection of sums of minimal primes of R@,+ frac(k) after tensoring with 

frac(k). 

The description of the D-module structure of R can be used to verify Nakai’s con- 

jecture for reduced monomial rings. Nakai conjectured that if k is a field of char- 

acteristic zero and R is a reduced k-algebra then D(R) is generated by derivations 

*R is regular. A summary of the history of the conjecture can be found in Singh 

[ 16, Introduction]. 

Ishibashi [lo] extended Nakai’s conjecture to the case where k is a perfect field of 

arbitrary characteristic. Recall that d = {&},“=a C Endk(R) is a Hasse-Schmidt deriva- 

tion if 60 = idR and 

6,(Ub)= C 6i(U)6j(b). 
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Write HS(R) for the R-algebra generated by the components 6, of Hasse-Schmidt 

derivations on R. Ishibashi’s extension of Nakai’s conjecture is that D(R) = HS(R) w R 

is regular. Note that in characteristic zero, HS(R) = der(R), so this conjecture implies 

the original conjecture of Nakai. 

Schreiner [ 151 proved that monomial rings defined over a field of characteristic 

zero satisfy Nakai’s conjecture. The following theorem establishes Nakai’s conjecture 

for reduced monomial rings defined over a perfect field of arbitrary characteristic. In 

particular, it gives a completely new proof of Schreiner’s result (in the reduced case). 

Theorem 4.9. When R = k[x]/J is a reduced monomial ring over a perfect ,field k qf 

arbitrary characteristic, D(R) = HS(R) % R is a regular ring. 

Proof. It is well known that if R is a regular ring defined over a perfect field k, then 

D(R)=HS(R) (see [5, 16.11.2; 211). 

It is easy to check that if I is a HS(R)-stable ideal, then so is 12. If a, b E I and 

d = {S,}~&, is a Hasse-Schmidt derivation then 

&(ab) = C di(a)dj(b) E 12, 

since 6i(a), 6j(b) E I. 

Now, suppose R = k[x]/J satisfies D(R) = HS(R). Let P be a minimal prime of R. 

Then P is D-stable (by Theorem 4.6) and so P is HS(R)-stable. Then P2 is HS(R)- 

stable and therefore P2 is D-stable. Theorem 4.6 forces P2 = 0 and since R is reduced, 

P = 0. A monomial ring which is a domain is a polynomial ring and hence R is 

regular. 0 

We end this section by giving negative answers to some natural questions about 

D-stability. First, if I is a D-stable ideal, is fi D-stable? 

By Lemma 4.4, this is trivially true if R is a monomial ring and I is a monomial 

ideal. This is also true when R is the coordinate ring of a nonsingular irreducible 

affine variety, since such rings are D(R)-simple (see [ 12, Theorem 15.3.8 and Corollary 

15.5.61). If I is a proper D-stable ideal of R, R/I is a D(R)-module and the annihilator 

of this module is a nonzero two-sided ideal of D(R). As D(R) is a simple ring, I = R. 

Thus, R is D(R)-simple. 

If (R,m) is an isolated singularity then all D-ideals of R are m-primary. This follows 

from our comments about the regular case since any counterexample I can be main- 

tained under localization at a minimal prime P of I and if P # m, RP is regular. Still, 

in general it is hard to check whether m is D-stable in an isolated singularity (R, m). 

There is one instance where it is possible to check that m is not D-stable: a nonre- 

duced scheme supported on a single point provides a counterexample to the present 

question. Consider R = k[xl, . . . ,xN]/(x:, . . . , xi), where k is a field. Then we claim that 

D(R) = Endk(R). To see this, note that if 8 is any k-endomorphism, then 
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for any ro, . . . , r&V E R. Here, Endk(R) is a matrix ring, so it is simple (see 

[II, Theorem 3.31). It follows that D(R) is a simple ring. Thus, R is a simple D(R)- 
module. Now, in this example, (0) is a D-ideal, but &@ = (Xl,. . . ,iN) is not a D-ideal 

(as R is D-simple). 

The isolated singularity R = C[x, y,z]/(x3 + ,v3 + z3) is interesting because Proj(R) 

is an elliptic curve. In [l] Bernstein, Gel’fand and Gel’fand describe D(R). In par- 

ticular, they show that there are no differential operators in D(R) of negative degree. 

It follows that m, and all powers of m, are D-stable. Lemma 4.4 shows that this 

behavior does not hold in reduced monomial rings: powers of D-stable ideals are al- 

most never D-stable (this only occurs for ideals of R which are extended from k). 

Also, this example shows that Lemma 4.4 does not extend to arbitrary algebras over a 

field. 

At present, there is no nice description of D(R) when @ is replaced by a field of 

characteristic p. It is known that the result of [I] does not extend to the characteristic 

p case (there are strictly more differential operators in the characteristic p case: see 

[18, p. 3851 for a precise statement of this fact); however, it is not known whether 

there are any negative degree differential operators on R. For a detailed study of this 

example, see [ 131. 

5. Tight closure 

For what follows, we restrict to the case where k is a field of characteristic p. 
We will define the necessary tight closure terminology but we refer the reader to 

Hochster and Huneke [6] for details (also, a nice exposition of both the characteris- 

tic p and the characteristic zero theory can be found in the notes from the CBMS 

conference [9]). 

When R is a ring of characteristic p>O, R can be viewed as an algebra over its ring 

of peth powers, RPe. The ring R is F-finite if R is a finitely generated module over RP. 
The following description of D(R) due to Yekutieli [23, Theorem 1.4.91 suggests that 

tight closure is connected with the theory of differential operators in characteristic p. 

Proposition 5.1. Let R be a commutative k-algebra of characteristic p. If R is F-jinite 
then Dk(R) = IJ, EndRp (R). 

If the map RP v R splits then R is said to be F-split. If for each RP-module M, 
RP @M ---f R @I M is injective, we say that R is F-pure. Note that F-split e F-pure. 

The converse holds when R is F-finite (see [S, Corollary 5.31). 

Using differential operators, we obtain an easy proof of a result due to Hochster and 

Roberts [8, Proposition 5.381 that certain monomial rings are F-pure. In fact, we do 

more: we give an explicit splitting of RP v R. 

Theorem 5.2. The reduced ring R= k[x]/J is F-split. 
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Proof. Theorem 3.5 implies that 

&J-l . ...1 P--l)x(P-l ,..., p-1) = +y’)fi (Pi, 1) +; 

(I,....,&)=O k=l 

is a differential operator on R. This operator clearly sends 1 to 1. Also, its image is 

contained in RP: 

&P-l /..., p--l lx(P--l %...? P- 1) * Xa = (“:“l’)...(“~~r,l)x~ 

={ 

0 ifx”$RJ’, 

Xa if xa E RP, 

the last equality coming from Lemma 3.2. This computation also shows that this oper- 

ator is RP-linear. Thus, this is a splitting of R* ct R as RP-modules. Note that as R is 

F-split, it is also F-pure. 0 

WhenI=(a,,..., at) is an ideal in a Noetherian ring R of characteristic p>O, define 

J[J”l to be the ideal (ape I , . . , ape ). Let R” denote the set of elements of R that are not 

in any minimal prime of R. To each ideal I we will associate a larger ideal I*, the 

tight closure of 1. 

Definition 5.3. An element x E R is in I* if and only if there exists c E R” such that 

cxp’ EPel for all e>>O. 

If R is reduced, the condition for all e >O can be replaced with for all e. Tight 

closure admits a particularly nice description in reduced monomial rings. 

Lemma 5.4. If PI,. . , P,. are minimal primes of k[x]s, then .for all ideals I c R = k[x].yl 

(PI n...nPr), IR*= n,(I+E). 

Proof. Tight closure can be tested modulo minimal primes [9, Theorem 1.3.c]. Thus, 

IR* = f$(U +P;)R*jS n R). But R/Pi = S-‘(k[x]/Pi) is a localization of a polynomial ring 

and, as such, is F-regular. Thus (I + fl)&E = (I + E)R/P,. The result follows. 0 

As a result, we get that tight closure commutes with localization in a reduced mono- 

mial ring. It is worthwhile to point this out in light of the difficulty encountered in 

proving this in general. For a different perspective on this result, see [ 191. 

Corollary 5.5. Tight closure commutes with localization in a reduced monomial ring, 
R = k[x]/(q n . . . n P,). 

Proof. Let S be a multiplicatively closed set in R. Without loss of generality, PI,. . . , ft 

(t 5 r) are the minimal primes of S-‘R. Let 1 be an ideal of R. Then Lemma 5.4 
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gives (Is-lR)* = nf=,(ZS-lR+&-‘R)= &[(Z+E)::)S-‘RI = n;=,w+P;:)rlRi= 
[f-y=, I + P;]S-‘R =ZR*PR. 0 

The test ideal of R is the ideal {c E R: cZ* c Z for all ideals Z of R}. A test element 

of R is an element of the test ideal which is not in any minimal prime of R. For details 

on the existence, importance and applications of test elements, see Huneke [9, Ch. 21. 

The next goal is to describe the test ideal of a reduced monomial ring. 

Lemma 5.6. If tight closure commutes with localization in R, then R, is F-regular 
for any c in the test ideal. 

Proof. As tight closure commutes with localization at c, we have (ZR,)” =Z*R,. If 

z/l E Z”R, then for some s, c’z E Z*. As c is in the test ideal, c”+‘z EZ and hence 

z E ZR,. The other inclusion being trivial, we have (ZR,)* =ZR,. 0 

Corollary 5.7. If c is in the test ideal of a reduced monomial ring R= k[x]/ 
(9 n . . n Pr), then R, is F-regular. 

Proof. This is immediate from Corollary 5.5 and Lemma 5.6. 0 

Now, we use Theorem 4.4 to describe the test ideal of a reduced monomial ring. 

The following result is due to Cowden [3, Theorem 3.61. I am grateful to Karen Smith 

for suggesting the following proof. 

Theorem 5.8. For a reduced monomial ring R = k[x]/J and a primary decomposition 

of J=P, n...nPr, the test ideal ofR is ~~=,P~ n...nt.n...flPr. 

Proof. Take z E I*. By Lemma 5.4, z E Z + e for all minimal primes Z$ of J. If 

cEP1 n...flpiin... nPr then CZEZ+C~~=Z. SO cL=,P, n...nfin...np, is 

contained in the test ideal. 

To prove the converse, first note that the test ideal of R is a D-ideal (see 

[18, Theorem 2.21) since R is F-split (Lemma 5.2). Thus the test ideal is a radi- 

cal monomial ideal (Lemma 4.4). It suffices to show that each monomial generator of 

the test ideal is in CL, Pln...npifl.. . nP,. Let c be such a monomial. Without loss 

of generality, c @ Ui=, fi and c E n;=t+, P;. We may assume that c =x1 . . Xd. Now, 

R, = k[xlc 4x1,. ..,%I 1 1 

Pi n...nP, =pln...np, G”“‘G [ 1 
is F-regular (Lemma 5.7). The ring T = k[xl,. . .,xn]/(Pl n . . n Pt) is a direct sum- 

mand of R, (it is the k-linear span of homogeneous elements which have degree 0 

in the (inverted) variables, x1 , . . . , xd ). As a direct summand of an F-regular ring, T 
is also F-regular [6, Proposition 4.121. Then T is a normal ring [6, Corollary 5.111. 

Thus, T is a product of graded normal domains, T = RI x . . . x R,. It follows that T 
has at least s homogeneous maximal ideals. But T = k[xl, . . . ,xn]/(P, n . . . n Pr) has a 
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unique homogeneous maximal ideal. So T is a domain. From this it follows that t = 1; 

that is, c~P2n...nP,. q 
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