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Abstract

We prove that the ring of differential operators of any semigroup algebra is finitely generated. In
contrast, we also show that the graded ring of the order filtration on the ring of differential operators
of a semigroup algebra is finitely generated if and only if the semigroup is scored.
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1. Introduction

This paper investigates conditions under which various rings of differential operators
on semigroup algebras are finitely generated. The ring of differential operat@s on
the algebrak was introduced by Grothendieck [4] and Sweedler [15]. Many recent papers
describe the structure of the ring of differential operators for special classes of algebras.
For instance, Jones [6], Musson [8], and Musson and Van den Bergh [9] chara&téRxe
whenR is the coordinate ring of a normal toric variety. In this cd3eR) inherits a fine
grading fromR, and bothD(R) and GKD(R))—the graded ring of differential operators
with respect to the order filtration—are finitely generated algebras (see [7,14] for other
approaches to this result).

Given a finite setA of integral vectors and a parameter vegtoiGel'fand, Kapranov,
and Zelevinskii defined and studied a system of differential equationsA thgpergeo-
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metric systemH 4 (B8) ([2,3], etc.; also see [11]). The symmetry algebra of the systems—
the algebra of contiguity operators—controls homomorphisms between systems with
different parameter vectors [10]. We showed in a previous paper [12] that the symmetry
algebra is anti-isomorphic to the ring of differential operatbrgk 4) for the semigroup
algebraR 4 = C[NA]. This connection toA-hypergeometric systems motivates our study

of differential operators on semigroup algebras but we feel that theDifR)y) is also
interesting in its own right.

While considering the finite generation of @x(R4)) in our previous paper [12], we
defined the notion of a scored semigroup: a semigiidpis scored if the difference
(R>0ANZA)\NA consists of a finite union of hyperplane sectionRgh A NZA parallel
to facets of the conR>0A. We conjectured the following in [12] and prove it in this paper.

Theorem 1.1 [12, Conjecture 3.2.10Let R4 = C[NA] be a semigroup algebra. Then

(1) Gr(D(Ry)) is finitely generated> NA is a scored semigroup.
(2) D(Ry) is finitely generated for all semigroup algebr&g .

Earlier we proved thes direction of (1) [12, Theorem 3.2.12]. We also proved tse
direction of (1) when the conR3A is generated by linearly independent vectors [12,
Theorem 3.2.13].

The layout of this paper is as follows: we start by reviewing some fundamental facts
about the ringD(R4) and introducing some notation in Section 2. At some point there was
confusion in the research community about the relationship between scored and Cohen—
Macaulay semigroup algebras. In Section 2peevide two examples to show that neither
condition implies the other. We describe the differe@®e.qA N ZA) \ NA in terms of
associated primes in Section 3. We use this description in Section 4 to decompose the lattice
ZA into finite pieces suitable for the arguments in Sections 5 and 6. A running example is
used to illustrate our definitions. In Section 5 we prove that the ring of differential operators
D(R,) is finitely generated for any semigroup algel®a (Theorem 1.1(2)). Example 5.3
is intended to orient the reader to the structure of our argument while illustrating our
approach to proving the finite generation B{R,4). In the final section we complete
the proof of Theorem 1.1(1) by showing that the graded ring of differential operators
Gr(D(Ry)) is finitely generated ifR4 is a scored semigroup algebra. We also show that
D(R,) is left and right Noetherian wheRA is a scored semigroup.

2. Ringsof differential operatorsof semigroup algebras

In this section, we briefly recall some fundamt@ facts about the rings of differential
operators of semigroup algebras. Let

A:={ay,ay,...,a,} (1)

be a finite set of integral vectors&f . Sometimes we identify with the matrix of column
vectors(ay, ay, . .., @,). Throughout this paper, we assume tiat = 74, for simplicity.
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The ring of differential operators with Laurent polynomial coefficients
D(C[z]) =C[5, ... 17 ](0n, . ... da)

is the ring of differential operators on the algebraic tot@s)?, where[d;, tjl = 8ij,
[ai,tj‘l] = —8,'.,'tj_2, and the other pairs of generators commute. Herfedenotes the
commutator and;; is 1 if i = j and O otherwise.

2.1. TheringsR4 and D(R4)

The semigroup algebrRy := C[NA] = @, 4 Cr? is the ring of regular functions on
the affine toric variety defined by, wherer® =132 - - 13 fora="(a1, az, ..., aq), the
transpose of the row vectduy, .. ., ag). Its ring of differential operator®(R4) can be
realized as a subring of the ring(C[Z¢]) of differential operators on the big torus as
follows:

D(R4) ={P € D(C[Z?]): P(R4) C Ra}.

Putf; :=t;9; for j=1,2,...,d. Then itis easy to see thaf € D(R,) for all j. We
introduce a grading on the rinG(R4) as follows: fora="'(ay, ao, ..., aq) € Z¢, set

D(Rp)a:={P € D(Ra): [0j, Pl=ajPfor j=1,2,....d}.
ThenD(R,) is Z4-graded:D(Ra) = @aczi D(Ra)a
We introduce some notation to describe the graded structure of the ring of differential
operatorsD(R,) explicitly. Ford e Z4, we define a subsag (d) of the semigroupNA by
() ={aeNA: a+d¢NA}=NA\ (—d + NA).
Theorem 2.1 ([6], [12, Theorem 3.3.1]).

D(Ra) = P D(Ra)a= EP °I(2(d)),

dezd dezd

where
[(2(d)) :={f(©®) € C[0] :=C[b1. ..., 0q]: f vanishes om2(d)}.
In [12], we conjectured thab(R,) is finitely generated for all semigroup algebias.
2.2. TheringGr(D(R4))

Next we explain the order filtration. A differential operator

P =" aa(d*e D(C[Z'])

aeNd
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is said to be obrder k if ag # 0 for somea with |a] = k andag = 0 for all awith |a] > k,
wherelal = a1 + a2 + --- + a4. Let Dy (R4) denote the set of differential operators in
D(R,) of order at mosk. Then{Dy(Ra)}ren is called theorder filtrationof D(R4). We
consider the graded ring @GP (R4)) of D(R4) with respect to the order filtration:

Gr(D(R4)) := @D Dk(Ra)/Di-1(Ra),
keN

where we putD_1(R4) = 0. The graded ring GD(R4)) is a subring of the commutative
ring

Gr(p(C[z9))) =C[5, 51, .. i e 6o, L 8],

whereg; is the element represented By. Since eactD(R,4) is 74-graded—by(R4) =
PDyecza Di(Ra) N D(R4)¢—the graded ring GID(R,)) inherits the grading:

Gr(D(R4)) = P GI(D(RA)),-

dezd

In [12], we conjectured that GD(R4)) is finitely generateds R4 is a scored
semigroup algebra. We proved the direction [12, Theorem 3.2.12]. We also proved
the « direction when the con®0A4 is generated by linearly independent vectors [12,
Theorem 3.2.13].

2.3. Scored semigroups

Finally, we recall the definition of scored semigroups. To this end, let us define the
primitive integral support functionfoa facet (maximal face) of the cor>qA. We
denote byF the set of facets of the corig;0A. Giveno € F, we denote byF, the
primitive integral support functioof o, i.e., F, is a uniquely determined linear form on
R¢ satisfying

(1) Fs(Rx0A) >0,
(2) Fy(0)=0,
() Fo(z) =".
Example2.2. Let
1 0 0 1
A:(al,az,ag,a4)=<0 10 1).
0 0 1 -1
Then

e o23=Rypa2 + Ryoa3, 024=Ry0a2+ Ryoas,
o13=Ryoa1 + Ryoa3, o14=Rypa1 + R0y
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and
F(ng(e) =01, F<724(9) =01+ 93: F013(9) =02, F<714(9) =02+ 937

where we denote the standard coordinate functiomi&'ct R3 by 61, 02, 63 and F,,,(0) is
shorthand fotF,, (61, 02, 63).

Definition 2.3. The semigroufNA is said to bescoredif

NA = (") {aeZ’: F,(a € F,(NA)}. ()
oeF

Example2.4. Let

A:(al,az,a3>=(3 : ;).
Then

F ={o1=Ryoa1, 03=Roas},
Fy1(01,02) =02, Fyy(01,02) = 301 — 62, and

N\ F,,(NA)={1}, N\ F,,(NA) =4.

As illustrated in Fig. 1, the semigrouyA is scored.
Remark 2.5.
(1) By the definition ofF,, the differenceN \ F,(NA) is finite for anyo € F.

(2) LetRH(A) =Rx0AN 74 denote the real hull of and let HolesA) = RH(A) \ NA.
Then the semigroup A is scored if and only if

HolesA)= ] | F 'm)nRHA).

oeF meN\F;(NA)

o1

Fig. 1. The semigroupiA in Example 2.4 is scored.
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(3) For the semigroup rin@[NA], neither the scored property nor the Cohen—Macaulay
property implies the other as shown in Examples 2.7 and 2.8, although scored
semigroup rings satisfy Serre’s conditiofp) as shown in Proposition 2.6.

The semigroup ringC[NA] is Cohen—Macaulay if and only if it satisfies Serre’s

condition (S2) and the reduced homology modules of certain simplicial complexes vanish
[16, Theorem 4.1]. In our case, Serre$s) condition can be stated as

NA = (NA+Z(ANo)). (S2)
oeF

Proposition 2.6. Any scored semigroup satisfie€%).

Proof. Let NA be a scored semigroup. It is enough to show that for any tacetr we
have

NA+Z(ANo)={aeZ’: Fy(a e F,(NA)}. (3)

The inclusion £’ is clear from the definition ofF,,. To prove the other inclusiorD’,
leta e Z4 satisfy F, (a) € F,(NA). For everyo’ € F different fromo, there exists; € A
such thata; ¢ o’ anda; € 0. SinceF, (a;) > 0 andN \ F,.(NA) is finite, there exists
m; € N such thatF,,:(a+m; ;) € F,/(NA).

Doing this argument for every’ € F different fromo, we findb € N(A N o) such that

Fy(a+b)e Fpy(NA) (Yo' € F\{o}).

Since

Fy(a+b) = F;(a) € F;(NA)

andNA is scored, we see+ b € NA. Henceae NA +Z(ANo). O

01 2
A= (1 1 o) ‘
This A satisfies §2). Hence the semigroup ring[NA] is also Cohen—Macaulay since
RH(A) is simplicial. ThusC[NA] is Cohen—Macaulay b A is not scored (see Fig. 2).

Example2.7. Let

Example 2.8. Let

oOoR
oN
O wrR
=

BN
e
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02

o1

Fig. 2. The semigroupiA in Example 2.7 is not scored.

Then the semigrouiA is clearly scored. However, the semigroup riggNA] is not
Cohen-Macaulay [16, Example 3.9].
3. Graded associated primes

In this section we describe the holes of the semigrdip HolegA) = Rx9A N
7%\ NA, using the graded associated primes of ceffdirgraded modules.

A moduleM overR := R4 = C[NA] is said to be&Z?-gradedif M has a decomposition
M = @, ya Ma such thatRaMp C Ma,p, for all aandb.

First, we recall a lemma from [5].
Lemma 3.1 [5, Proposition 1.3]The set ofZ¢-graded prime ideals oR = C[NA] equals

{P: :=C[NA\N(AN1)]: risaface ofR>pA}.

We also have the following lemma.

Lemma 3.2 (see, e.g., [1, Exercise 3.5)et M be aZ?-graded R-module. Then any
associated prime a¥/ is Z¢-graded, and is the annihilator of a homogeneous element.

Lemma 3.3. The R-moduleC[Rx0A N 741 is finitely generated.

Proof. Choose a finite subs€t C NA that generates the coie,gA. Then

|

generate®>oA N Z¢ as anNA-set. O

anae 7% 0< ca < 1}

acG

Proposition 3.4. There exisin € N, b; € Z¢, and facesr; of RyoA withi=1,2,...,m
such that

HolegA) = | [(bi + N(A N ). (4)
i=1
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Proof. Put N := C[R30A N 741 and Mo := C[NA]. SupposeN/Mgy # 0. Then
AsS(N/Mo) # ¥. Hence, by Lemma 3.2, there exisise Np, such thatP; := Ann(xy) €
AsS(N/Mp). By Lemma 3.1, there exists a unique fagesuch thatP, = Py, ; equivalently
R/ Py [—bi1]l~ Rx1 C N/ Mo,
whereR/ P, [—b1] is theZ?-graded module shifted bybq, i.e.,
(R/Pry[~bal), := (R/Pr)a b,
Hence we obtain

(b1 +N(ANT))NNA=0.

Put My := Mo + Rx1. If N/Mj # 0, then there exidh, € Z4, xp € Np,, and a facer,
such thatP;, = Ann(xz) € Ass(N/M31). SinceR/ P.,[—b2] >~ Rx; C N/My, we obtain

(b2+N(AN2) N (NA] [(b2+NA N 7)) =
Put M, := M1 + Rx», repeat this process, and obtaistdctly increasing sequence of
graded submodules @¥: My C M1 C M> C ---. This sequence must stop singeis a
NoetherianR-module (by Lemma 3.3). Thus we obtain (4)o

Note that the expression (4) is not unigWée fix an expressiof) once and for all
Put

M :=max{F,(0b)): o, i} + 1. (5)
WhenNA is normal, i.e.NA = R>0A N Z4, we putM = 0. Note that for alb € F,
{keZ: k> M} C F;(NA), (6)
or equivalently
NC —M + F5(NA). (7)

Example 3.5 (Continuation of Example 2.4) et
1 11

Then
N\ Fy, (NA) = {1}, N\ Fyy(NA) = 4.

We haveM = 2.
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Lemma 3.6. Let z be a face of the conB>oA. Then

NA+Z(ANT) =[Rs0d +RAND]NZY\ | (bi +Z(ANT)).

Ti=T
In particular, if c € Z¢ satisfiesF, (c) > M for all o = 7, thence NA + Z(A N 7).

Proof. C:Letd e NA+Z(ANt). Thenthere existd; € N(ANt) suchthatd+d, € NA.
Suppose thadl € b; + Z(A N t;) for somer; = 7. Then there existd; € N(A N ;) such
thatd+d; e b; + N(AN1;). Sincer < t;, we haved +d; +d; € b; +N(ANt;). However
(d+d;) +d; e NA which leads to a contradiction becaube+ Z(A N 7)) "NA =@ by
Proposition 3.4.

D: Assumed € [R>0A + R(ANT)INZY \ (NA + Z(A N1)). Becausa € (R>0A +
R(A N 1)) N 2Z4, there existsd; € N(A N 7) such thatd + d, € R>0A N Z4. Since
d¢ NA+Z(ANt), d+d; ¢ NA. So by Proposition 3.4d +d; e b; + N(A N 7))
for somer;. We claim that we can take the abode so thatd + d; € b, + N(AN 7;)
for somert; = 7. To prove the claim it is enough to show that we can tdkeso that
d+d; ¢ b; +N(ANt;) foranyr; / r. Foreach;  r, there exists a facet; with o # t
ando; = 7;. Take a vectod; e N(ANt)\N(ANo;). Setd, =d, + M ) d;, where the
sum is over all faces; not containingr. Thend +d’, ¢ b; +N(AN<;) if t; % v because
there exists a facet; containinge; with F,; (d+d;) = Fo(d+d: + M do =M. O

4. Decomposition of the lattice Z¢

In this section, we decompose the latti#@ into finite pieces suitable for the finite-
generation arguments in Sections 5 and 6.

The ring D(R) localizes well:D(S~1R) = S™1R ®& D(R) [12, Lemma 3.2.1]. This
allows us to reduce structural questions abfyC[NA]) to the case where the cone
o = R30A generated by the columns df is strongly convexd4 does not contain any
lines through the origin). If the cone is not strongly convex thel A contains a finite
subsetB so thatR>oB is strongly convex an&k 4 = C[NA] is a localization ofC[NB].
From now on we assume that the cdfigoA is strongly convex

We call a congp =R v, aray of the hyperplane arrangement determinediy v,
is a nonzero integral vector, afith is an intersection of hyperplanég, = 0) (o € F).
Let Ray(A) denote the set of rays of the hypkpe arrangement determined Ry Let
p € Ray(A), and lete, be the generator &% N p, i.e.,Z¢ N p = Ne,.

Set

Facet (p) :={o € F: F;(e,) >0}, Faceg(p) :={o € F: Fy(p) =0},
Facet (p) := {a eF: Fs(8) < O}.

Let M be the nonnegative integer defined by (5). For agayRay(A), take a nonzero
vectord, from 7% N p satisfying the condition:
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Fy(d,) > M if o € Facet (p), Fy(d,) =0 if o € Faceg(p),
Fs(d,) <—M if o € Facet (p). (8)

Note that the second condition above is automatically satisfied djneep.

Example 4.1 (Continuation of Example 2.2) et

1 00 1
A:(al,ag,ag,a4)=(0 10 1).
0 01 -1

SinceNA is normal,M = 0. We have

(F‘723 = O) N (F‘TlS = O) = Rt(ov O: 1)1 (F(723 = O) N (F(724 = 0) = Rt(ov 1: 0)1
(Foy3=0) N (Fypyy =0 =R'(0, 1, - 1), (Foy3="0) N (Fppy = 0) =R'(1,0, 1),
(Fo13=0) N (Foy, =0 =R'(1,0,0), (Fopy =0) N (Fopy =0 =R(1, 1, -1).

Hence we can take

_ [ £(0,0,1), £(0,1,0), +/(0,1, —1)
{dot p €RayA)} = {:l:t(l, 0,-1), £(1,0,0), £'(1, 1,—1)}'

Note that RayA) has more elements than
{£(1-dimensional face dR>0A)}.
We now decompose the lattié into pieces. Lefx be a map frons to a set
M :={—00} U {+o0} U |m € Z: |m| < M}.
Define a subses,, of Z¢ by
S, = {deZ F,(d)=u(o)forallo € F}, (9)

where we agree tha, (d) = 400 (—o0, respectively) means, (d) > M (< —M, respec-
tively). Note thatS,, could be empty. Clearly, we have

7' =Jsu.
"

The S, are the integral points (represented by large dots) in the shaded regions in Fig. 3;
see Example 4.3.
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g. 3. The sets, .

Example 4.2 (Continuation of Example 3.5)n the exampleM = 2 and M = {+oc0} U

{—1,0,1}. We can take
{dy: p € Ray(A)} = {+ay, +aa}.
Consider the following mapg1 andu»:
ua(or) = 1pi(os) = —1, p2(o1) = lpuz(o3) = —oo.

Then

Sy = {d c 72 dr=1, 3d1—dr= —1} = {I(O, 1)}a
Sy, ={d€Z? dy=1, 3d1 — d2 < -2} =N(-a1) +'(-1.1).

We also construct similar subsetsRf; set

Suri={deR® F,(d)=u(o)forallo € F},

Fy(d)=0 if u(o)#=+o0
ﬁ deR% Fy,(d)>0 if u(o)=+o0 },
o Fy(d) <0 if (o) =—00

FM,R:

and
F, :={d,: p C Fy Rr}.
For example, ifu is the constant functios-co, thenF,, g =R>0A. We have

S = 74N SuR-

(10)
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Example 4.3 (Continuation of Example 4.2)
In our example,

Fu=9, Fuor={deR%* d=0,3d1—d><0}=]deR? d=0, d1 <0},
Fyu, = {—a1}, Sur={01} Supr = Fupr +'(—1/3,1).
Lemma4.4. LetV, denote the set of vertices of the polyhedSgrk. Then
Su.r = Fy r+cCONUV,),
whereconuV,,) denotes the convex hull &f,.
Proof. F, r is the characteristic cone 6f, . See [13, §8.9 (28)]. O
Lemmadb. F, g =Rx>oF,.

Proof. This follows from the fact that a strongly convex cone is generated by its 1-dimen-
sional faces. O

Proposition 4.6. The setS,, is F, -finite, i.e., there existy, ..., v, € S, such thatS, =
U1 ((NF) +v;), whereNF, =3, Nu.

Proof. Let

Gy = ({ Z ayu: 0< ay < 1} +con\(vu)> nza.

ueF,

ThenG,, is afinite set. LeG, = {v1,...,V,}. ClearlyS, 2 J]_1((NFy) +V;).
Now suppose that € S,,. Then, by Lemmas 4.4 and 4.5, there exigte R> and
w € con\(V,,) such that/ = ZueFM cyU +w. Hence

r

v= ) leuJu+ ( > (cu— Leu))u +W) e J@WF)+v)). o
UeF, UeF, Jj=1

Example 4.7 (Continuation of Example 4.3)n the example,

Gu =101} and Gy, ={-car+'(-1/3,1)eZ% 0<c <1} ={'(-1,D}.

5. Finitegeneration of D(R4)

In this section, we prove thd(R4) is always finitely generated.
Letd e Z¢. Recall that2(d) = {ac NA: a+ d ¢ NA}. First, we describe the Zariski
closure of the se® (d) using (4). We denote the Zariski closure of ageh C? by ZC(V).
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Proposition 5.1.

ZC(2(d)) = [-d + ZC((d + NA) \ Rx0A)] U [—d + ZC((d + NA) N Holeg 4)) ]

= ( U U F;l(m>)

0:F; (d)<0 m<—F4(d), me F;(NA)

u( U (b,-—d+<C(Aﬂfi))>,

b; —deNA+Z(ANT;)
whereHoleg A) = [ [, (b; + N(A N 1)) as in PropositiorB.4.
Proof. Recall that
£2(d)=—d+ [(d+NA) \NA]. (11)
So we consider the séd + NA) \ NA. First, we have
(d+NA) \NA = [(d +NA) \ Rx0A] (12)
U[(d+ NA) N Holeg4)]. (13)

The Zariski closure of the first set (12) is easy to describe:

ZC((d +NA) \Rx0A) = U U F i m). (14)
0:F;(d)<0 m<0, meF, (NA)+F,(d)

The second set (13) is written as

(d+NA) N (Holeg4)) = |_Jd+N4) N (b; + N(A N 1)).

1

Note that shifting the seid + NA) N (b; + N(A N 7;)) by adding elements dfi(A N ;)
produces no new elements. Hence, if the set is not empty then its Zariski closure is

ZC((d+NA)N (b; + N(ANT))) =b; + C(ANT). (15)
Finally, note that
(d+NA)N(b; +N(ANT))#YP <+ b —deNA+ZANT). (16)

We have thus proved the propositiorna
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Example 5.2 (Continuation of Example 2.7) et

01 2
A:(l 1 0)‘

ThenF,(0) = 62, Fy,(0) =01, andF,; (NA) =N (i =1, 2). We haveNA = NZ\[’(l, 0+
N(2,0)] andM = F,,('(1,0)) + 1= 2. The semigroufiA is not scored.
As described in Lemma 3.6,
NA +Z(ANo1) = | (a1, az) € Z% ap > O}\['(L.0) + Z' (2, 0)]
={"(a1,a2) € Z% ap > 1} U{"(a1,0) € Z* a1 € 2Z}.

Hence'(1,0) — '(d1,d2) e NA + Z(A Noy) if and only if d» < —1 or [d2 = 0 andds is
odd]. Therefore, by Proposition 5.1,

—d;i—1
V(H I1 (Oi—m)> if dp > 1 or [do = 0 andds € 27Z],
ZC(R(d) = hom=0
V<(9z+dz)~ l_[ ]_[ (6; —m)) otherwise,
di<0 m=0

whereV( f) is the largest subset & on which f vanishes.

Example5.3. Let
2 011 2
A= (o 2 12 1)‘
We use this example to outline our approach to showing héR4) is finitely ge-
nerated (Fig. 4). Consider the indek= (-8, —4). We aim to express(R4)q as
D(Ra)d,D(R4)d, for di anddy vectors of smaller norm such thdi + d> = d. For

instance, ifdy =’(—6, —4) anddz = '(—2,0) then D(R4)4, D(R4)d, iS @ module over
the ringD(R4)o = C[61, 62]. This module equals

09:601=0

01:62=0

Fig. 4. The semigroupiA in Example 5.3.
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6 4 2
1% [ [ —) [ [ 62— i) - 172 [ 61— )Cl61. 62]
i=0

i=0 j=0

8 4
=1 J@1 =) [[02— ) - (61— 2Cl61, 621

i=0 j=0
=D(Rp)d(01— 2).

So it is not possible to use just this pdif andd; to generate the modul®(R4)q. We
say that the paid;, dz is deficient by the ideab1 — 2) of C[61, 62]. However, for the pair
d; ='(—4, —4) andd, ='(-4,0), D(Ra)g, D(Ra)a, = D(Ra)d(61 — 4) SO

D(Ra)d; D(Ra)d, + D(Ra)g, D(Ra)g, = D(Ra)d[ (61 — 2) + (61— )] = D(Ra)q.

So it is possible to expresB(R4)g as asumof terms of the formD(R4)d, D(R4)d,-
However, as in the example, we need to choose the tdfraadd; carefully in order that
the deficiency ideals sum to the unit idealld§R 4)o = C[6].

Definition 5.4. Givends, d> € Z¢ with d1 + d»> = d, thedeficiency ideabf d; andd; is
the ideall of C[f4, ..., 64] such thatD(R4)4, D(Ra)d, = D(Ra)dl.

The example suggests that the deficiency ideal is the ideal that vanishes on the Zariski
closure of a translate of some of the holeNof. However, the exact portion of the set of
holes that is involved can depend on parity considerations. For instance, in the example, if
d="'(—4,0) andd; = (-1, 0) andd, =/ (-3, 0) then the deficiency ideal i®1 — 3) (62)?
while if dp =d2 ='(-2,0), it is (91 — 2). We handle parity concerns by choosidg
carefully (as a multiple of a particularly good vectty; see definition (8) and (17) below).

We show that the paird; andd, can be chosen so that the sum of the deficiency ideals
is the unitideal in Theorem 5.14. Moreover, we locate a good set of generat@éraqy) .

This requires a description of the two ide&{s2 (d1) + d2) andl($2(d2)) appearing in the
expression

D(RA)d; D(RA)d, = t91(£2(d1) + d2)I(2(d)).

In turn this requires some computations based on the geometry of the semigroup
(Lemmas 5.6-5.12). Sinc& and its Zariski-closure Z) have the same idealization,
I(S) = I(ZC(S)), the Zariski-closure of the sef3(d1) + dz and$2(d2) play a significant
role in the description of the deficiency idealdyf anddy. In Corollary 5.13, we describe
the deficiency ideal in a form suitable for our purpose.

Let p € Ray(A). Taked, so that

d,eZ(Ant)Nnp forall facesr of RyoA satisfyingRr D p. a7

Indeed, this is possible; for example, for a facewith Rt > p, let m,; be the index
[Z°NQANT):Z(ANT)]. Let m, be a common multiple, not less thas, of them..
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Thend, :=m,e, satisfies the condition sing&? N p)/(Z(A N ) N p) is a subgroup of
(24 NQANT)/(Z(ANT)).

We want to show thab(R)q equals a sum aD(R)q, - D(R)g, for some choices dp,
whered; = d — dz. In Theorem 5.14 we will choose thik's to be multiples ofd,. Until
then, we concentrate on what happens wiies-d,,.

Note thatD(R)q, - D(R)g, = tYI(X)I(Y), where

X :=(—d, +NA)\ (—=d +NA) = —d + [(d1 + NA) \ NA], (18)
Y :=NA\ (-d, + NA) = 2(d,). (19)
Remark 5.5. If p C F,, r (see Section 4 for the notation), then
Facet (p) C u~(+00),  Facet (p) C u ™ (—00).
Lemmab5.6. Letdy € Sy, p C Fy g, andd =d1 +d,. Then
ZC((d+NA)N(b; + N(ANT))) =ZC((d1+NA) N (b; +N(ANT))) (20)
forall ;.
Proof. By (15) it is enough to show that
(d+NA)N(b; +N(ANT)) =0 <<= (d1+NA)N(bj+NANT))=4.
This is equivalent to saying that
b —deNA+Z(ANt) <— b;—d1eNA+Z(ANT)
by (16). We divide the proof into several cases.
Casel. There existsr € Facet (p) such thatr = 7;.

Then, by Remark 5.5F,; (d), F,(d1) > M. We claim that both(d + NA) N (b; +
N(AN17;)) and(dy + NA) N (b; + N(A N 7;)) are empty. Suppose that the gt NA) N
(b; + N(A N ;) is not empty. Letx € (d + NA) N (b; + N(A N 7;)). Sincex belongs
to (d + NA), we haveF,(X) > F,(d) > M. Sinceo = t; andx € b; + N(A N 1;), we
have F, (x) = F,(b;), and this is less that by the definition ofM (5). We thus have a
contradiction. Hence, the s&d + NA) N (b; + N(A N 7;)) is empty. The same argument
works fords, too.

Casell. o € Facet (p) U Faceg(p) forall o = 7;.

If a facer satisfiesRt D p, thend, € Z(A N 1) by (17). Hence

bi—deNA+Z(ANT) < b —dieNA+Z(ANT). (21)
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We divide Case Il into three subcases: Il-a,lland IlI-b.
Casell-a. There exists a face = t; such thalRt > p andb; —d ¢ NA + Z(A N 7).

In this case, we havb; — d1 ¢ NA + Z(A N t) by (21). Henceb; — d,b; — d; ¢
NA + Z(A N ;). Hence, we obtain

(d+NA) N (b; + N(AN 7)) =¥ = (d1+ NA) N (b; + N(AN1)).
Casell-a’. There exists a face = t; such thafRt > p andb; —d; ¢ NA + Z(AN1).
Similarly to Case ll-a, we obtain
(d+NA)N (b; + N(AN 7)) =¥ = (d1+ NA) N (b; + N(AN1)).
Casell-b.b; —d,b; —di1 e NA + Z(A N 7) for all facest satisfyingr = t; andRzt D p.
In this case, we prove that
d+NA)N (b +NANT) #0,  (di+NA)N (b +NANT))#,
or equivalently
b; —d,b; —d1 eNA+Z(ANT). (22)
To prove (22), we use Lemma 3.6; we first claim that
b; —d,b; —d1€R>0A+R(AﬂT,'), (23)
and we next claim that
b, —d,b; —dlébj-l-Z(Aﬂtj) (~vVtj = 1), (24)

To prove (23), Sinc®R>0A + R(ANT;) = ﬂaﬁ_’oef(Fo > 0), it is enough to show
that F; (b; — d), F, (b; —d1) > 0 for all facetso = 1;.

If a faceto satisfieso = ; andRo D p, then F,(b; — d), F,;(b; — d1) > 0, since
b; —d,b; —d; € NA + Z(A No) by our assumption Il-b.

If a faceto = 7; does not satisifRo O p, then by our assumption for Case I, we
haveo € Facet (p), sinceRo D p < o € Facep(p). Now, by the definition ofd, (8),
F,(d,) < —M. Sinced; € S,,, Remark 5.5 implie¥,; (d1) < —M. HenceF, (b; —d1) =
Fy(b;) — Fy(d1) > M >0 andF, (b; —d) = F, (b; —d1) — F,(d,) > 2M > 0. We have
thus proved the claim (23).

Next we prove the claim (24). Suppose that= r; satisfiesRz; > p. Then, by our

assumption ll-bp; — d,b; —d1 € NA + Z(A N t;). Hence, by Lemma 3.6, we have
b; —d,b; —di1 ¢ b; +Z(ANT;).
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Next suppose that; »= t; does not satisffRz; O p. Then there exists a facet:> t;
such thatRo 2 p by the Sublemma below. Now by the same argument as in Case II-b
(using Remark 5.5 and the assumptions from Case II), we have

o € Facet (p) C w1 (—o0),

and F, (b; — d), F, (b; —dy) > M. Thereforeb; —d,b; —dy ¢ b; + Z(A N ;) by the
definition of M (5). We have thus proved the claim (24). Hence by Lemma 3.6 we have
proved (22).

We have examined all cases, and thus completed the proof.

Sublemma 5.7. Let r be a face of the con&>oA. Then

Rr= () Ro. (25)

o=1,0 facet

Proof. The inclusion ' is trivial. Let x belong to the right-hand side of (25). Let <.
Then there exista, € T \ ¢’. We haveF,(a,’) > 0. So we can take, such that
Fy (X + a,/) > 0. Do this for allo” % . Thus we finda € = such thatF,(x + @) > 0
forallo’ * 7.

Foro =17, we haveF, (x + a) = F, (x) =0.

Thereforex+a€R>0AN(),,., 0 =7. Hencexe Rz. O

Definition 5.8. Ford € Z¢, we definePyq € C[0] = C[#1, ..., 64] by

Py(0) = ]_[ ]_[ (F5(8) —m). (26)

oceF meFy;(NA)\[—Fs(d)+F5(NA)]
Lemma5.9. I(£2(d)) C (Pqg).
Proof. Leto be a facet. We aim to show that
{F; (m): m € Fy(NA)\ [~ F, (d) + F, (NA)], m > —F,(d)}
C{bi—d+CANT): b —deNA+Z(ANT)},

after which the result wilfollow from Proposition 5.1.
To verify the inclusion, take

x € [F;(m): m e F;(NA)\ [—F,(d) + F; (NA)], m > —F,(d)}.

Then because: + F,(d) > 0, F,(x+d) =m + F;(d) € F,(Sa(NA)), where SaiNA)

is the saturation of the semigrolijd (because we assumé@ = Z?, we can think of
Sa(NA) asR>0A N Z%). In addition, we have, (x) = m € F,(NA). Hence there exists a
t1 € C(ANo) suchthak+d+t; € Sa{NA), andx+t; € NA. Howeverx+d+t1 ¢ NA
sinceF, (X +d+t1) =m + F,(d) ¢ F;(NA) by the definition ofx.
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So we have
X +d+t1 € SatNA) \ NA = HolegA) =] [ b; + N(AN).
Moreover,
x+d+t1+N@ANo) c| Jbi +ZANnT),

and in fact the left-hand side must be contained 8inglefactor on the right-hand side.
So there exists b; + Z(A N ;) with

X+d+t1+NANo)Cb +Z(ANT).
It follows thato = ; and
X+d+treb, +Z(ANT).
Now there exists a2 € Z(A N 1;) with X + d + t1 = b; + t2. Solving for x gives:
X =b; —d+ (t2 — t1), wherety, — t1 € C(A N 1;) (this last comment comes from the

definition oft; and the fact thad = ;). Thusx e b; —d + C(AN 7).
It remains to show thdt; — d € NA + Z(A N t;). Recall thak +t; € NA. Thus

b —d=(X+1t) -t eNA+ZANT). O
We use the following lemma in Section 6.
Lemma5.10. Letd; € S, andp C F,, g. Then
197D Py 1, (0) = 1% Py, (0) - 1% Py, 6).

Proof. We haverdi Py, () - 1% Py, (9) = t911% Py, (6 + d,) - Py, () (because; = 1;3;)
and

Pay1d,0) = [ ] I1 (Fo (6) —m),

o €F meFy;(NA)\[—Fy(d1+dy)+Fs (NA)]

Py, (0 +dy) =[] [1 (Fo(6) —m),

0€F me[—Fq(dp)+Fs (NA)|\[—F5 (d1+d,)+F5 (NA)]

Py, ) =[] I (Fs(6) —m).

o€F meFy;(NA)\[—Fs(dp)+F5(NA)]

Foro € Faceg(p), the polynomialPy, (¢) does not have ah, -factor, and the polynomials
Py,+d,(0) and Py, (6 + d,) have the samé,-factors. If o € Facet (o), theno €
n~1(400). Hence none of the above three polynomials Radactors foro € Facet, (p),
since we toold,, so thatF, (d,) > M for such ar. Suppose that € Facet (p). Then
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Fy(NA)\ [—F5(d1+d)) + F5 (NA)]
= ([-F>(dp) + Fo NA)[\[-F5 (d1 + d,) + F5 (NA)])
[ [(Fo NA)\ [-Fo (dy) + F5 (NA)]),
since
—Fo(dp) + Fo (NA) C F5 (NA)

and

[-Fo(d1+dy) + Fo (NA)| C [—F,(dy) + Fo (NA)]
thanks to (6) and the propertiés (d,), Fs(d1) < —M. O
Lemmab5.11. Letd; € Sy, p C Fy g, andd =dy +d,. Then

1($2(d)) =1(X) N (Pg,) =1(X) - (Pq,),

whereX = (—d, + NA) \ (—d+ NA) and, as in(26),

Py, )= ] I1 (Fo (6) —m).

oeFacet (p) meFy (NA\[Fy(—d,)+Fy(NA)]

Proof. First note thatF, (NA) \ [F5(NA) — F, (d,)] = ¥ for o € Facet.(p) U Faceg(p),
sinceF, (d,) > M for o € Facet (p). This justifies the expression fé¥, .
We have

Fs (NA) + F,(d1) C F; (NA) + F,(d) (27)

for facetso with F,(d1) < 0. Indeed, for suchkr, we haveF,(d,) < 0, and hence
Fs(d,) =0or F;(d,) < —M. WhenF, (d,) = 0, the inclusion (27) trivially holds with
equality. WhenF, (d,) < —M, we haveN C F, (NA) + F,(d,), and hencef, (NA) +
F,;(d1) c N+ F;(d1) C F;(NA) + F,(d). Thus from (14), we obtain

ZC((d 4+ NA) \ Rx0A) = ZC((d1 + NA) \Rz04) U | | U Ftem). (28)

oeFacet (p) mely
where
Jo ={m <0: m e [F;(NA) + F, (d)]\[Fs (NA) + F5 (d1)]}

={m <0:m € F,(d) + (F;(NA) \ [ F; (NA) — F;(d,)])}
=F,(d)+ (Fa (NA)\ [FU (NA) — Fo (dp)]) (29)
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Note that the last equation holds, sinfg(d1) < —M andm ¢ F,(d) + [Fy(NA) —
F5(dy)] = F5 (d1) + F5 (NA) imply m ¢ N. Then the first equation of the lemma follows
from Eqg. (11) and Lemma 5.6,

ZC(2(d)) = —d + ZC((d + NA) \ NA)

— d+ [zcm + NA\ R504)

0 JZC(d + NA) N (b + N(A N f,-)))}.

1

This last equality interprets-d + ZC((d + NA) \ NA) as the Zariski-closure of the
elements olNA that are shifted out dNA by addingd. This can happen in two ways: the
element can be shifted out of the cdRgoA entirely or the element can be shifted into
the Zariski-closure of the holes, Z@ + NA) N (b; + N(A N 7;))). Now, using (28) and
Lemma 5.6,

zC(2(d)) =—d + [ZC(d1+NA\R>oA)U{ U U Fgl(m)}

oeFacet (p) meJs

ulJZc((d1 +NA) N (b +NA N n)))}

1

=—d+[ZC((d1+NA)\NA)U{ U UF;l(m)” (by (4))

oeFacet (p) mely

={—d+ZC(d1+NA\NA)}U{ U U—d+F;1(m)}.

oeFacet (p) meJy

Now by (29),

ZC(22(d)) = V(I(X)) U { U U —d+ F; 1(m)}

oeFacet (p) meF, (d)+Fy (NA)\[Fy(NA)—F5(d,)]

= V(I(X)) U { U U Fgl(m)}
ocFacet (p) meF, (NA)\[F5(NA)—F5(d,)]
=V(I(X)) UV(Py,).
To see thafl(X) N (Pqg,) = 1(X) - (Py,), it is enough to show that N V(Py,) = @ since

theandp € I(X) implies f € I(X). But if o € Facet (p) andm € F,(NA) \ [F,(NA) —
F5(d,)], then

F Y m)n X = F; 1 m) N ((—=d, +NA) \ (—=d + NA)).

But m = F,(F;Y(m)) ¢ F;(NA) — F,(d,), so F,;1(m) N X = ¢. It follows that X N
V(Py,) = ¥ so the second equation of the lemma holds.
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Lemmab5.12. We have
1Y) =1(£2(dp)) = (Pg,) .H(U(b,- —d, +CAN r,»))),
iel
where

=1 b; —dp eNA+Z(ANT),
1" F,(b;) € F,(NA) for all o € Facet (p) containingr; |-

Proof. Recall that
Y =NA\ (=d, + NA) = —d, + [(d, + NA) \ NA].
By (14),

ZC((d, + NA)\Rx04) = [ J U F Y m).
ocFacet (p) m<0,meF,(NA)+F,(d),)

Note that(d, + NA) N (b; + N(A N 1;)) =@ for all 7; contained in a facet € Facet.(p),
sinceF, (d,) > M. Also note thatd, + NA) N (b; + N(A N 7;)) =¥ for all 7; satisfying
Rt; D p; otherwise the fadad, € Z(A N t;) contradicts the fady; ¢ NA+Z(AN7t;). Recall
from (16) that

(dp +NAN(0; +NANT)) #0 < b —d, eNA+Z(ANT).

If this is the case, then (15) implies that 4@, + NA) N (b; + N(A N 1;))) equals
b; + C(AN1).
Hence, we obtain

zcwr= U Fyt(m)

ocFacet (p) m<—F5(d,), meF,(NA)

U U (bi —d, + C(ANT)).
bi—dpeNA+Z(Aﬂr,-)

Next, we claim that

U (b,‘ —dp+(C(Aﬂt,'))
b,‘—dpENA-‘rZ(Aﬁ‘L’i)

- U U o

oeFacet (p) m>—F,(d,), meFy (NA\[—Fy (d,)+Fy (NA)]

uJ(bi —d, + C(ANT)). (30)

iel
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To prove ‘C’, let b; —d, e NA+Z(A N t;) andi ¢ I. Then there exists € Facet (p)
containingz; such thatfF, (b;) ¢ F, (NA). We see thain := F, (b; — d,) € F;(NA) \
[-F5(d,) + F,(NA)] andb; —d, + C(A N 1) C F;X(m). To prove 2, let o €
Facet (p), m > —F,(d,), andm € F, (NA) \ [—F,(d,) + F5 (NA)]. Thenm + F,(d,) €
N\ F;(NA). Hence

FY(m+ Fy(dy))NZ9 = U (bi + Z(AN ),
Fy(bi)=m+F5(d,), ti=0

or equivalently

Flmynz? = U (b; —d, + Z(ANT)).
m=Fy(b;—d,), ri=0

Sincem e F,(NA), there exist& € NA such that+ Z(A N o) C F;X(m) N Z¢. Hence

there exists such thab; — d, e NA + Z(A N ;) with m = F,(b; —d,) andr; =o. For

suchi, F;l(m) =b; —d, + C(AN ). This completes the proof of equality (30).
Hencel(Y) = (Pq,) NI (U;¢;(bi —d, + C(AN1)). Here the roots of the", -factor

of Py, do not belong to—F,(d,) + F;(NA) whereas those of the generators of

I(Uje; (i —d, + C(ANT)) do. Therefore, we conclude thet Py,) N J;c; (bi —d, +

C(A N 1)) =@ and the assertion follows.O

The following corollary is immediate from Lemmas 5.11 and 5.12.

Corollary 5.13. Letd; € Sy, p C F, r, andd = d1 4 d,. Then the deficiency ideal for the
pair di, d, equals

H(U(b,- —d, +C(AN ri))).
iel

We are now ready to prove that dll(R4) are finitely generated. In [12], we defined
a chamberto be the closure of a connected componenR6f\ | J, . »(F, = 0) in the
Euclidean topology.

Theorem 5.14. Let C be any chamber. Then tlig-algebra

D(Ra)c :=ED D(Ra)a

aeC

is finitely generated. In particular, th€-algebraD(R4) is finitely generated.

Proof. The second claim follows from the first since there are finitely many chantbers
andD(Ra) = @Pc D(Ra)c-
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To a mapu from F to M, associate the following subspacesafR )

D(Rp)s, =P D(Ra)a,  D(RA)E,» = EP D(Raa.

acs, ack, r

ThenD(Ra)F, ; is a subalgebra oD(R4), and D(R4)s, is a D(Ra)F, -module. We
claim that

D(Ry)s, is afinitely generated)(RA)FMR—module (31)

Suppose that € S, andp C F, r. Recall that we toold, so that it satisfies the
condition|F, (d,)| > M for all o € Facet (p) U Facet.(p). From Proposition 4.6 there
exists a finite sef, fin such that

se= (v+ ] Ndp).

VES/J.,fin pPCIy R

Recall that we fixed a description of the holeSN\A:

m

Holes4) =] J(bi + N(A N ).
i=1

Assume that

dESM\ U <V+ Z N<m+2dp):

VES, fin pPCFLR

whereN_,, 12 is the set of nonnegative integers less thap 2. Then there exists C Fj, r
such thatd — kd, € S, fork=1,2,...,m + 1. Putd’ :=kd, fork =1,2,...,m + 1.
Then we have

1) F, (dﬁ,l)) < —M forall o € Facet (p),
(2) Fp(d%™) — F,(d%) < —M for all k ando € Facet (p).

When Lemmas 5.11 and 5.12 are appliedi{d, it produces three setx®), y®), and
1% corresponding to the sek§, Y, and/ in Lemmas 5.11 and 5.12. Corollary 5.13 says
thatforallr =1,2,....m+1,

I(X©) - I(y®) =1(£2 (d) -1 U (b — dff) +CAN ‘L’i)))» (32)

iel®
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Hence
m+1 m—+1
DOIXD) Iy V) =1(2(d) - Y (H( J (b; —=d? +Can r,»)))).
=1 t=1 iel®
To prove that
m+1
> H( U (i —d +can r,»))) = (.
t=1 iel®

it is enough to show that the intersectiflf"* ; ;o (b; — d + C(A N 7)) is empty,
since it equals

V(’g]l( U (i —d¥ +Can n)))).

=1 iel®

Suppose that the intersectiqif[(,”jll Uiero (bi — dg) + C(A N 1)) is nonempty; we aim
for a contradiction. By the pigeon-hole principle, there exists an indéx i < m) and
two numbers and:’ between 1 and: + 1 such that

[bi —d® +CAnm)]N[b; —d¥) +CANT)] #0.
Then
d¥ —d® ec@anm)nze.

But this last element is just a multiple ef sop C Rz;. Thend, € Z(AN ;) by (17). Now

b; — dg) € NA + Z(A N 1;) because that is how we defined the B& Lemma 5.12. But
together withd, € Z(A N 1;), this givesb; € NA + Z(A N ;). This cannot be the case,
becausd; was a “hole.” So we get a contradiction. Thus, the intersection is empty and

m+1

D OI(XD) 1Y) =T(2(d)).

=1
Therefore, we obtain
m+1

D(R)g =) D(R)y_y0 D(R)y0-
t=1
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The above argument shows the claim (31), more precisely, A )s, is generated by
@Dy D(R4)d with d running over the finite set

U <V+ Z I\I<m-‘r2dp>
VES;/.,fin pCFp,,]R

asa rightD(RA)FMyR—module.

For any chambelC, C N Z¢ = Us,cc Su- Moreover, S, ¢ C = F,r C C and
FurNZ = LJS“/CFMR S,s. Hence, the above argument also shows thatGralgebra
D(Ry)c is finitely generated. Thus, we have proved the theorem.

6. Finitegeneration of Gr D(R4) for scored semigroups

In this section we prove that INA is scored, then GD(R,) is finitely generated.
Together with [12, Theorem 3.2.12], this completes the proof of Theorem 1.1(1).
Throughout this section, we assuiNd to be scored

Proposition 6.1. [(£2(d)) = (Pq).

Proof. SinceNA is scoreda e £2(d) if and only if F, (a) € F,(NA) for all o € F, and
F,(a) ¢ —F,/(d) + F,/(NA) forsomes’ € F. O

Corollary 6.2.

Gr(D(Rp)) = P 1Cl01. 02, ... 041(Po).
dezd

wheref; =1t;&; and

I_)d — l_[ Fy (él’ 52’ o éd)]:(Fg(NA)\(ng(d)+FU(NA))).
oeF

Proof. This follows immediately from Propositin6.1, Theorem 2.1, and the definition of
Pgin(26). O

Theorem 6.3. Let C be any chamber. Then tii&-algebra

Gr(D(Ra)c) =Gr(D(Ry)) - :=EP Gr(D(Ra)),

acC

is finitely generated. Moreover, tiig-algebraGr(D(R4)) is finitely generated.
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Proof. For eachp € Ray(A), we tookd, so that it satisfies the conditid#, (d,)| > M
for all o € Facet (p) UFacet.(p). For anyu, as in Section 4, there exists a finite Sgtin
such that

se= (v+ > Ndp).

VES;/.,fin pCFp,,]R

Assume thatl € S, \ S, fin. Then there exists a ray C F,, g such thad —d, € §,,. By
Lemma 5.10 and Corollary 6.2, we have

Gr(D(R)), = Gr(D(R))dfdp . Gr(D(R))dp.

Hence G(D(R4))s, is generated b@deswﬁn D(Ra)qg as arightD(Ra)F, ,-module.
The same remark as in the final paragraph of the proof of Theorem 5.14 shows that
Gr(D(Ry)) is finitely generated. O

Corollary 6.4. Let C be a chamber. INA is scored, then

(1) Gr(D(RA))c andGr(D(R4)) are Noetherian
(2) D(Ra)c andD(Ry) are left and right Noetherian.

Proof. (1) is an immediate consequence of Hilbert's basis theorem.

(2) follows from the standard argument using induction on the order of differential op-
erators: Le{/,},=12,.. be anincreasing sequence of left ideal®dR 1) c. Define a filtra-
tion F of eachl, by F,, (1) := Dy (Ra) N1, and put Gtl,) := Por_g Fnt1(In)/ Fu(ly).
Then{Gr(1,)} is an increasing sequence of ideals o{ B¢R4))c. By (1), there exists
N such that Gflyx) = Gr(Iy) for all k € N. Suppose thaty C Iyi. Take the small-
estm such thatFm(IN) c Fm(IN—i-k)- Then Fu-1(IN) = Fm—l(IN-l-k) and Gr.(Un) =
Gru(In+x) imply Fy, (In) = Fp (In+1), Which contradicts the choice of.

The right Noetherian property can be proved similarlyl
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