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Differential Algebras on Semigroup Algebras

Mutsumi Saito and William N. Traves

Abstract. This paper studies algebras of operators associated to a semigroup
algebra. The ring of differential operators is shown to be anti-isomorphic to the
symmetry algebra and both are described explicitly in terms of the semigroup.
As an application, we produce a criterion to determine the equivalence of
A-hypergeometric systems. Conditions under which associated algebras are
finitely generated are studied. These results are sufficient to establish Becker’s
conjecture in the semigroup case. As well, an algorithm is provided to compute
the composition series of D-modules over semigroup algebras.

1. Introduction

This paper studies two algebras of operators associated to a semigroup alge-
bra. The ring of differential operators was first introduced by Sweedler [20] and
Grothendieck [4] and has been extensively studied in the context of normal toric
varieties [8, 12, 13]. The symmetry algebra is a more recent arrival connected
with the study of A-hypergeometric differential equations. These systems of partial
differential equations are determined by two parameters, a semigroup and a vector.
The symmetry algebra was introduced by Saito [14] to characterize parameters
giving rise to equivalent systems.

We begin the paper by telling “a tale of two algebras.” Both authors presented
papers about differential algebras on toric varieties at the AMS-IMS-SIAM Summer
research conference at Mount Holyoke in 2000. The operators appearing in Theorem
3.2.2 appeared in both talks, prompting our collaboration. Indeed, while at the
conference we proved Theorem 2.3.3, showing that the symmetry algebra and the
ring of differential operators are anti-isomorphic.

Both algebras of operators are introduced in Section 2 in great generality;
however, we confine our attention to semigroup algebras in the remainder of the
paper. We begin Section 3 with an explicit description of the ring of differential
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operators D(RA) on a normal toric variety due to Jones [8]. In this case, the graded
ring GrD(RA) is finitely generated. In contrast, we give an example showing that
GrD(RA) need not be finitely generated if RA is a nonnormal semigroup algebra.
This example reappears throughout the paper; we use it to illustrate many of our
constructions.

We introduce the notion of a scored semigroup algebra in order to characterize
those semigroups NA with GrD(C[NA]) finitely generated. Indeed, we conjecture
that all rings of differential operators on affine semigroups are finitely generated, but
only the scored semigroups admit finitely generated graded algebras GrD(C[NA]).
Evidence is provided to support this conjecture.

We then turn our attention to the map D(R) → D(R,R/m) from the ring of
differential operators to the module of constant coefficient differential operators.
We show that Becker’s conjecture holds for semigroup algebras: when GrD(R)
is finitely generated, the map D(R) → D(R,R/m) is surjective. One of the key
ingredients in the proof is an explicit characterization of D(R,R/m) in the case of
semigroup algebras.

Section 3 closes with an algorithm to determine the graded pieces of the ring of
differential operators on a semigroup algebra. This is heavily dependent on the com-
putational insights developed in [15]. As an application of our anti-isomorphism,
the theorem determining the equivalence of A-hypergeometric systems is extended
to non-homogeneous systems.

In the final section we study the structure of modules over the ring of differential
operators on a semigroup algebra. Using the algorithms developed in Section 3, we
develop an algorithm to determine the composition series of such a module. In turn,
this leads to a classification of those semigroup algebras RA that are D(RA)-simple.
An example is given to illustrate the contrast with the situation for saturated
semigroups: all normal toric varieties are D-simple.

The authors are grateful to Bernd Sturmfels for encouragement and advice at
the outset of this project.

2. A Tale of Two Algebras (of Differential Operators)

2.1. Rings of Differential Operators. There are many equivalent defini-
tions of the ring of differential operators on an algebraic variety. Here, we present
the most elementary and best-motivated definition. To fix notation, let X be an
affine algebraic subvariety of Cn. Let R be the coordinate ring of X: X = Spec(R).

We write X = V(I) and R = C[x1,...,xn]
I .

Just as we define the ring of functions on X by restricting functions on the
ambient space to X, we would also like to realize differential operators on X by
restricting operators in the Weyl algebra, W = C�x1, . . . , xn, ∂1, . . . , ∂n�, to R (here
∂i stands for

∂
∂xi

). Of course, not every operator in the Weyl algebra acts on R in
a well-defined way: only the operators in the idealizer of I, {θ ∈ W : θ(I) ⊆ I},
act on R. Further, we quotient the idealizer by the set of operators whose image
lies entirely in I. It is easy to check that these are just the operators in IW . This
motivates the following description of differential operators on subvarieties of affine
space.
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Definition 2.1.1. Let R = C[x1,...,xn]
I . The ring of differential operators on R

(or on Spec(R)) is

D(R) =
{θ ∈ W : θ ∗ I ⊆ I}

IW
,

here, as in the rest of the paper, we write θ ∗ b to mean the image of b ∈ R under
the map θ.

This definition is equivalent to more abstract definitions such as: Grothendieck’s
definition in terms of commutators ([4]), the definition in terms of the action of the
enveloping algebra R ⊗C R on EndC(R) ([18]) and the realization of D(R) as the
endomorphisms of R that are continuous in every I-adic topology on R (for all
ideals I of R; see [2]).

2.2. Symmetry Algebra. The symmetry algebra of A-hypergeometric sys-
tems was introduced in [14] to study morphisms among A-hypergeometric systems
with different parameters. Here we define the symmetry algebra in a wider context.

Let ρ : G → GL(V ) be a representation of a complex linear algebraic group G

on V = Cn. Let I be a G-stable left ideal of W . Given a character λ of the Lie
algebra Lie(G), we define a W -module

MI(λ) = W/(I +
�

ξ∈Lie(G)

W (Lξ − λ(ξ))),

where Lξ is the vector field on V = Cn induced from the G-action: (Lξf)(v) =
d
dtf(e

−tξ
v)|t=0. Let dρ

∗ denote the differential of the contragradient action on V
∗,

and also its representation matrix with respect to the basis x1, . . . , xn. Then

(1) Lξ = −
�

i,j

dρ
∗(ξ)ijxj∂i.

The module MI(λ) is trivial unless λ vanishes on Ker(dρ∗). Hence it is natural
to assume that the representation dρ

∗ is faithful, and we do so from now on.

Example 2.2.1. Let aj = t(a1j , . . . , adj) ∈ Zd be the j
th column of the matrix

A (j = 1, . . . , n), and let T = { (t1, . . . , td) | t1, . . . , td ∈ C× } act on V = Cn via

t · v = (t1, . . . , td) · (v1, . . . , vd) = (ta1v1, . . . , t
anvn),

where t
aj = t

a1j

1 · · · tadj

d . Let e1, . . . , ed denote the standard basis of Lie(T ) = Cd.
Then dρ

∗(ei) = diag(−ai1, . . . ,−ain), and thus Lei =
�n

j=1 aijxj∂j . In this case,
dρ

∗ is faithful if and only if the matrix A = (a1, . . . ,an) has rank d.

The most intriguing case occurs when I = W I(X) for a G-stable subvariety X

of the dual space V ∗, where I(X) is the defining ideal of X in C[V ∗] = C[∂1, . . . , ∂n].
This case includes many interesting examples, such as: the system for the relative
invariants of regular prehomogeneous vector spaces; Harish-Chandra systems on
Lie algebras (see [7]); A-hypergeometric systems (cf. Example 2.2.1) and their
generalizations, Tanisaki’s systems ([21]) and Kapranov’s systems ([9]), which will
be implicitly considered in the next section.

Definition 2.2.2. Let S̃(W/I) := { θ ∈ W | Iθ ⊂ I }. Then the algebra
S(W/I) := S̃(W/I)/I = EndW (W/I) is called the symmetry algebra of the W -
modules MI(λ).
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By differentiating the G-stability of I, we see Lξ ∈ S̃(W/I) for all ξ ∈ Lie(G).
Given a character χ of Lie(G), put

S(W/I)χ := { θ ∈ S(W/I) | [Lξ, θ] = χ(ξ)θ for all ξ ∈ Lie(G) }.

Remark 2.2.3. The operators in S(W/I)χ are contiguity operators shifting
‘parameters’ by χ in the following sense. Let θ ∈ S(W/I)χ, and ψ be a solution to
MI(λ). Then θ(ψ) is a solution to MI(λ+ χ).

Since the action comes from the action of G, S(W/I)χ = 0 unless χ is the
differential of a character of G. When G is an algebraic torus, we have

S(W/I) =
�

χ∈Hom(G,C×)

S(W/I)dχ,

where dχ denotes the differential of a character χ of G.

2.3. Equivalence of the Two Algebras.

Lemma 2.3.1. If I is an ideal of R = C[x1, . . . , xn] and θ is an element of

the Weyl algebra, W = C�x1, . . . , xn, ∂1, . . . , ∂n�, then θIW ⊂ IW if and only if

θ ∗ I ⊂ I.

Proof. Suppose that θIW ⊂ IW . Then θ ◦ I ⊂ IW so

θ ∗ I = (θ ◦ I) ∗ 1 ⊂ IW ∗ 1 = I.

Conversely, suppose that θ ∗ I ⊂ I. Let η be an element of IW and write θ ◦ η =�
a Pa∂

a where ∂
a = 1

a1!
∂
a1
1 · · · 1

an!
∂
an
n . If each Pa ∈ I then θ ◦ η ∈ IW and we are

done. Aiming for a contradiction, assume that some Pa �∈ I. Let b be an n-tuple
of minimal total degree such that Pb �∈ I. Then

(θ ◦ η) ∗ xb ≡ Pb mod I.

Since θ ∗ I ⊂ I and the image of the map η : R → R is in I, it follows that the
image of θ ◦ η is contained in I. So Pb ∈ I, producing a contradiction. �

Let φ : W → W denote the involutive anti-automorphism interchanging xi and
∂i for all i. Let ρ : G → GL(V ) be a representation of a complex linear algebraic
group G on V = Cn.

Lemma 2.3.2. If ξ, ξ� ∈ Lie(G) satisfy t
dρ

∗(ξ) = dρ
∗(ξ�), then φ(Lξ) = Lξ� +C,

where C ∈ C and t stands for the operation of taking the transposed matrix.

Proof. This is immediate from the equation (1). �

If t
dρ

∗(Lie(G)) = dρ
∗(Lie(G)), then for each ξ there exists unique ξ

� satisfying
t
dρ

∗(ξ) = dρ
∗(ξ�), since the representation dρ

∗ is faithful. In this case we define φ(ξ)
to be the element satisfying t

dρ
∗(ξ) = dρ

∗(φ(ξ)). Clearly φ defines an involutive
anti-automorphism of Lie(G).

Theorem 2.3.3. Let I(x) be a G-stable ideal of C[x1, . . . , xn]. Assume that
t
ρ(G) = ρ(G), and that the representation dρ

∗ is faithful. Then I(∂) := φ(I(x))
is G-stable, and φ induces an anti-isomorphism between the symmetry algebra

S(W/WI(∂)) and the ring of differential operators D(C[x]/I(x)). The map φ re-

spects but does not preserve the grading: the χ-graded piece of one algebra is sent

to the (−χ ◦ φ)-graded piece of the other algebra.
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Proof. Let g, h ∈ G satisfy ρ(g−1) = t
ρ(h). Then we have g.φ(f) = φ(h.f)

for f ∈ C[x1, . . . , xn]. Hence I(∂) is G-stable. The next statement follows from
Lemma 2.3.1 as

D(C[x]/I) = {θ ∈ W : θI(x)W ⊂ I(x)W}
I(x)W

and

S(W/WI(∂)) =
{θ ∈ W : I(∂)θ ⊂ WI(∂)}

WI(∂)
.

Note that if χ is a character of Lie(G), then so is χ ◦ φ. The final result is
established by a simple computation:

θ ∈ S(W/WI(∂))χ ⇐⇒ [Lξ, θ] = Lξθ − θLξ = χ(ξ)θ (ξ ∈ Lie(G)).

Applying φ gives

φ(θ)φ(Lξ)− φ(Lξ)φ(θ) = χ(ξ)φ(θ) (ξ ∈ Lie(G))
⇐⇒ φ(θ)Lφ(ξ) − Lφ(ξ)φ(θ) = χ(ξ)φ(θ) (ξ ∈ Lie(G))
⇐⇒ φ(θ)Lξ − Lξφ(θ) = χ(φ(ξ))φ(θ) (ξ ∈ Lie(G))
⇐⇒ [Lξ,φ(θ)] = −χ ◦ φ(ξ)φ(θ) (ξ ∈ Lie(G))
⇐⇒ φ(θ) ∈ D(R)−χ◦φ.

�

3. Differential Algebras on Toric Varieties

3.1. Toric Varieties. Our description of toric varieties follows Sturmfels [19].
Let A = (aij) be a d×n matrix of full rank whose entries lie in Z. The columns ai of
A generate a semigroup and we consider the semigroup algebraRA = C[ta1 , . . . , t

an ],
where we have used multi-index notation: tai = t

ai1
1 · · · taid

d . The algebra RA has a
presentation given by the short-exact sequence,

0 → IA → C[x1, . . . , xn] → RA → 0,

and the ideal IA(x) is generated by binomials in the variables x1, . . . , xn. Indeed,
IA is generated by terms xp−x

n where p and n are vectors of non-negative integers
such that A(p − n) = 0. For later use, let IA(∂) denote the similar ideal in the
polynomial ring generated by the ∂i’s:

IA(∂) = ({∂p − ∂
n : A(p− n) = 0}) ⊂ C[∂1, . . . , ∂n].

The saturation of the semigroup generated by the columns of A consists of a cone
σ in a lattice ZA bounded by hyperplanes hi(t1, . . . , td) = 0 (oriented so that the
functionals hi are positive on the cone σ). We determine each hi uniquely by
requiring hi(ZA) = Z.

3.2. Ring of Differential Operators for Affine Toric Varieties. We be-
gin with an explicit description of the ring of differential operators on an affine toric
variety. Our description follows Jones [8] and Musson [12]. To start, we note that
differential operators behave well under localization.

Lemma 3.2.1. If S is a multiplicatively closed set in R, then

S
−1

R⊗R D(R) = D(S−1
R).
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Proof. This follows from the observation that differential operators of bounded
order are determined by maps to R from a universal object (the jet module; see
Grothendieck [4]). �

This allows us to reduce to the case where the cone σ generated by the columns
of A is strongly convex (it does not contain any lines through the origin). If the
cone σ is not strongly convex, then σ contains a strongly convex cone NB ⊂ σ so
that RA = C[NA] is a localization of C[NB].

At this stage, ZA = n1Z × · · · × ndZ for nonzero integers n1, . . . , nd. After
multiplying row i by 1/ni (this does not change the isomorphism type of RA), we
may assume that the lattice ZA equals Zd and A is a d× n integer matrix.

Now let S be the multiplicatively closed set C[NA \ 0] in RA. Then

S
−1

RA
∼= C[ZA] = C[t±1

1 , . . . , t
±1
d ].

Lemma 3.2.1 now implies that every differential operator on RA can be realized as
a differential operator on C[t±1

1 , . . . , t
±1
d ]:

D(RA) ⊂ D(C[t±1
1 , . . . , t

±1
d ]) = C�t±1

1 , . . . , t
±1
d , ∂1, . . . , ∂d� = C�t±1

1 , . . . , t
±1
d , θ1, . . . , θd�,

where θi = ti∂i. The multigrading on C[Zd] induces a multigrading on D(C[Zd]):
t
a is assigned degree a and the θi are assigned degree 0. In turn, this induces a
multidegree on D(RA). Consider the graded piece of D(RA) of degree a. Each
element of this module is a sum of elements of the form t

a
P (θ) where P (θ) =

P (θ1, . . . , θd) is an operator in C[Zd] of multidegree 0. In order for the operator
t
a
P (θ) to induce an action on RA it must stabilize C[NA]. Furthermore, every

operator in D(RA)a is obtained in this way. The operators t
a
P (θ) that stabilize

C[NA] are those operators in which P (θ) vanishes on the set

ΩNA(a) = Ω(a) = ZC({b ∈ NA : a+ b �∈ NA}),

where ZC(S) indicates the closure of S in the Zariski topology on Zd; that is, we
require that P (θ) lie in the ideal I(Ω(a)) of C[θ1, . . . , θd]. When the semigroup
NA is saturated (that is, the algebra RA is normal), this ideal is principal and the
generator has a particularly nice description in terms of the boundary hyperplanes
hi(θ1, . . . , θd) = 0.

Theorem 3.2.2. Let RA be the coordinate ring of a normal toric variety whose

associated semigroup NA is the saturated cone bounded by the hyperplanes hi = 0
(i = 1, . . . , k). Then:

(1) We have the following description of the ring of differential operators as a graded

object:

D(RA) =
�

a∈ZA
D(RA)a =

�

a∈ZA
t
a
Pa(θ1, . . . , θd)C[θ1, . . . , θd],

where

Pa(θ1, . . . , θd) =
k�

i=1

−hi(a)�

j=1

(hi(θ1, . . . , θd)− j + 1).

(2) Put Da = t
a
Pa. Then

Da�Da = Da+a�pa�,a,
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where

pa�,a =
�

hi(a)>0, hi(a�)<0

min{−hi(a+a�),0}−1�

m=−hi(a)

(hi −m)

×
�

hi(a)<0, hi(a�)>0

−hi(a)−1�

m=max{−hi(a+a�),0}

(hi −m).

Remark 3.2.3. Note that pa�,a = q−a,−a� in the notation of [14].

Proof. For the first part, we only need to show that Pa defines the ideal of
C[θ1, . . . , θd] vanishing on Ω(a). To see this, note that b ∈ NA is in Ω(a) if and only
if a+ b �∈ NA. Because NA is a saturated cone, this is equivalent to the existence
of a boundary functional hi such that hi(a + b) < 0. Since hi is linear, this just
means

0 ≤ hi(b) < −hi(a).

So

I(Ω(a)) =
k�

i=1

−hi(a)�

j=1

(hi(θ1, . . . , θd)− j + 1)C[θ1, . . . , θd].

Next we prove the second statement. Since Da�Da ∈ D(RA)a+a� , there exists
a polynomial q ∈ C[θ] such that Da�Da = Da+a�q(θ). Then

t
a+a�

Pa+a�(θ)q(θ) = Da+a�q(θ)

= Da�Da

= t
a�
Pa�(θ)taPa(θ)

= t
a+a�

Pa�(θ + a)Pa(θ).

Hence q(θ) = Pa(θ)Pa�(θ + a)/Pa+a�(θ) = pa�,a(θ). �
We say that a,a� ∈ ZA belong to the same chamber if hi(a)hi(a�) ≥ 0 for all i.

The following is immediate from Theorem 3.2.2.

Corollary 3.2.4. Define Da ∈ D(C[Zd]) as in Theorem 3.2.2 regardless of

the normality of RA, i.e.,

Da = t
a

k�

i=1

−hi(a)�

j=1

(hi(θ1, . . . , θd)− j + 1).

Then Da�Da = DaDa� if and only if Da�Da = Da+a� if and only if a and a
� belong

to the same chamber.

Corollary 3.2.5. When RA is normal, the generators of D(RA) are the ele-

ments of {Da}a∈Λ where Λ contains all generators of the chambers of NA as well as

the origin 0. In fact, if we consider the filtration of D(RA) by order and pass to the

graded algebra Gr(D(RA)) then the symbols of these operators generate Gr(D(RA));
that is, {Da}a∈Λ is a canonical subalgebra (SAGBI) basis for D(RA).

Example 3.2.6. We illustrate the use of Corollary 3.2.5 by computing the
generators for Gr(D(RA)) where RA is the coordinate ring of the twisted cubic. In
this case the matrix A is �

1 1 1 1
0 1 2 3

�
.
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We introduce a convenient abuse of notation: usually one would reserve the
term cone for σ = R≥0A; we will also call NA a cone when the semigroup is
saturated. Further, if F is a facet of R≥0A, we will refer to F ∩ NA as a facet of
NA.

In our example, NA is a cone (saturated semigroup) bounded by the hyper-
planes h1 = θ2 = 0 and h2 = 3θ1 − θ2 = 0. The chambers of NA are the cones of
the fan obtained by extending these two hyperplanes: see Figure 1.

� � � �� � �� � �� � �
� ✲✂
✂
✂
✂✂✍ � �� �� �� �

� �� �� �� �
�
��

���
�

� �� �
�����

��
���

��
�

��
�

✲✂
✂
✂
✂✂✍

✂
✂
✂
✂✂✌

✛

Figure 1. The semigroup NA (left) and a fan illustrating the four
chambers (right).

The generators of the four chambers, together with the operators Da are listed
below. For instance, the vector a = t(0, 1) is required to generate the chamber in
the second quadrant. The graded piece of D(RA) of weight a is a principal module
over D(RA)0 generated by Da = t2h2(θ1, θ2) = 3t2θ1 − t2θ2. The operators in the
right column of the table in Figure 2, together with θ1 and θ2 generate D(RA) as
a C-algebra.

Multidegree, a Da

(1, 0) t1

(1, 1) t1t2

(1, 2) t1t
2
2

(1, 3) t1t
3
2

(0, 1) t2h2

(−1, 0) h2(h2 − 1)(h2 − 2)/t1
(−1,−1) h2(h2 − 1)(h1)/t1t2
(−1,−2) h2h1(h1 − 1)/t1t22
(−1,−3) h1(h1 − 1)(h1 − 2)/t1t32
(0,−1) h1/t2

Figure 2. Generators of D(RA) over C[θ1, θ2]

When RA is not normal, the ideal I(Ω(a)) corresponding to the graded piece
D(RA)a is not necessarily principal. In the examples below we show that D(RA)
has good properties when RA is normal but these are apt to fail in the non-normal
case.

Example 3.2.7. We give a basic example illustrating what can go wrong when
RA is not normal. Consider the affine toric variety V(x2

1 − x
2
2x3, x

3
1 − x

3
2x4) ⊂ C4
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associated to the matrix

A =

�
1 0 2 3
1 1 0 0

�
;

here the coordinate ring is R = RA = C[t1t2, t2, t21, t31]. The semigroup NA is
illustrated in Figure 3.

� ❞ � � �� � � �� � � ��
✲

✻

t2

t1

Figure 3. The semigroup NA

The ring of differential operators D(R) is finitely generated. To see this, first
note that there are four chambers, corresponding to the four quadrants. We claim
that the generators of D(R) are:

Multidegree, a Generators of I(Ω(a))
(1, 0) θ1, θ2
(2, 0) 1
(3, 0) 1
(0, 1) 1
(−1, 0) θ1(θ1 − 2), θ1θ2
(−2, 0) θ1(θ1 − 1)θ2, θ1(θ1 − 1)(θ1 − 3)
(0,−1) (θ1 − 1)θ2, θ2(θ2 − 1)
(0,−2) (θ1 − 1)θ2(θ2 − 1), θ2(θ2 − 1)(θ2 − 2)

The details of this calculation are postponed to Example 3.3.4.
While D(R) is finitely generated, the graded ring GrD(R) is not finitely

generated. To see this we first construct a projection map from Gr(D(ZA)) =
C[t±1

1 , t
±1
2 , ξ1, ξ2] to C[t2, ξ2] (here, ξ1 and ξ2 stand for the images of ∂1 and ∂2 in

the graded ring). This induces a ring homomorphism Gr(D(R)) �→ GrD(ZA) →
C[t2, ξ2] whose image is easily checked to be C[t2, t2ξ2, t2ξ22 , t2ξ32 , . . .]. As the image
is not a finitely-generated algebra, the domainGrD(R) cannot be finitely generated.

Example 3.2.8. We consider the case of the cuspidal cubic: x
2
1 − x

3
2 = 0.

This has coordinate ring C[x1, x2]/(x2
1 − x

3
2) ∼= C[t2, t3] = RA, where A = [3 2] .

There are two chambers for NA and one can check that GrD(R) is generated by
the operators corresponding to weights {d : −3 ≤ d ≤ 3}. Direct computation now
shows that GrD(RA) = C[t2, t3, tξ, t2ξ, ξ2, ξ3, tξ2] = RB , where

B =

�
2 3 1 2 0 0 1
0 0 1 1 2 3 2

�
.

In general, if GrD(RA) is finitely generated, the Krull dimension of GrD(RA) is
twice that of RA (see, for example, [11] or [10, Chapter 15]). This particular ex-
ample is somewhat unusual in the sense that both RA and GrD(RA) are monomial
algebras. This occurs whenever RA has dimension 1 but GrD(RA) need not be
generated by monomials when dim(RA) > 1. For example, consider the semigroup
generated by t(1, 0), t(1, 1) and t(1, 2). For many more interesting facts about dif-
ferential operators on monomial curves (semigroup algebras of dimension one), see
[3]. These computations suggest the following natural project:
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Problem 3.2.9. When GrD(RA) is finitely generated, describe the structure
of the characteristic variety ch(RA) = Spec(GrD(RA)).

We have seen that when NA is not saturated GrD(RA) may or may not be
finitely generated. Call a semigroup NA scored if its saturation σ satisfies: (1)
R≥0σ = R≥0A is a strongly convex cone and (2) σ \ NA consists of hyperplane
sections of σ parallel to facets of σ. Figure 4 illustrates three semigroups. The
saturated semigroup in (a) is scored as is the semigroup in (b), obtained by deleting
the two hyperplanes −θ2 + 4θ1 = 1 and −θ2 + 4θ1 = 2. Because of the isolated
point at (1,0), the semigroup in (c) is not scored.

� � � � �� � �� � �� � �� � ���
��

✲✄
✄
✄
✄
✄
✄
✄
✄
✄✗

(a)

� � � � �� � �❞ � �❞ � �
�
���

� � ��❞
❞�

✲✄
✄
✄
✄
✄
✄
✄
✄
✄✗

(b)

� ❞ � � �� � �� � �❞ � �� � ���
❞�

✲✄
✄
✄
✄
✄
✄
✄
✄
✄✗

(c)

Figure 4. Scored and nonscored semigroups.

Examples, like those above, suggest the following conjectures.

Conjecture 3.2.10. (1) The graded ring of differential operators GrD(RA) is
finitely generated if and only if NA is a scored semigroup. (2) The ring of differential

operators D(RA) is finitely generated for all semigroups NA.

Of course, part (2) of this conjecture is just the content of Corollary 3.2.5 when
NA is saturated. We turn our attention to the necessity of the condition in part
(1) of the conjecture. First we state a technical lemma of a combinatorial nature
that will be used in the proof of the subsequent Theorem.

Lemma 3.2.11. Let {v1, . . . , vK} be a set of K vectors all of whose components

have absolute value less than T > 0. That is, we start with a set of vectors in the

ball {v ∈ Rd : |v|∞ < T}. Suppose that a positive integral combination
�K

i=1 nivi

is componentwise greater than or equal to (3TK, . . . , 3TK). Then all components

of
�K

i=1�ni/2�vi and
�K

i=1�ni/2�vi are greater than or equal to KT .

Proof. Note
�����

K�

i=1

�ni/2�vi −
K�

i=1

(ni/2)vi

�����
∞

≤ KT/2.

Thus, each component of
�K

i=1�ni/2�vi is larger than the corresponding component

of
�K

i=1(ni/2)vi minus KT/2. But this is at least 3KT
2 − KT

2 = KT . The claim for�K
i=1�ni/2�vi is proven similarly. �

Theorem 3.2.12. When NA is a semigroup that is not scored then GrD(RA)
is not finitely generated.
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Proof. We aim for a contradiction and suppose that GrD(RA) is finitely
generated and NA is not a scored semigroup. Let σ be the saturation of NA.
Suppose that the symbols of the K operators t

giQi(θ) (i = 1, . . . ,K) generate
GrD(RA) and pick T > 0 such that for all facets F of σ and for all generators,
|hF (−gi)| < T . (This just says that the generators are not too far from the origin).

Note that NA contains a translate of its saturation σ: there exists an α ∈ NA
such that α + σ ⊂ NA. The reader can examine [5] for results of this kind but
this particular result follows immediately from the fact that the conductor of C[σ]
into C[NA] is graded and nonempty. Modifying T if necessary, we may assume that
hF (α) < T for all facets F of σ. It follows that if β ∈ NA satisfies hF (β) ≥ T for
all facets F of σ, then β ∈ α+ σ.

Let L be the smallest non-negative integer such that if γ ∈ α+σ, then all gener-
ators of Bγ := I(Ω(−γ)) have degree larger or equal to L+

�
F hF (γ). The number

L is strictly positive because of our assumption on NA (the semigroup is not scored
and so Ω(−γ) consists of more than just the expected number

�
F max{hF (γ), 0}

of hyperplanes parallel to facets).
Recall that we are assuming that there are K generators for GrD(RA); now

pick γ ∈ α + σ with hF (γ) > KT for all facets F . We know that there is an
operator P = t

−3γ
Q such that the degree of Q equals L +

�
F hF (3γ). Write the

symbol of P as a sum of products
�s

k=1 Pk where Pk is the symbol of t−gikQik

(Qik ∈ I(Ω(−gik))). Now using Lemma 3.2.11 applied to the vectors (hF (gik) : F

a facet of σ), the index set {1, 2, . . . , s} can be partitioned into two disjoint sets R
and S such that for each facet F , hF (

�
k∈R gik) ≥ T and hF (

�
k∈S gik) ≥ T . That

is,
�

k∈R gik ∈ α+σ and
�

k∈S gik ∈ α+σ. It follows that the degree of
�

k∈R Qik

is greater than or equal to L +
�

F hF (
�

k∈R gik) and the degree of
�

k∈S Qik is
greater than or equal to L+

�
F hF (

�
k∈S gik). But then

deg(
�s

k=1 Qik) = deg(
�

k∈R Qik) + deg(
�

k∈S Qik)
≥ (L+

�
F hF (

�
k∈R gik)) + (L+

�
F hF (

�
k∈S gik))

= 2L+
�

F hF (
�s

k=1 gik)
= 2L+

�
F hF (3γ)

= L + deg(Q)
> deg(Q).

It follows that the symbol of P (that is, t−3γsymbol(Q)) cannot be generated by
the symbols of elements of weights {gi}. So GrD(RA) is not finitely generated. �

It seems difficult to establish the first part of Conjecture 3.2.10 using compu-
tational methods. However, we can do this in the special case that the cone R≥0A

is generated by linearly independent generators.

Theorem 3.2.13. When NA is a scored semigroup and R≥0A is generated by

linearly independent vectors, then GrD(RA) is finitely generated.

Proof. Let {u1, . . . , ud} ⊂ NA be a linearly independent set of elements gen-
erating R≥0A. For each facet F of the cone R≥0A, there is a unique generator
uF ∈ {u1, . . . , ud} such that uF �∈ F . Let dF be the maximum of hF (uF ) and the
number of hyperplanes parallel to F missing from NA. Our generators will be the
symbols Pa of those operators Qa with −dF ≤ hF (a) ≤ 2dF for each facet F . Call
the set of such generators G = {Pa}a∈Λ. Both uF and −uF are in the index set Λ
for each facet F .
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Note that if v ∈ ZA has hF (v) ≥ dF then Ω(−v) consists of hF (v) hyperplanes
parallel to F (plus hyperplanes parallel to other facets). Because Ω(−v) consists
only of hyperplanes, GrD(R)−v is principally generated and has generator divisible

by h
hF (v)
F . Similarly, if hF (v) < −dF then Ω(−v) consists of hyperplanes parallel

to other facets of NA, but no hyperplanes parallel to F . In this case, the generator
of GrD(R)−v is not divisible by hF .

Now we show that the operators with weights in Λ generate GrD(R). For
b ∈ ZA with hF (b) ≥ 2dF there exists a ∈ Λ and a positive integer r such that a+
r · uF = b. Moreover, GrD(R)−b is generated by P−b = P−at

−ruF (hF )r·hF (uF ) =
P−aP

r
−uF

. Similarly, for b ∈ ZA with hF (b) < −dF , there exists a ∈ Λ and a
positive integer r such that a − r · uF = b. Then GrD(R)−b is generated by
P−b = P−aP

r
uF

. Iterating this procedure for various facets F , we can write any
given weight vector b as an integral linear combination of the uF ’s and another
element a ∈ Λ. Then P−b is generated by P±uF and P−a. This shows that the set
G generates GrD(R).

�

Remark 3.2.14. Together, Theorems 3.2.13 and 3.2.12 imply Conjecture 3.2.10
in dimensions one and two.

Theorem 3.2.13 generalizes a result of Eriksen and Vosegaard [3] in the one-
dimensional case: if the last hole in a one-dimensional semigroup appears at position
g then it suffices to use generators corresponding to weights γ with −g ≤ γ ≤ 2g+1
in order to generate GrD(RA).

The ring of differential operators can be viewed as a special instance of the
module of differential operators D(M,N) from one R-module, M , to another, N .
For details on this construction, see [18]. Part of our interest in the finite generation
of GrD(R) stems from a conjecture due to Joseph Becker. Becker’s conjecture deals
with the module of constant coefficient differential operators D(R,R/m) (here R

is assumed to be local or graded with maximal (homogeneous) ideal m). Define
D(R,R/m) as

{θ ∈ W : θ ∗ I ⊆ m}
mW

.

In the graded case, it can be shown that D(R,R/m) is precisely the graded dual
of R, that is, D(R,R/m) = Hom

∗
k(R, k), the injective hull of the residue field of R

(see [23]). Note that there is a map of R-modules γ : D(R) → D(R,R/m) induced
by the quotient map ρ : R → R/m. It may help to think of γ(δ) = ρ ◦ δ as the
constant coefficient portion of the differential operator δ.

Conjecture 3.2.15 (Becker’s Conjecture). If GrD(R) is finitely generated

as an R-algebra then the map D(R) → D(R,R/m) from differential operators to

constant coefficient differential operators is surjective.

This conjecture is known to imply Nakai’s conjecture: when R is a finitely
generated C-algebra and D(R) is generated as an R-algebra by derivations then R

is smooth over C (see [1]).
We will verify Becker’s Conjecture for semigroup algebras. We begin with

an explicit description of the module of constant coefficient differential opera-
tors on RA that was suggested to us by Bernd Sturmfels. First note that the
module of constant coefficient differential operators is graded: D(RA, RA/mA) =
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⊕aD(RA, RA/mA)a∈−NA. The graded piece of weight a is a 1-dimensional C-vector
space generated by the linear map that sends xa to 1 and kills all other monomials
in RA. Presenting the algebra RA,

0 → IA → C[x1, . . . , xn] → RA → 0,

this map can be expressed as the differential operator

Ta =
�

{b∈Nn: Ab=a}

n�

i=1

1

bi!

∂
bi

∂x
bi
i

;

here the strong convexity of NA guarantees that the sum is finite. To check this
formula defines the desired map, note that Ta sends IA to mA and sends any
representative x

b of ta to 1. Furthermore, by examining the grading, Ta sends all
other monomials in RA to an element of mA. We have established the following
result:

Lemma 3.2.16. If RA is a semigroup algebra with homogeneous maximal ideal

mA, then

D(RA, RA/mA) = ⊕a∈NA C ·




�

{b: Ab=a}

n�

i=1

1

bi!

∂
bi

∂x
bi
i



 .

Theorem 3.2.17. Becker’s Conjecture is true for semigroup algebras.

Proof. Consider a semigroup algebra RA with GrD(RA) finitely generated.
By Theorem 3.2.12 NA is a scored semigroup. Given a ∈ NA, we argue from the
structure theorem that any generator Pa of D(RA)−a maps to a constant multiple
of Ta under the map γ : D(RA) → D(RA, RA/mA). By considering the grading, we
see that Pa sends all monomials save possibly t

a into the ideal mA. Furthermore,
t
a is sent to a multiple of 1 = t

0. Since NA is scored, the set Ω(−a) is a union
of hyperplanes parallel to the facets, none of which pass through a. It follows
that none of the minimal generators of D(RA)−a kill t

a. From this it follows
that γ(D(RA)−a) = CTa and hence by Lemma 3.2.16 the map γ : D(RA) →
D(RA, RA/mA) is surjective. �

Remark 3.2.18. The proof above uses Theorem 3.2.12 but this hides the key
idea: when GrD(RA) is finitely generated, the algebra RA is simple as a D(RA)-
algebra. Indeed, as Karen E. Smith pointed out [17], the surjectivity of the map
D(R) → D(R,R/m) is equivalent to the D-simplicity of R in a much more general
setting. We give a characterization of D-simple semigroup algebras in Theorem
4.1.6.

By establishing Becker’s conjecture for semigroup algebras we give a new proof
that Nakai’s conjecture holds for semigroup algebras. For another proof, based on
the fact that the normalization of any semigroup algebra is D-simple, see [22].

3.3. Algorithmic Description. In the theory of the symmetry algebra, the
ideal of b-polynomials plays an important role (see [15]). From our viewpoint, the
ideal of b-polynomials B−a is nothing but t−a

D(RA)a. In this subsection, we review
how to compute B−a. But first let us restate the structure theorem for D(RA),
discussed in the previous subsection.
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Theorem 3.3.1.

D(RA) =
�

a∈ZA
D(RA)a =

�

a∈ZA
t
a
B−a,

where

B−a = t
−a

D(RA)a = I(Ω(a)).

The ideal B−a is related to the standard pairs of a certain monomial ideal
M−a ⊂ C[x]. Let

M−a : = �xw |Aw ∈ −a+ NA �
= mono(�xu �+ IA : xv),

where a = Av − Au (u,v ∈ Nn), and mono stands for the operation of taking the
largest monomial subideal. Algorithm 4.4.2 in [16] gives a procedure to compute
the largest monomial subideal.

For each monomial ideal M ⊂ C[x] we can decompose the set of monomials
not in M into standard pairs. A pair (u, τ) with u ∈ Nn and τ ⊂ { 1, . . . , n} is
called a standard pair of M if it satisfies the following conditions:

(1) uj = 0 for all j ∈ τ . (We abbreviate this to u ∈ Nτc
, where c stands for

the operation of taking the complement.)
(2) There exists no v ∈ Nτ such that xu+v ∈ M .
(3) For each j /∈ τ , there exists v ∈ Nτ∪{j} such that xu+v ∈ M .

See ([6], [16, Algorithm 3.2.5]) for algorithms to compute the standard pair
decomposition of a monomial ideal.

Lemma 3.3.2 (Lemma 4.4 in [15]). Let (u, τ) be a standard pair of M−a. Then�
j∈τ R≥0aj is a proper face of R≥0A, and moreover τ = { i |ai ∈

�
j∈τ R≥0aj }.

Thanks to Lemma 3.3.2, we may identify τ appearing in a standard pair, with
a proper face, also denoted τ , of R≥0A.

Let S(M−a) be the set of standard pairs of M−a. As usual, for an ideal I of
C[θ] = C[θ1, . . . , θd], we denote by V(I) the zero set of I.

Theorem 3.3.3 (Theorem 4.5 in [15]). Let σi be the facet of the cone R≥0A

corresponding to hi. Then we have the following.

(1)

Ω(a) = {Au+ N(A ∩ τ) | (u, τ) ∈ S(M−a) }.
(2)

B−a = I(Ω(a)) =
�

(u,τ)∈S(M−a)

�hi − hi(Au) |σi :facet ⊃ τ�.

(3)

V(B−a) =
�

(u,τ)∈S(M−a)

(Au+ C(A ∩ τ)).

We can use Theorem 3.3.3 to compute I(Ω(a)).

Example 3.3.4 (Continuation of Example 3.2.7). From Lemma 3.3.2, each
standard pair ofM−a is of one of the forms: (u1, u2, ∗, ∗), (u1, ∗, u3, u4), (u1, u2, u3, u4).
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Here we use the shorthand (u1, u2, ∗, ∗) to denote the standard pair ((u1, u2, 0, 0), 3, 4);
in general, τ is the set of components containing ∗’s. Now

S(M−a) = { (u1, u2, ∗, ∗) |u1 + u2 < −a2 }
∪{ (u1, ∗, u3, u4) |u1 + 2u3 + 3u4 < −a1 }
∪{ (u1, u2, u3, u4) |u1 + 2u3 + 3u4 = −a1 + 1, u1 + u2 = −a2 }.

I(Ω(a)) = �Pa � if a /∈ t(1, 0)− NA,

I(Ω(a)) = �Pa � × � θ1 + a1 − 1, θ2 + a2 � if a ∈ t(1, 0)− NA,

where Pa =
�−a1−1

m=0 (θ1 −m) ·
�−a2−1

m=0 (θ2 −m) as in Theorem 3.2.2.

� � � � ❞ ❞� � � � ❞ ❞� � ❞ � ❞ ❞❞ ❞ ❞ ❞ ❞ ❞❞ ❞ ❞ ❞ ❞ ❞
✲

✻

a2

a1

Figure 5.
t(1, 0)− NA

Put Da := t
a
Pa ∈ D(C[Zd]), Ea := Da(θ1 + a1 − 1), and Fa := Da(θ2 + a2).

Then

D(RA)a = DaC[θ] if a /∈ t(1, 0)− NA,

D(RA)a = EaC[θ] + FaC[θ] if a ∈ t(1, 0)− NA.

If a and a
� belong to the same chamber (quadrant), then we have the following

formulas (cf. Corollary 3.2.4):

DaDa� = Da+a� = Da�Da

[Da, Ea� ] = −a1Da+a�

[Da, Fa� ] = −a2Da+a�

[Ea, Ea� ] = (a�1 − a1)Ea+a�

[Fa, Fa� ] = (a�2 − a2)Fa+a�

[Ea, Fa� ] = Da+a�(a�1(θ2 + a
�
2)− a2(θ1 + a1 − 1)).

The above formulas imply that the algebra D(RA) is generated by Dt(0,1), Dt(2,0),
Dt(3,0), Et(1,0), Ft(1,0), Et(0,−1), Ft(0,−1), Et(0,−2), Ft(0,−2), Et(−1,0), Ft(−1,0), Et(−2,0),
Ft(−2,0) together with θ1 and θ2.

3.4. Application to A-hypergeometric systems. Associated to a face τ

of the cone σ = R≥0A and a parameter a ∈ Cd, we introduced a finite set Eτ (a) in
[15]:

Eτ (a) := { l ∈ C(A ∩ τ)/Z(A ∩ τ) |a− l ∈ NA+ Z(A ∩ τ) }.

Example 3.4.1 (Continuation of Examples 3.2.7 and 3.3.4). Let us consider
the matrix

A =

�
1 0 2 3
1 1 0 0

�
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again. The cone σ = R≥0A has four faces: σ itself, the nonnegative part of the
t1-axis σ1, the nonnegative part of the t2-axis σ2, and the origin {0 }. We have

Z(A ∩ τ) =






ZA if τ = σ

Zt(1, 0) if τ = σ1

Zt(0, 1) if τ = σ2

{ 0 } if τ = {0 }.
We shall compute Eτ (a) for all a ∈ ZA and for all faces τ . Suppose a ∈ ZA.

Since NA + Z(A ∩ τ) is a subset of ZA, l ∈ Eτ (a) implies that l ∈ ZA, and thus
l ∈ ZA ∩ C(A ∩ τ). In our case, ZA ∩ C(A ∩ τ) = Z(A ∩ τ) for all four faces τ .
Hence for each τ , there are only two possibilities: Eτ (a) = { 0 } or Eτ (a) = ∅. The
condition Eσ(a) = { 0 } is equivalent to the condition a ∈ ZA, which we assume.
For the other three faces τ , we have

Eσ1(a) = { 0 } ⇔ a ∈ NA+ Zt(1, 0) ⇔ a2 ≥ 0.

Eσ2(a) = { 0 } ⇔ a ∈ NA+ Zt(0, 1) ⇔ a1 ≥ 0.

E{ 0 }(a) = { 0 } ⇔ a ∈ NA.

Note that a = t(1, 0) is the unique point with Eσ1(a) = { 0 }, Eσ2(a) = { 0 }, and
E{ 0 }(a) = ∅.

The finite sets Eτ (a) can be computed by the following two algorithms.

Algorithm 3.4.2. Input: a = Au+ −Au− (u+,u− ∈ Nn).
Output: E = Eτ (a).

(1) Take any set E of complete representatives of the set Q(A∩τ)∩ZA/Z(A∩
τ).

(2) For each l ∈ E, choose any l+, l− ∈ Nn with l = Al+ −Al−.
(3) For l ∈ E, if xu++l− /∈ (�xu−+l+�+ IA : x∞

j (aj ∈ τ)), then E := E \ { l }.

Proof. This follows from the fact that l ∈ Eτ (a) if and only if A(u+ + l−) ∈
A(u− + l+) + NA+ Z(A ∩ τ). �

Algorithm 3.4.3. Input: a = Au (u ∈ Cn).
Output: E = Eτ (a).

(1) Find m ∈ C(A ∩ τ) such that a − m ∈ ZA. If no such m exists, then

E := ∅ and STOP. Otherwise GO TO Step 2.

(2) Compute Eτ (a−m) using Algorithm 3.4.2. Put E := m+ Eτ (a−m).

Proof. This is immediate from the equivalence of l ∈ Eτ (a) with l − m ∈
Eτ (a−m). �

Recall that the A-hypergeometric system with parameter a is just theW -module

MA(a) := W/(WIA(∂) +
d�

i=1

W (
n�

j=1

aijxj∂j − ai)).

Using the finite sets Eτ (a), the first author classified MA(a) in the homogeneous
case; that is, assuming the columns a1, . . . ,an of A lie on a hyperplane not passing
through the origin (see Theorem 2.1 in [15]). We generalize this result to the
nonhomogeneous case.

Theorem 3.4.4. MA(a) � MA(a�) if and only if Eτ (a) = Eτ (a�) for all faces

τ .
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Proof. In the proof of Theorem 2.1 in [15], the assumption that A is ho-
mogeneous is used to derive properties of the symmetry algebra S(W/WIA(∂))
(Theorem 3.3.1 and Proposition 3.4 in [15]). Since analogous results hold in
general for D(RA), the theorem follows from the anti-isomorphism of D(RA) ⊂
D(C[t±1

1 , . . . , t
±1
d ]) and S(W/WIA(∂)). �

4. D(R)-modules

4.1. In this section we determine the D(RA)-module structure of ta · R±
A =

x
v · C[x1, . . . , xn, x

−1
1 , . . . , x

−1
n ]/IA for a = Av ∈ Cd.

Definition 4.1.1. We define a partial order � in the parameter space Cd = CA
as follows: for a,b ∈ Cd say a � b when Eτ (a) ⊆ Eτ (b) for all faces τ of the cone
σ. We say that a and b are equivalent, denoted by a ∼ b, if a � b and a � b. We
use the notation a ≺ b if a � b and a � b.

Remark 4.1.2. Suppose that a � b. Then Eσ(a) ⊆ Eσ(b). Since both
Eσ(a) and Eσ(b) consist of one element ([15, Proposition 2.2.1]), this implies that
Eσ(a) = Eσ(b); that is, a− b ∈ ZA.

Lemma 4.1.3.
RA · xa ⊆

�

b�a

Cxb
.

Proof. This is immediate from the fact that a � a + c for all c ∈ NA ([15,
Proposition 2.2.5]). �

The following is the key lemma of this section.

Lemma 4.1.4. a � b if and only if a ∈ V(Ba−b).

Proof. First suppose a ∈ V(Ba−b). Then by Theorem 3.3.3, there exists a
standard pair (u, τ) ∈ S(Ma−b) such that a − Au ∈ C(A ∩ τ). If Eτ (a) ⊆ Eτ (b),
then b−(a−Au) ∈ NA+Z(A∩τ), which implies (Au+N(A∩τ))∩((a−b)+NA) �= ∅.
This contradicts the assumption that (u, τ) is a standard pair. Hence a � b.

Next suppose that a � b. Take l ∈ Eτ (a)\Eτ (b); that is, a−l ∈ NA+Z(A∩τ)
and b−l /∈ NA+Z(A∩τ). Then there exists u ∈ Nτc

such that a−Au ∈ l+Z(A∩τ)
and b − (a − Au) /∈ NA + Z(A ∩ τ). The latter statement is equivalent to (Au +
N(A∩τ))∩((a−b)+NA) = ∅. Hence there exists a standard pair (ũ, τ̃) ∈ S(Ma−b)
such that τ̃ � τ and u|τ̃c = ũ. Then a−Aũ ∈ Au|τc∩τ̃ + l+ Z(A ∩ τ) ⊆ C(A ∩ τ̃).
Hence a ∈ V(Ba−b). �

Proposition 4.1.5. (1) If a � b, then x
b ∈ D(RA) ∗ xa.

(2)
�

b�a Cxb is a D(RA)-module.

Proof. Let a − b ∈ ZA, p(θ) ∈ Ba−b, and P = x
b−a

p(θ) ∈ D(R)b−a. Then
P ∗ xa = p(a)xb.

Suppose that a � b. Then by Lemma 4.1.4, there exists a polynomial p(θ) ∈
Ba−b such that p(a) �= 0. With this choice of p(θ), the operator P/p(a) sends x

a

to x
b, establishing (1).
Next let P ∈ D(R)c, and suppose that a � a + c. Then by Lemma 4.1.4 and

the argument in the first paragraph, we have P ∗ x
a = p(a)xb = 0. This proves

(2). �
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Theorem 4.1.6. (1) Let a0 ∈ Cd. Then the set of simple subquotients of

x
a0 ·R±

A as a D(RA)-module, is

{
�

b�a

Cxb
/

�

b�a

Cxb |a− a0 ∈ ZA }.

(2) The set of simple subquotients of RA as a D(RA)-module, is

{
�

b�a

Cxb
/

�

b�a

Cxb |a ∈ NA }.

In particular, the number of simple subquotients equals the number of equiva-

lence classes of parameters in a0 + ZA and in NA, respectively.

Proof. Proposition 4.1.5 implies that
�

b�a Cxb is the D(RA)-submodule

generated by x
a, and that

�
b�a Cxb is its maximal submodule. �

The correctness of the following algorithm follows from the correctness of Al-
gorithm 3.4.2 and Theorem 4.1.6.

Algorithm 4.1.7. Input: A.

Output: the set of simple subquotients of R.

(1) Take any set Eτ of complete representatives of the set Q(A∩τ)∩ZA/Z(A∩
τ).

(2) For each l ∈ Eτ , choose any l+, l− ∈ Nn with l = Al+ −Al−.
(3) Choose any subset E�

τ of Eτ . Put E � := (E�
τ )τ .

(4)

I(E �) =
�

τ

�

l∈E�
τ

mono((�xl+�+ IA : x∞
j (aj ∈ τ)) : xl−).

(5)

C(E �) := I(E �)/
�

E��E��

I(E ��)

is a simple subquotient (though it could be trivial), where E � ⊂ E �� means

E
�
τ ⊂ E

��
τ for all τ . The set of simple subquotients of R is {C(E �) �=

0 | E � }.

Remark 4.1.8. For I(E �) to be non-trivial, for τ ⊂ τ
�, the image of E�

τ under
the natural map from Eτ to Eτ � should be in E

�
τ � . Hence we should choose E�

τ from
smaller faces.

Example 4.1.9. Let

A =

�
1 1 2 2
1 2 0 1

�
,

and consider the coordinate ring R = RA = C[t1t2, t1t22, t21, t21t2].
We compute Eτ (a) for all a ∈ NA and all faces τ of R≥0A. Since a belongs to

NA, we see Eτ (a) � 0 for all faces τ , E{0}(a) = {0}, and ER≥0A(a) = {0}. Since
Q(A∩σ1)∩ZA = Z(A∩σ1), we see Eσ1(a) = {0} as well. For the facet σ2, we can
take {0, t(1, 0)} as a set of the complete representatives of Q(A∩σ2)∩ZA/Z(A∩σ2).
Hence Eσ2(a) = {0} or {0, t(1, 0)}. Indeed

Eσ2(a) = {0, t(1, 0)} if a2 ≥ 1

= {0} if a2 = 0.
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� ❞ � ❞ �� � � �� � � �� � �� � �
✲

✻

✁
✁
✁
✁
✁✕

σ1

σ2

Figure 6. The semigroup NA

The following is the composition series of R as a D(R)-module.

0 ⊂
�

a∈NA, a2≥1

Cta ⊂
�

a∈NA
Cta = R.
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