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Abstract

An algorithm is presented that computes explicit generators for the ring of differential operators on an
orbifold, the quotient of a complex vector space by a finite group action. The algorithm also describes
the relations among these generators. The algorithm presented in this paper is based on Schwarz’s study
of a map carrying invariant operators to operators on the orbifold and on an algorithm to compute rings
of invariants using Gröbner bases due to Derksen [Derksen, Harm, 1999. Computation of invariants for
reductive groups. Adv. Math. 141 (2), 366–384]. It is also possible to avoid using Derksen’s algorithm,
instead relying on the Reynolds operator and the Molien series.
Published by Elsevier Ltd
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Following the discouraging finding that rings of differential operators on singular varieties
can be non-noetherian (Bernšteı̆n et al., 1972), there has been much progress on identifying good
properties enjoyed by rings of differential operators on special classes of singular varieties. In
particular, much attention has been paid to quotient varieties; see, for example, Schwarz (1995),
Levasseur and Stafford (1989) for classical group actions, and Musson and Van den Bergh (1998)
for quotients by tori. When the group is finite, the ring of differential operators on the quotient
space is a finitely generated algebra. The finite group case was treated by Kantor (1977), Ishibashi
(1985), Levasseur (1981), Levasseur and Stafford (1995), Schwarz (1995) and more recently by
Plesken and Robertz (2005). Those papers contain many ad hoc examples of rings of differential
operators on orbifolds, the quotient of a complex vector space by a finite group. In this paper we
give an algorithm that not only computes explicit generators for the ring of differential operators
on an orbifold but also describes the relations among these generators.
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The methods presented in this paper were inspired by Schwarz’s study of the map π∗ carrying
invariant operators to operators on the orbifold. One step of the algorithm involves computing
a ring of invariants of a finite group acting on a commutative ring. To this end we describe
Derksen’s algorithm (Derksen, 1999), which uses Gröbner bases to compute rings of invariants.
Both Derksen (1999) and Schwarz (1995) deal with more general algebraic groups, but for the
purposes of this paper, we restrict our attention to the application of their methods for finite
groups. All the subtleties of the algorithm already appear in this case.

Basic definitions, together with a description of Derksen’s algorithm, are reviewed in
Section 1, where the algorithm to compute rings of differential operators is stated explicitly.
We give two examples to illustrate the algorithm in action in Section 2. In the last section we
show that it is possible to replace Derksen’s algorithm with a computation involving the Molien
series and the Reynolds operator, though in general this gives a redundant system of generators.

1. Essential ingredients for the algorithm

Let G be a finite group that acts on an n-dimensional complex vector space V and let R :=
C[V ] = C[x1, . . . , xn] be the coordinate ring of V , where the xi are the coordinate functions.
Collapsing each G-orbit to a point leads to an orbifold, the quotient variety V/G. The coordinate
ring of V/G can be described as a ring of invariants: the action of G on V induces a natural
action of G on C[V ] via g · f (x) = f (g−1 · x) and the coordinate ring C[V/G] is the subring
RG of R consisting of the invariant polynomials, RG = { f ∈ R : g · f = f for all g ∈ G}. Our
goal in this paper is to describe the ring of differential operators D(RG ).

Rings of differential operators: Perhaps the most important ring of differential operators is the
Weyl algebra,

D(C[x1, . . . , xn]) = C〈x1, . . . , xn, ∂1, . . . , ∂n〉,
where the variables xi commute with each other, the variables ∂ j = ∂/∂x j commute with
each other, and the two sets of variables interact via the product rule: ∂ j xi = xi∂ j + δi j .
If S = C[x1, . . . , xn]/I is the coordinate ring of an affine algebraic variety then the ring of
differential operators D(S) can be described in terms of the Weyl algebra of the ambient space:

D(S) = {θ ∈ D(C[x1, . . . , xn]) : θ · I ⊂ I }
I D(C[x1, . . . , xn]) .

So one way to describe D(RG ) is to present RG as a quotient of a polynomial ring. Unfortunately,
the description of the set {θ ∈ D(C[x1, . . . , xn]) : θ · I ⊂ I } may require prohibitive syzygy
computations.

We take a different approach, based on realizing RG as a subring of R. It would be best to
describe D(RG ) as generated by the restriction of elements of the Weyl algebra D(R) to RG .
However, this is not always possible (see Example 4). Instead we find a polynomial subring
C[z1, . . . , zn] ⊂ R and describe the generators of D(RG ) as the restriction of operators in the
Weyl algebra C〈z1, . . . , zn, ∂1, . . . , ∂n〉 to RG .

To describe D(RG ) in these terms, we need a more general definition of the ring of differential
operators, based on iterated commutators and due to Grothendieck (1967). If S is a commutative
C-algebra, then an endomorphism θ ∈ EndC(S) is said to have order ≤ n if for all s0, . . . , sn ∈ S,

[· · · [[θ, s0], s1], . . . , sn] = 0,
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where [θ, s] = θs−sθ is the commutator of θ and s in EndC(S). The ring of differential operators
D(S) consists of all endomorphisms of S with finite order. This is an unwieldy definition, but we
will be able to avoid explicit computations with commutators in what follows.

Filtrations and gradings: The ring D(S) is filtered by order: if Fk is the set of operators of
order ≤ k, then FkF� ⊂ Fk+�. We form the graded ring GrD(S) = ⊕kFk/Fk−1 and define the
symbol map σ : D(S) → GrD(S) so that σ(θ) is the image of θ in Fk/Fk−1 if θ ∈ Fk and
θ 
∈ Fk−1. For brevity we will often write θ̄ for σ(θ). Now if θ has order ≤ k and γ has order
≤ � it is easy to check by induction that θγ − γ θ has order ≤ k + � − 1, so the graded ring
GrD(S) is a commutative ring. In particular, the ring GrD(R) is just a polynomial ring in 2n
variables: GrD(R) = C[x1, . . . , xn, ∂̄1, . . . , ∂̄n].

The G-action on R = C[x1, . . . , xn] induces a G-action on both D(R) and GrD(R). If
θ ∈ D(R) then (g · θ)(r) = g · (θ(g−1 · r)) and both g · θ and θ have the same order. We
define the G-action on GrD(R) to be compatible with the symbol map: g · σ(θ) := σ(g · θ).
This is a well-defined action since if σ(θ) = σ(γ ) then order(g · (θ − γ )) = order(θ − γ ) <

order(θ) = order(γ ) and so σ(g · γ ) = σ(g · γ + g · (θ − γ )) = σ(g · θ).

It is helpful to write out the action of G on D(R) and GrD(R) explicitly. If g ∈ G acts on
R = C[x1, . . . , xn] = C[V ] via the matrix A, g · x = Ax (all vectors are represented by column
matrices), then g acts on C[V ∗] = C[∂] = C[∂1, . . . , ∂n] via (AT)−1, where AT is the Hermitian
transpose (AT

i j is the complex conjugate of A ji ). To see this,1 think of D(R) as a subset of
HomC(R, R). If ∂ ∈ V ∗ and x ∈ V then

(g · ∂)(x) = g · ∂(x ◦ g−1) = ∂(x ◦ g−1) = ((g−1)T∂)(x).

Of course, G acts on GrD(R) in a manner compatible with the symbol map. So g ∈ G also
acts on the σ(∂i )’s via the matrix (AT)−1. It is important to note that the action of G operates
separately on the variables xi and the derivations ∂ j and does not mix the two sets of variables.

Theorem 1. Gr(D(R)G ) is canonically isomorphic to (GrD(R))G .

Proof. If θ ∈ D(R)G then θ̄ ∈ (GrD(R))G : for all g ∈ G, g · σ(θ) = σ(g · θ) = σ(θ).
This shows that Gr(D(R)G ) can be canonically identified with a subset of (GrD(R))G . As
well, if δ ∈ (GrD(R))G , then there is an operator θ ∈ D(R) with θ̄ = δ. Indeed, writing
δ = ∑

a,b ma,bxa∂̄b, we can take θ = ∑
a,b ma,bxa∂b ∈ D(R). Since the action of G on x and

∂ is the same as the action on x and ∂̄, δ ∈ (GrD(R))G forces θ ∈ D(R)G . This shows that the
subset in question is the entire ring (GrD(R))G . �

The graded ring Gr(D(R)G ) is a powerful tool to study D(R)G . In particular, if θ̄1, . . . , θ̄k

generate the commutative ring Gr(D(R)G ) then θ1, . . . , θk generate D(R)G .
The symbol map suggests that the natural grading on GrD(R) comes from the order filtration:

we assign the variables xi degree zero and the ∂̄ j degree 1. Like all polynomial rings, GrD(R)

has many graded structures. We will find it convenient to sometimes work with the total degree,
assigning degree 1 to both the xi and the ∂̄i . This has the advantage that the graded pieces of
GrD(R) are finite-dimensional vector spaces.

1 I am grateful to an anonymous referee for the following simple explanation.



1298 W.N. Traves / Journal of Symbolic Computation 41 (2006) 1295–1308

Relating D(R)G to D(RG ): The projection π : V → V/G corresponds to the embedding
RG ↪→ R and this induces a map π∗ : D(R)G → D(RG ) via restriction. To make sense out of
this statement, we check that if θ ∈ D(R)G and r ∈ RG then (π∗θ)(r) := θ(r) is in D(RG ):

g · (θ(r)) = g · (θ(g−1 · r)) = (g · θ)(r) = θ(r).

We will investigate the behavior of the map π∗ in the case that G is a finite group (more general
situations are covered by Kantor (1977), Levasseur (1981) and Schwarz (1995)).

Theorem 2. The map π∗ is injective when G is a finite group.

Proof. This is Theorem 6.3(1) in Schwarz (1995) but there the proof relies on more general
results using vector bundles. We give an elementary proof. We need to show that if θ ∈ D(R)

and θ(RG ) = 0 then θ = 0. Clearly this is true when order(θ) = 0 since then θ is a multiplication
operator on the domain R. We suppose that θ is a counterexample of minimal order (≥1) and
aim for a contradiction. If x, y ∈ RG , then [θ, x](y) = θ(xy) − xθ(y) = 0, so [θ, x](RG) = 0.
Since [θ, x] has lower order than θ , [θ, x] = 0 and θ is RG -linear. If h ∈ R and x ∈ RG then

[[θ, h] − θ(h)](x) = θ(hx) − hθ(x) − θ(h)x = −hθ(x) = 0.

Since [θ, h]− θ(h) is an operator of lower order than θ that vanishes on RG , [θ, h] = θ(h). Thus
θ(hk) = hθ(hk−1) + hk−1θ(h) = · · · = khk−1θ(h). Since G is finite, R is integral over RG

(h satisfies the monic polynomial
∏

g∈G(X − g · h) whose coefficients are clearly in RG ). Let

Q(h) = hd + a1hd−1 + · · · + ad−1h + ad = 0 (ai ∈ RG)

be the monic relation of minimal degree. Applying θ yields

(dhd−1 + a1(d − 1)hd−2 + · · · + ad−1)θ(h) = 0.

Since Q(h) has minimal degree, (dhd−1 + a1(d − 1)hd−2 + · · · + ad−1) 
= 0. Thus θ(h) = 0
since R is a domain. So θ = 0 and we get our contradiction. �

Whether or not π∗ is surjective depends on whether G contains any elements acting as
pseudoreflections on V . A pseudoreflection is an element g ∈ G whose fixed set V g has
codimension 1 (since G acts linearly on V , this forces V g to be a hyperplane). Kantor (1977,
Theorem 4 in 3.3.1) characterized when π∗ is surjective.

Theorem 3. The map π∗ : D(R)G → D(RG ) is surjective if and only if G contains no
pseudoreflections.

Example 4. Let G = Z2 = 〈γ 〉 act on R = C[x] via γ (x) = −x . Then G is a reflection group
and RG = C[x2]. Writing z = x2, D(RG ) is the Weyl algebra C〈z, ∂/∂z〉. Unfortunately, ∂/∂z
does not extend to an operator on C[x] (see Schwarz (1995, Example 5.7)).

We will make use of Theorem 3 to obtain generators of D(RG ) from generators of D(R)G .
The theorem deals with the case when no element of G is a pseudoreflection. The opposite
case, when G is generated by pseudoreflections, is also interesting. If G is generated by
pseudoreflections, then G is said to be a reflection group.

Theorem 5 (Sheppard–Todd–Chevalley). The ring RG is a polynomial ring (and D(RG ) is a
Weyl algebra) if and only if G is a reflection group.
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When the group G contains some pseudoreflections but is not a reflection group, then we
factor G as follows. Let W be the subgroup generated by pseudoreflections in G. Note that
W itself is a reflection group and that W is a normal subgroup of G. To see this it is enough
to check that if w is a pseudoreflection and g ∈ G, then gwg−1 ∈ W ; this follows since
(g · V w) ⊂ V gwg−1

so codim(V gwg−1
) ≤ codim(g · V w) = 1. Now G/W acts on the

polynomial ring RW and RG = (RW )G/W . Since G/W contains no pseudoreflections, the map
π∗ : D(RW )G/W → D(RG ) is an isomorphism.

Computing rings of invariants: There are many good algorithms to compute invariant rings
of finite group actions. Kemper develops algorithms and describes their implementation in a
beautiful survey paper (Kemper, 1998). For concreteness, we will describe another algorithm,
due to Derksen (1999), that uses Gröbner bases to compute rings of invariants such as RW

and (GrD(R))G . Derksen’s algorithm applies to all linearly reductive groups (see Derksen and
Kemper’s excellent monograph (Derksen and Kemper, 2002)), but for simplicity we just describe
it for finite groups acting on vector spaces. First we represent the group G and its action on
R = C[x1, . . . , xn] in terms of coordinates. As a set the group G can be identified with a finite
set of points on an affine variety: G is identified with the vanishing set of some polynomials
f1, . . . , ft in a polynomial ring C[t1, . . . , td ] (it suffices to use one parameter t1 and one relation
f1(t1) = t |G|

1 − 1, but in some situations it is easier to parameterize the group by more than one
parameter). The action of G on R = C[x1, . . . , xn] is encoded as a map ρ : G → AutC(R).
If t = (t1, . . . , td ) represents an element of G – so that f1(t) = · · · = ft (t) = 0 – then define
elements Aij (t) such that ρ(t)(xi) = Ai1(t)x1 + · · ·+ Ain(t)xn . With this notation, ρ(t) is given
by the matrix (Aij (t)).

Example 6. If G = Z2 = {e, γ }, then represent G as the zero set of f1(t) = t2 − 1 with, for
example, the root t = 1 representing the identity e and t = −1 representing γ . Suppose that
γ ∈ G acts on the ring R = C[x1, x2, x3] by γ (x1) = −x1, γ (x2) = x3 and γ (x3) = x2. Then

ρ(1) =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ and ρ(−1) =

⎡
⎣−1 0 0

0 0 1
0 1 0

⎤
⎦ .

This can be achieved by interpolation: ρ(t) =
⎡
⎣t 0 0

0 t+1
2

1−t
2

0 1−t
2

t+1
2

⎤
⎦ .

Derksen’s algorithm relies on the Reynolds operator R, an RG -linear map from R to RG that
acts as the identity on RG . When G is a finite group, the Reynolds operator is just an averaging
map: R( f )(x) = 1

|G|
∑

g∈G(g · f )(x) = 1
|G|
∑

g∈G f (g−1 · x).

The key idea to find algebra generators for RG goes back to Hilbert, who related these
generators to the generators of an ideal in R. The Hilbert ideal I is the ideal of R that is generated
by all homogeneous invariants of positive degree. Suppose that we have found a generating set for
I , consisting of (not necessarily invariant) homogeneous polynomials h1, . . . , hk in R. Then an
easy argument shows that R(h1), . . . ,R(hk) generate RG as an algebra (Derksen and Kemper,
2002, Theorem 2.2.10).

To find generators for the Hilbert ideal I , we take an indirect approach. Let V = Spec(R) and
define the map of varieties
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Ψ : G × V −→ V × V
(g, v) 
−→ (v, g · v).

Let Y denote the image of Ψ and let I(Y ) be the ideal defining the closed scheme Y . We
represent G as Spec(C[t1, . . . , td ]/( f1, . . . , ft )) and the V in G × V and the first V in V × V
as Spec(C[x1, . . . , xn]). The second V factor in V × V is represented using a different set of
variables: Spec(C[y1, . . . , yn]). The following relationship between I(Y ) and the Hilbert ideal I
was proved by Derksen using a subtle application of the Reynolds operator (see Derksen (1999)
or Derksen and Kemper (2002, Theorem 4.1.3)).

Theorem 7. I(Y ) + (y1, . . . , yn) = I + (y1, . . . , yn).

The ideal I(Y ) can be computed by eliminating variables from the graph of Ψ . The graph of
Ψ is the subset {(g, v, v, g · v) : g ∈ G, v ∈ V } ⊂ (G × V ) × (V × V ), but since the two inner
coordinates are equal, it is equivalent to just consider Γ = {(g, v, g · v) : g ∈ G, v ∈ V } ⊂
G × V × V . This is a variety in G × V × V defined by the ideal

I(Γ ) = ( f1(t), . . . , ft (t)) + ({yi − (Ai1(t)x1 + · · · + Ain(t)xn)}i=1,...,n)

in the ring C[G × V × V ] = C[t1, . . . , td , x1, . . . , xn, y1, . . . , yn]/( f1(t), . . . , ft (t)). Now I(Y )

can be expressed as I(Γ )∩C[V ×V ] = I(Γ )∩C[x1, . . . , xn, y1, . . . , yn]. This can be computed
using a Gröbner basis (Kreuzer and Robbiano, 2000). Select an elimination order > such that
the ti ’s are greater than any xi ’s or yi ’s (for example, lex order with t1 > t2 > · · · > td > x1
> · · · > xn > y1 > · · · > yn). Compute a Gröbner basis B for I(Γ ) using the order >. Then the
elements of this basis that do not involve any ti ’s are a generating set for I(Y ).

Having obtained generators h1(x, y), . . . , hk(x, y) for I(Y ), we can use Theorem 7 to obtain
generators for I by just setting the yi ’s to zero. Finally, applying the Reynolds operator to the
hi (x, 0) gives a generating set for RG .

Example 8. We compute RG where G = Z2, R = C[x1, x2, x3] and the action is as given in
Example 6. Following the algorithm described above, we need to compute the Gröbner basis B
of the ideal I(Γ ) = (t2 − 1, y1 − tx1, y2 − t+1

2 x2 − 1−t
2 x3, y3 − 1−t

2 x2 − t+1
2 x3) using a lex

order that places the variable t before the others. Considering only B ∩ C[x1, x2, x3, y1, y2, y3]
and setting y1 = y2 = y3 = 0 we obtain generators for I : I = (x2 + x3, x2

3 , x1x3, x2
1 ).

Applying the Reynolds operator – R( f (x1, x2, x3)) = [ f (x1, x2, x3) + f (−x1, x3, x2)]/2 –
to these generators gives algebra generators for RG : RG is the subalgebra of R generated by
x2 + x3, x2

2 + x2
3 ,−x1x2 + x1x3, and x2

1 . To present RG as a ring, we compute the ideal of
relations(

a − (x2 + x3), b − (x2
2 + x2

3 ),

c − (−x1x2 + x1x3), d − x2
1

)
C[x1, x2, x3, a, b, c, d] ∩ C[a, b, c, d]

using an elimination order that eliminates the first three variables. This leads to the presentation

RG = C[a, b, c, d]
(a2d + c2 − 2bd)

and RG is isomorphic to a degree 4 hypersurface in a weighted projective space (here a has
degree 1 and b, c, and d have degree 2). It is easy to see that RG is Gorenstein in this example;
more generally, by a result of Watanabe (Bruns and Herzog, 1993, Theorem 6.4.9), RG is
Gorenstein when ρ(G) ⊂ SLn .
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Remark 9. Since G is a finite group, the image of Ψ : G × V → V × V is a union of linear
spaces (a subspace arrangement), one for each group element. Each of these linear spaces is
cut out by an ideal (y1 − g · x1, . . . , yn − g · xn). With this explicit description it is possible
to use syzygies to intersect these ideals to obtain the ideal for I(Y ) rather than performing
the elimination computation (see Vasconcelos (1998, page 29)). Unfortunately, the intersection
computation requires the syzygies on n|G|+1 vectors, each of length n. Unless |G| is very small,
this is likely to be just as difficult as eliminating a single parameter, as required by Derksen’s
algorithm.

An algorithm to describe D(RG ): We have treated all the tools that go into an algorithm to
compute generators a1, . . . , as for D(RG ). In one sense, this would be sufficient to describe
D(RG ) since the relations among the generators are all induced from the relations [xi , ∂ j ] = δi j

on the Weyl algebra. However, we will go further and describe the relations on D(RG ) explicitly.
To this end, we may suppose that G contains no pseudoreflections (else replace R by RW and

G by G/W ; however, note that when the resulting action is not linear we may need to use more
sophisticated versions of Derksen’s algorithm to compute generators for D(RW )G/W = D(R)G )
and so D(RG ) = D(R)G . Suppose that we have found generators a1, . . . , as for D(RG ). We aim
to compute the two-sided ideal of relations among the ai . Of course, there are the commutator
relations expressing [ai , a j ] in terms of the generators ai . Introduce noncommuting variables
y1, . . . , ys , one for each generator ai . Rewriting the commutators in terms of the generators
[ai , a j ] = Qij (a) yields the commutator relations yi y j = y j yi + Qij (y). Using commutators
allows us to write all the remaining relations among the ai as sums of scalar multiples of the
ordered monomials ak = ak1

1 ak2
2 · · · aks

s . Call an expression

T (y) = T (y1, . . . , ys) =
∑

mkyk1
1 yk2

2 · · · yks
s =

∑
mkyk (1)

an ordered relation if T (a) = 0 in D(RG ). Applying the symbol map gives σ(T (a)) =∑
mk āk = 0 in (GrD(R))G ⊂ GrD(R), where the sum is now over those exponents k such

that order(ak) is maximal among terms in the original relation. Replacing āi in this sum by
ȳi ∈ C[ȳ1, . . . , ȳs] we get a polynomial S(ȳ) with S(ā) = 0. That is, S(ȳ) is an element of the
ideal

(ȳ1 − ā1, . . . , ȳs − ās)C[x1, . . . , xn, ∂̄1, . . . , ∂̄n, ȳ1, . . . , ȳs] ∩ C[ȳ1, . . . , ȳs].
Now let p̄1(ȳ), . . . , p̄r (ȳ) be generators for this ideal. Replacing each ȳi in p̄ j with ai gives rise
to an ordered polynomial in the ai ’s that have smaller than expected order. This can be expressed
as an ordered polynomial in the ai ’s of lower degree than the degree of p̄ j . This produces ordered
relations p1(a) = 0, . . . , pr (a) = 0 on the generators of D(RG ) that extend the p̄ j . Now if
S(ȳ) := σ(T (ȳ)) = q1(ȳ) p̄1(ȳ) + · · · + qr (ȳ) p̄r (ȳ) then

Tnew(a) := T (a) − (q1(a)p1(a) + · · · + qr (a)pr(a))

is a relation in which the term of largest order is strictly smaller than the term of largest order
in T (a). Using the commutator relations, we can rewrite Tnew(a) as a sum of terms of smaller
order than the largest term in T . Iteratively applying this procedure to Tnew(y), we see that the
original relation T (y) was in the two-sided ideal of the free algebra C〈y1, . . . , ys〉 generated by
the commutator relations and the ordered relations p1(y), . . . , pr (y).

Algorithm 10. Given: A finite group G encoded as the common zero set of f1, . . . , ft ∈
C[t1, . . . , td ]; a representation ρ of G on an n-dimensional complex vector space V (or the
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induced action of G on R = C[V ] = C[x1, . . . , xn]).
Output: Explicit generators for D(RG ) as elements of EndC(RG). A presentation of the ring
D(RG ) in terms of generators and relations.
Steps: (1) If G contains pseudoreflections, then let W be the subgroup they generate and replace
R by RW and G by G/W .
(2) The representation ρ induces a representation ρ̃ = ρ ⊕ (ρT)−1 of G on GrD(R). Obtain
generators of Gr(D(R)G ) = (GrD(R))G using any algorithm for computing invariants of finite
groups (for example, Derksen’s algorithm).
(3) Lift these generators to D(R)G and apply π∗ to obtain generators a1, . . . , as of D(RG ).
(4) Compute the commutator relations [ai , a j ] in D(RG ) = D(R)G , expressing the commutators
explicitly in terms of the ai ’s. This gives rise to the commutator relations yi y j = y j yi + Qij (y).
(5) Obtain ordered relations among the ai ’s. Do this by first computing the relations among the
āi ’s by finding generators for the ideal

(ȳ1 − ā1, . . . , ȳs − ās)C[x1, . . . , xn, ∂̄1, . . . , ∂̄n, ȳ1, . . . , ȳs] ∩ C[ȳ1, . . . , ȳs ]
using an elimination order. Each of these induces an ordered relation pi(y) on D(RG ).
(6) The ideal of all relations among the generators of D(RG ) is a two-sided ideal in the free
C-algebra C〈y1, . . . , ys〉; this ideal is generated by the commutator relations from step (4) and
the ordered relations from step (5).

Remark 11. (a) In step (1), there is a simple description of the subgroup W . If ρ(t) represents
the action of G on V , then the subgroup W consists of elements in G that correspond to t with
rank(1 − ρ(t)) ≤ 1. Thus W corresponds to the subvariety cut out by the 2 × 2 minors of the
matrix 1 − ρ(t).
(b) In step (1) we can compute RW using Derksen’s algorithm, or using the approach in Section 3.

2. Two examples

Example 12. We describe the ring of differential operators D(RG ) on the ring RG from
Example 8. We first compute (GrD(R))G . As before, represent G as the zero set of f1(t) =
t2 − 1. Choose an ordered basis {x1, x2, x3, ∂̄1, ∂̄2, ∂̄3} of the vector space GrD(R)1 and define
the representation ρ̃ : G → EndC(GrD(R)1) via ρ̃(t) = ρ(t) ⊕ (ρ(t)T)−1 = ρ(t) ⊕ ρ(t). We
compute a Gröbner basis B of the ideal(

t2 − 1, y1 − tx1, y2 − t+1
2 x2 − 1−t

2 x3, y3 − 1−t
2 x2 − t+1

2 x3,

y4 − t ∂̄1, y5 − t+1
2 ∂̄2 − 1−t

2 ∂̄3, y6 − 1−t
2 ∂̄2 − t+1

2 ∂̄3

)

in the ring C[t, x1, x2, x3, ∂̄1, ∂̄2, ∂̄3, y1, y2, y3, y4, y5, y6] with a term order that eliminates the
first variable t . Considering only those elements of B that do not involve t and setting the yi ’s to
zero, we see

I = (∂̄2 + ∂̄3, x2 + x3, ∂̄3
2
, ∂̄1∂̄3, x3∂̄3, x1∂̄3, ∂̄1

2
, x3∂̄1, x1∂̄1, x2

3 , x1x3, x2
1 ).

Applying the Reynolds operator,

R( f (x1, x2, x3, ∂̄1, ∂̄2, ∂̄3)) = [ f (x1, x2, x3, ∂̄1, ∂̄2, ∂̄3) + f (−x1, x3, x2,−∂̄1, ∂̄3, ∂̄2)]/2,

to these generators gives algebra generators for (GrD(R))G = Gr(D(R)G ) and lifting gives
algebra generators for D(R)G : D(R)G is generated by the twelve operators
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∂2 + ∂3, x2 + x3, ∂2

2 + ∂2
3 , ∂1∂3 − ∂1∂2, x2∂2 + x3∂3, x1∂3 − x1∂2,

∂2
1 , x3∂1 − x2∂1, x1∂1, x2

2 + x2
3 , x1x3 − x1x2, x2

1

}
.

Now since G contains no pseudoreflections, the map π∗ : D(R)G → D(RG ) is surjective and
so these operators, restricted to RG , also generate D(RG ).

There are many relations among the generators of D(RG ). Label the 12 generators listed
above a1, . . . , a12. Table 1 lists the commutator relations among these operators. The commutator
[ai , a j ] appears as the j th entry in the i th row of the table. A few entries have been labeled
for compactness: α3,10 = 4a5 + 4, α4,6 = 2a3 − a2

1, α4,11 = 2a5 + 2a9 − a2a1 + 2,
α6,8 = a2a1 + 2a9 − 2a5, α7,12 = 4a9 + 2, α8,11 = 2a10 − a2

2.

Table 1
The commutators [ai , a j ] in D(RG )

0 2 0 0 a1 0 0 0 0 2a2 0 0
−2 0 −2a1 0 −a2 0 0 0 0 0 0 0

0 2a1 0 0 2a3 0 0 −2a4 0 α3,10 2a6 0
0 0 0 0 a4 α4,6 0 a7 a4 2a8 α4,11 2a6

−a1 a2 −2a3 −a4 0 −a6 0 a8 0 2a10 a11 0
0 0 0 −α6,4 a6 0 −2a4 α6,8 −a6 2a11 2a12 0
0 0 0 0 0 2a4 0 0 2a7 0 2a8 α7,12
0 0 −2a4 −a7 −a8 −α6,8 0 0 a8 0 α8,11 2a11
0 0 0 −a4 0 a6 −2a7 −a8 0 0 a11 2a12

−2a2 0 −α3,10 −2a8 −2a10 −2a11 0 0 0 0 0 0
0 0 −2a6 −α4,11 −a11 −2a11 −2a8 −α8,11 −a11 0 0 0
0 0 0 −2a6 0 0 −α7,12 −2a11 −2a12 0 0 0

The elimination computation

(ȳ1 − ā1, . . . , ȳs − ās)C[x1, . . . , xn, ∂̄1, . . . , ∂̄n, ȳ1, . . . , ȳs] ∩ C[ȳ1, . . . , ȳs]
produces 40 generators p̄1(ȳ), . . . , p̄40(ȳ) for the resulting ideal. Each of these relations p̄i (ȳ)

extends to a relation pi (y) on D(RG ) given in Table 2.
The ideal of all relations in D(RG ) is a two-sided ideal of C〈y1, . . . , y12〉 generated by the

commutator relations in Table 1 and the ordered relations in Table 2.
It is interesting to note that the Fourier transform (the map F : D(R) → D(R) that sends

∂i to xi and xi to ∂i but transposing all products) preserves the set of generators and the ideal
of relations. Indeed, F(a1) = a2, F(a3) = a10, F(a4) = a11, F(a5) = a5, F(a6) = a8,
F(a7) = a12 and F(a9) = a9. The fact that the Fourier transform acts on D(RG ) in this example
is due to the fact that G acts on both the x’s and the ∂’s in the same way. In general, the Fourier
transform will continue to act on RG whenever the representation of G satisfies ρ(G) ⊂ O(n),
since then (ρ(g)T)−1 = ρ(g) and the action is the same on both xi and ∂i .

In this example we found a generating set of operators that were bi-homogeneous in the sense
that when they are written in the form

∑
xd∂e, then all the |d| = d1 + · · · + dn have the same

value and all the exponents |e| are equal. This is a result that holds generally since the G-action
preserves the bi-grading (total degree in the x’s and total degree in the ∂̄’s) on GrD(R). The map
π∗ is just a restriction, so it does not affect the bi-homogeneity.

This example satisfies a conjecture of Singh (1986) regarding the differential operators on
hypersurfaces. The ring RG is a hypersurface (its defining equation is given in Example 8)
and Singh conjectured that all singular hypersurfaces have order 2 differential operators
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Table 2
Table of ordered relations

a9a11 − a8a12 + a11 a6a7 − a4a9 + a4

a8a9 − a7a11 + a8 a6a9 − a4a12 + 2a6

a2
9 − a7a12 + 3a9 + 2 −a1a2 + a6a8 − a4a11 + 2a5 + 4

a2
2 a12 + a2

11 − 2a10a12 a1a2a12 + a6a11 − 2a5a12 − 4a12

a2
1 a12 + a2

6 − 2a3a12 a7a2
11 − a2

8a12

a2a6a11 − a1a2
11 − 2a2a5a12 + 2a1a10a12 − 6a2a12 a2

6a10 − 2a5a6a11 + a3a2
11 + 6a1a2a12 + 2a2

5 a12 −
2a3a10a12 − 2a5a12 − 12a12

2a2a5a9 − 2a1a9a10 − a2a4a11 + a1a8a11 + 2a2a5 +
6a2a9 − 2a1a10 + 6a2

a1a2a9 + a1a2 − 2a5a9 + a4a11 − 2a5 − 4a9 − 4

a2
2 a9 + a2

2 − 2a9a10 + a8a11 − 2a10 a2
1a9 + a2

1 + a4a6 − 2a3a9 − 2a3

a2a4a5 − a2a3a8 + a1a5a8 − a1a4a10 + 3a2a4 a2a5a7 − a2a4a8 + a1a2
8 − 2a1a7a10 + 6a2a7

a2
2 a7 + a2

8 − 2a7a10 a1a2a7 − 2a5a7 + a4a8 − 4a7

a2
1 a7 + a2

4 − 2a3a7 a2a2
6 − a1a6a11 − 2a2a3a12 + 2a1a5a12

a2a5a6 − a1a6a10 − a2a3a11 + a1a5a11 + 4a2a6 a2a4a6−2a2a3a9+2a1a5a9−a1a4a11−2a2a3+2a1a5

a2
2 a6 − a1a2a11 − 2a6a10 + 2a5a11 + 4a11 a1a2a6 − a2

1 a11 − 2a5a6 + 2a3a11 − 6a6

2a2
5 a7−2a4a5a8+a3a2

8 +a2
4a10−2a3a7a10+10a5a7−

4a4a8 + 12a7

a2a4a6−2a2a3a9+2a1a5a9−a1a4a11−2a2a3+2a1a5

a2
2 a4 − a1a2a8 + 2a5a8 − 2a4a10 + 4a8 a1a2a4 − a2

1 a8 − 2a4a5 + 2a3a8 − 4a4

a2
2 a3 − 2a1a2a5 + a2

1 a10 − 2a1a2 + 2a2
5 − 2a3a10 +

10a5 + 8
a2a4a2

11 − a1a8a2
11 − 2a2a5a8a12 + 2a1a8a10a12 −

6a2a8a12

−2a2
2 a3 + 4a1a2a5 + 4a1a2a9 + 2a2

5a9 − 2a2
1 a10 +

a4a6a10 − 2a3a9a10 − 2a4a5a11 + a3a8a11 + 8a1a2 −
2a2

5 + 2a5a9 + 2a3a10 − 18a5 − 4a9 − 20

a4a6a10a11 − 2a4a5a2
11 + a3a8a2

11 + 2a2
5 a8a12 −

2a3a8a10a12 − 4a4a2
11 + 10a5a8a12 + 12a8a12

a1a2a3a8 − 2a2
1 a5a8 + a2

1a4a10 − 2a4a2
5 − 2a2

1 a8 +
2a3a5a8 − 10a4a5 + 4a3a8 − 12a4

a2
1a6a10 +a1a2a3a11 −2a2

1a5a11 −2a2
5a6 −2a2

1 a11 +
2a3a5a11 − 14a5a6 + 4a3a11 − 24a6

a1a6a10a11 + a2a3a2
11 − 2a1a5a2

11 − 2a2a2
5 a12 +

2a1a5a10a12 − 2a1a2
11 − 14a2a5a12 + 4a1a10a12 −

24a2a12

2a4a5a8a2
11 − a3a2

8a2
11 − a2

4 a10a2
11 − 2a2

5a2
8 a12 +

2a3a2
8a10a12 + 4a4a8a2

11 − 10a5a2
8a12 − 12a2

8 a12

a2a3a8a2
11 −2a1a5a8a2

11 +a1a4a10a2
11 −2a2a2

5 a8a12 +
2a1a5a8a10a12 − 2a1a8a2

11 − 14a2a5a8a12 +
4a1a8a10a12 − 24a2a8a12

2a2
1 a4a5a8 −a2

1 a3a2
8 −a2

1 a2
4a10 +2a2

4 a2
5 +4a2

1 a4a8 −
4a3a4a5a8 + 2a2

3 a2
8 + 10a2

4 a5 − 8a3a4a8 + 12a2
4

that are not generated by derivations. Singh’s conjecture is a strengthened form of Nakai’s
conjecture: all singular affine varieties have a differential operator that is not generated by the
derivations.

Theorem 13 (Ishibashi, 1985; Schwarz, 1995). Nakai’s conjecture holds for all orbifolds: If G
is a finite group acting on a polynomial ring C[x1, . . . , xn] then D(RG ) is generated as an RG-
algebra by derivations if and only if RG is a polynomial ring.
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Of course, RG is a polynomial ring precisely when G is a reflection group, by the Sheppard–
Todd–Chevalley theorem. Though Nakai’s conjecture holds for orbifolds, Singh’s conjecture
remains open for RG .

We now treat an example in which G contains pseudoreflections but is not itself a reflection
group.

Example 14. Let G = 〈γ, τ, δ : γ 2 = τ 2 = δ2 = 1, γ δ = τγ, τδ = δτ 〉. The group G has 8
elements and if V = C

3, G can be represented by ρ : G → GL(V ) satisfying

ρ(γ ) =
⎡
⎣−1 0 0

0 0 1
0 1 0

⎤
⎦ , ρ(τ ) =

⎡
⎣1 0 0

0 −1 0
0 0 1

⎤
⎦ , ρ(δ) =

⎡
⎣1 0 0

0 1 0
0 0 −1

⎤
⎦ .

Letting R = C[V ], we will compute D(RG ).
G contains a normal subgroup generated by pseudoreflections, W = 〈τ, δ〉. The ring of

invariants RW = C[x1, x2
2 , x2

3 ] can be computed by inspection. Set z1 = x1, z2 = x2
2 and

z3 = x2
3 so that RW is the polynomial ring C[z1, z2, z3]. The group G/W = {e + W, γ + W }

acts on RW . Of course e + W acts as the identity and γ + W acts via the matrix ρ(γ ). This is
precisely the situation examined in Examples 8 and 12. Using those computations gives

RG = C[z2 + z3, z2
2 + z2

3, z1z3 − z1z2, z2
1] = C[x2

2 + x2
3 , x4

2 + x4
3 , x1x2

3 − x1x2
2 , x2

1 ]
and D(RG ) is generated by the 12 operators{

∂2 + ∂3, z2 + z3, ∂2
2 + ∂2

3 , ∂1∂3 − ∂1∂2, z2∂2 + z3∂3, z1∂3 − z1∂2,

∂2
1 , z3∂1 − z2∂1, z1∂1, z2

2 + z2
3, z1z3 − z1z2, z2

1

}
,

where now ∂i stands for ∂/∂zi . The ring D(RG ) cannot be generated by operators expressed in
terms of the ∂/∂xi .

3. An alternate method to compute (GrD(R))G

It is also possible to use the Reynolds operator and the Molien series to describe rings of
invariants like RW and (GrD(R))G . In general, if G is a group acting on R = C[x1, . . . , xn],
then the Molien series is the Hilbert series for the ring RG , a series that encodes the dimensions
of the graded pieces of RG :

H (RG, t) =
∞∑

d=0

(
dimC RG

d

)
td .

In 1897 Molien proved that it is possible to compute H (RG, t) without first computing RG

(Sturmfels, 1993, Theorem 2.2.1).

Theorem 15 (Molien’s Theorem). If G is a finite group of order |G| acting on R = C[V ] =
C[x1, . . . , xn] via the representation ρ : G → GL(V ) then the Molien series can be expressed
as

H (RG, t) = 1

|G|
∑
g∈G

1

det(1 − tρ(g))
.
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Hochster and Roberts proved that if G is a linearly reductive group acting on R = C[V ]
then RG is Cohen–Macaulay (Hochster and Roberts, 1974). In particular, when G is finite then
RG = C[V ]G is Cohen–Macaulay (this seems to have been first written down by Hochster
and Eagon (1971, Proposition 13); for an elementary proof see Stanley (1979, Theorem 3.2)).
In particular, there is a homogeneous system of parameters h1, . . . , hn in RG and RG is a free
module over the polynomial ring C[h1, . . . , hn]. The invariants h1, . . . , hn are called primary
invariants and secondary invariants are given by any k[h1, . . . , hn]-module basis for RG . The
Molien series can then be written in the form

H (RG, t) = p(t)
n∏

i=1
(1 − tdeg(hi ))

.

The degrees of the primary invariants can be read off this expression, as can the degrees di and
number in each degree mi of the secondary invariants: these are encoded by the polynomial
p(t) = ∑

mi tdi . There are good algorithms to compute the primary invariants (see Decker et al.
(1998)). Once these are found, we can apply the Reynolds operator to a basis for Rd until the
results (together with RG

d ∩ C[h1, . . . , hn]) span a vector space of dimension dimC(RG
d ), as

predicted by the Molien series.
This method can be applied to the ring (GrD(R))G , but we need to use the grading given by

total degree so that the graded pieces are all finite dimensional.

Example 16. We apply the alternate method to Example 12. The Molien series for (GrD(R))G

is

1

|G|
∑

g∈{−1,1}

1

det(1 − t ρ̃(g))
= 1

2

[
1

(1 − t)6 + 1

(1 + t)4(1 − t)2

]
= 1 + 6t2 + t4

(1 − t)2(1 − t2)4 .

This suggests that there is a homogeneous system of parameters of GrD(R) consisting of six
generators, two with total degree 1 and four with total degree 2. One such system consists of the
primary invariants x2 + x3, ∂̄2 + ∂̄3, x2

1 , ∂̄2
1 , x2

2 + x2
3 , and ∂̄2

2 + ∂̄2
3 . The vector space (GrD(R))G

2
of degree 2 elements is the image of the Reynolds operator applied to (GrD(R))2. Modulo
the subspace generated by all degree 2 polynomials in the primary invariants, (GrD(R))G

2 has
dimension 6. One basis for this space is {x1x3 − x1x2, x1∂̄1, x1∂̄2 − x1∂̄3, x2∂̄1 − x3∂̄1, x2∂̄2 +
x3∂̄3, ∂̄1∂̄3 − ∂̄1∂̄2}. Together with the primary invariants, these secondary invariants generate
(GrD(R))G as a C-algebra (see Example 12). However, these six secondary invariants do
not generate (GrD(R))G as a module over the polynomial ring generated by the primary
invariants. Indeed, the Molien series indicates that a degree 4 secondary invariant is required to
generate (GrD(R))G as a module over the ring generated by the primary invariants. For instance,
R(x1x2∂̄1∂̄2) = 1

2 (x1x2∂̄1∂̄2 + x1x3∂̄1∂̄3) is one such secondary invariant. It turns out that if we
are only interested in obtaining generators of D(R)G , rather than generators whose symbols also
generate (GrD(R))G , then it always suffices to use the primary invariants generating C[V ]G and
C[V ∗]G (see Levasseur and Stafford (1995, Theorem 5)).

It is possible to refine Molien’s Theorem to the bi-graded case. This allows us to more easily
locate the secondary invariants.

Theorem 17. Let V and W be complex vector spaces of dimensions m and n. Also, let G be
a finite group of order |G| acting on R = C[V ⊕ W ] = C[x1, . . . , xm, y1, . . . , yn] via the
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representation ρ : G → GL(V ) × GL(W ). Then RG is a bi-graded ring with the bi-grading
given by total degree in the x’s and total degree in the y’s. The bi-graded Molien series can be
expressed as

H (RG, s, t) :=
∑
d,e

(
dimC RG

d,e

)
sd te = 1

|G|
∑
g∈G

1

det(1 − sρ(g)|V ) det(1 − tρ(g)|W )
.

We omit the proof; it suffices to generalize Sturmfels’s proof of Molien’s Theorem from
(Sturmfels, 1993, Theorem 2.2.1) to the bi-graded case.

Example 18. The bi-graded Molien series for (GrD(R))G from Example 16 is

1

2

[
1

(1 − s)3(1 − t)3 + 1

(1 + s)2(1 − s)(1 + t)2(1 − t)

]

= 1 + s2 + 4st + t2 + s2t2

(1 − s)(1 − t)(1 − s2)2(1 − t2)2
.

The homogeneous system of parameters was graded in bi-degrees (1, 0), (0, 1), (2, 0) and (0, 2),
as this formula predicts. As well, the secondary invariants were located in bi-degrees (2, 0),
(1, 1), (0, 2) and (2, 2). Using the bi-graded version of Molien’s Theorem to search for these
secondary invariants greatly reduces the size of the vector spaces to which we need to apply the
Reynolds operator since we can work with a bi-graded piece Rd,e rather than all of Rn .
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