
a

s

ed. In
rators

rators

pers
ebras.

rs
other

,

Journal of Algebra 278 (2004) 76–103

www.elsevier.com/locate/jalgebr

Finite generation of rings of differential operator
of semigroup algebras

Mutsumi Saitoa and William N. Travesb,∗

a Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan
b Department of Mathematics, US Naval Academy, 572C Holloway Road, Annapolis, MD 21402, USA

Received 11 July 2003

Available online 19 March 2004

Communicated by J.T. Stafford

Abstract

We prove that the ring of differential operators of any semigroup algebra is finitely generat
contrast, we also show that the graded ring of the order filtration on the ring of differential ope
of a semigroup algebra is finitely generated if and only if the semigroup is scored.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This paper investigates conditions under which various rings of differential ope
on semigroup algebras are finitely generated. The ring of differential operatorsD(R) on
the algebraR was introduced by Grothendieck [4] and Sweedler [15]. Many recent pa
describe the structure of the ring of differential operators for special classes of alg
For instance, Jones [6], Musson [8], and Musson and Van den Bergh [9] characterizeD(R)

whenR is the coordinate ring of a normal toric variety. In this caseD(R) inherits a fine
grading fromR, and bothD(R) and Gr(D(R))—the graded ring of differential operato
with respect to the order filtration—are finitely generated algebras (see [7,14] for
approaches to this result).

Given a finite setA of integral vectors and a parameter vectorβ , Gel’fand, Kapranov
and Zelevinskii defined and studied a system of differential equations, theA-hypergeo-
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metric systemHA(β) ([2,3], etc.; also see [11]). The symmetry algebra of the system
the algebra of contiguity operators—controls homomorphisms between system
different parameter vectors [10]. We showed in a previous paper [12] that the sym
algebra is anti-isomorphic to the ring of differential operatorsD(RA) for the semigroup
algebraRA = C[NA]. This connection toA-hypergeometric systems motivates our stu
of differential operators on semigroup algebras but we feel that the ringD(RA) is also
interesting in its own right.

While considering the finite generation of Gr(D(RA)) in our previous paper [12], w
defined the notion of a scored semigroup: a semigroupNA is scored if the differenc
(R�0A∩ZA)\NA consists of a finite union of hyperplane sections ofR�0A∩ZA parallel
to facets of the coneR�0A. We conjectured the following in [12] and prove it in this pap

Theorem 1.1 [12, Conjecture 3.2.10].LetRA = C[NA] be a semigroup algebra. Then:

(1) Gr(D(RA)) is finitely generated⇔ NA is a scored semigroup.
(2) D(RA) is finitely generated for all semigroup algebrasRA.

Earlier we proved the⇒ direction of (1) [12, Theorem 3.2.12]. We also proved the⇐
direction of (1) when the coneR�0A is generated by linearly independent vectors [
Theorem 3.2.13].

The layout of this paper is as follows: we start by reviewing some fundamental
about the ringD(RA) and introducing some notation in Section 2. At some point there
confusion in the research community about the relationship between scored and C
Macaulay semigroup algebras. In Section 2 weprovide two examples to show that neith
condition implies the other. We describe the difference(R�0A ∩ ZA) \ NA in terms of
associated primes in Section 3. We use this description in Section 4 to decompose th
ZA into finite pieces suitable for the arguments in Sections 5 and 6. A running exam
used to illustrate our definitions. In Section 5 we prove that the ring of differential oper
D(RA) is finitely generated for any semigroup algebraRA (Theorem 1.1(2)). Example 5.
is intended to orient the reader to the structure of our argument while illustratin
approach to proving the finite generation ofD(RA). In the final section we complet
the proof of Theorem 1.1(1) by showing that the graded ring of differential oper
Gr(D(RA)) is finitely generated ifRA is a scored semigroup algebra. We also show
D(RA) is left and right Noetherian whenNA is a scored semigroup.

2. Rings of differential operators of semigroup algebras

In this section, we briefly recall some fundamental facts about the rings of differenti
operators of semigroup algebras. Let

A := {a1,a2, . . . ,an} (1)

be a finite set of integral vectors inZd . Sometimes we identifyA with the matrix of column
vectors(a1,a2, . . . ,an). Throughout this paper, we assume thatZA = Zd , for simplicity.
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The ring of differential operators with Laurent polynomial coefficients

D
(
C
[
Zd
]) := C

[
t±1
1 , . . . , t±1

d

]〈∂1, . . . , ∂d 〉

is the ring of differential operators on the algebraic torus(C×)d , where [∂i, tj ] = δij ,
[∂i, t

−1
j ] = −δij t

−2
j , and the other pairs of generators commute. Here[ , ] denotes the

commutator andδij is 1 if i = j and 0 otherwise.

2.1. The ringsRA andD(RA)

The semigroup algebraRA := C[NA] =⊕
a∈NA Cta is the ring of regular functions o

the affine toric variety defined byA, whereta = t
a1
1 t

a2
2 · · · tad

d for a = t (a1, a2, . . . , ad), the
transpose of the row vector(a1, . . . , ad). Its ring of differential operatorsD(RA) can be
realized as a subring of the ringD(C[Zd ]) of differential operators on the big torus
follows:

D(RA) = {
P ∈ D

(
C
[
Zd
])

: P(RA) ⊂ RA

}
.

Putθj := tj ∂j for j = 1,2, . . . , d . Then it is easy to see thatθj ∈ D(RA) for all j . We
introduce a grading on the ringD(RA) as follows: fora = t (a1, a2, . . . , ad) ∈ Zd , set

D(RA)a := {
P ∈ D(RA): [θj ,P ] = ajP for j = 1,2, . . . , d

}
.

ThenD(RA) is Zd -graded:D(RA) =⊕
a∈Zd D(RA)a.

We introduce some notation to describe the graded structure of the ring of differ
operatorsD(RA) explicitly. Ford ∈ Zd , we define a subsetΩ(d) of the semigroupNA by

Ω(d) = {a ∈ NA: a + d /∈ NA} = NA \ (−d + NA).

Theorem 2.1 ([6], [12, Theorem 3.3.1]).

D(RA) =
⊕
d∈Zd

D(RA)d =
⊕
d∈Zd

tdI
(
Ω(d)

)
,

where

I
(
Ω(d)

) := {
f (θ) ∈ C[θ ] := C[θ1, . . . , θd ]: f vanishes onΩ(d)

}
.

In [12], we conjectured thatD(RA) is finitely generated for all semigroup algebrasRA.

2.2. The ringGr(D(RA))

Next we explain the order filtration. A differential operator

P =
∑

d

aa(t)∂
a ∈ D

(
C
[
Zd
])
a∈N



M. Saito, W.N. Traves / Journal of Algebra 278 (2004) 76–103 79

in

e

ed
12,

e the

n

is said to be oforder k if aa 
= 0 for somea with |a| = k andaa = 0 for all a with |a| > k,
where|a| = a1 + a2 + · · · + ad . Let Dk(RA) denote the set of differential operators
D(RA) of order at mostk. Then{Dk(RA)}k∈N is called theorder filtrationof D(RA). We
consider the graded ring Gr(D(RA)) of D(RA) with respect to the order filtration:

Gr
(
D(RA)

) :=
⊕
k∈N

Dk(RA)/Dk−1(RA),

where we putD−1(RA) = 0. The graded ring Gr(D(RA)) is a subring of the commutativ
ring

Gr
(
D
(
C
[
Zd
]))= C

[
t±1
1 , t±1

2 , . . . , t±1
d , ξ1, ξ2, . . . , ξd

]
,

whereξj is the element represented by∂j . Since eachDk(RA) is Zd -graded—Dk(RA) =⊕
d∈Zd Dk(RA) ∩ D(RA)d—the graded ring Gr(D(RA)) inherits the grading:

Gr
(
D(RA)

)=
⊕
d∈Zd

Gr
(
D(RA)

)
d.

In [12], we conjectured that Gr(D(RA)) is finitely generated⇔ RA is a scored
semigroup algebra. We proved the⇒ direction [12, Theorem 3.2.12]. We also prov
the ⇐ direction when the coneR�0A is generated by linearly independent vectors [
Theorem 3.2.13].

2.3. Scored semigroups

Finally, we recall the definition of scored semigroups. To this end, let us defin
primitive integral support function of a facet (maximal face) of the coneR�0A. We
denote byF the set of facets of the coneR�0A. Given σ ∈ F , we denote byFσ the
primitive integral support functionof σ , i.e.,Fσ is a uniquely determined linear form o
Rd satisfying

(1) Fσ (R�0A) � 0,
(2) Fσ (σ) = 0,
(3) Fσ (Zd ) = Z.

Example 2.2. Let

A = (a1,a2,a3,a4) =
(1 0 0 1

0 1 0 1
0 0 1 −1

)
.

Then

F =
{

σ23 = R�0a2 + R�0a3, σ24 = R�0a2 + R�0a4,

σ = R a + R a , σ = R a + R a

}

13 �0 1 �0 3 14 �0 1 �0 4
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and

Fσ23(θ) = θ1, Fσ24(θ) = θ1 + θ3, Fσ13(θ) = θ2, Fσ14(θ) = θ2 + θ3,

where we denote the standard coordinate functions ofRd = R3 by θ1, θ2, θ3 andFσ23(θ) is
shorthand forFσ23(θ1, θ2, θ3).

Definition 2.3. The semigroupNA is said to bescoredif

NA =
⋂
σ∈F

{
a ∈ Zd : Fσ (a) ∈ Fσ (NA)

}
. (2)

Example 2.4. Let

A = (a1,a2,a3) =
(

1 1 1
0 2 3

)
.

Then

F = {σ1 = R�0a1, σ3 = R�0a3},

Fσ1(θ1, θ2) = θ2, Fσ3(θ1, θ2) = 3θ1 − θ2, and

N \ Fσ1(NA) = {1}, N \ Fσ3(NA) = ∅.

As illustrated in Fig. 1, the semigroupNA is scored.

Remark 2.5.

(1) By the definition ofFσ , the differenceN \ Fσ (NA) is finite for anyσ ∈F .
(2) Let RH(A) = R�0A ∩ Zd denote the real hull ofA and let Holes(A) = RH(A) \ NA.

Then the semigroupNA is scored if and only if

Holes(A) =
⋃
σ∈F

⋃
m∈N\Fσ (NA)

F−1
σ (m) ∩ RH(A).

� � � � �

� � � �

� � � �

� � � �

� � �

�

�

�
�
�
�
���

σ3

σ1

Fig. 1. The semigroupNA in Example 2.4 is scored.
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(3) For the semigroup ringC[NA], neither the scored property nor the Cohen–Maca
property implies the other as shown in Examples 2.7 and 2.8, although s
semigroup rings satisfy Serre’s condition(S2) as shown in Proposition 2.6.

The semigroup ringC[NA] is Cohen–Macaulay if and only if it satisfies Serr
condition (S2) and the reduced homology modules of certain simplicial complexes va
[16, Theorem 4.1]. In our case, Serre’s (S2) condition can be stated as

NA =
⋂
σ∈F

(
NA + Z(A ∩ σ)

)
. (S2)

Proposition 2.6. Any scored semigroup satisfies(S2).

Proof. Let NA be a scored semigroup. It is enough to show that for any facetσ ∈ F we
have

NA + Z(A ∩ σ) = {
a ∈ Zd : Fσ (a) ∈ Fσ (NA)

}
. (3)

The inclusion ‘⊂’ is clear from the definition ofFσ . To prove the other inclusion ‘⊃’,
let a ∈ Zd satisfyFσ (a) ∈ Fσ (NA). For everyσ ′ ∈ F different fromσ , there existsai ∈ A

such thatai /∈ σ ′ andai ∈ σ . SinceFσ ′(ai ) > 0 andN \ Fσ ′(NA) is finite, there exists
mi ∈ N such thatFσ ′(a + miai ) ∈ Fσ ′(NA).

Doing this argument for everyσ ′ ∈ F different fromσ , we findb ∈ N(A ∩ σ) such that

Fσ ′(a + b) ∈ Fσ ′(NA)
(∀σ ′ ∈ F \ {σ }).

Since

Fσ (a + b) = Fσ (a) ∈ Fσ (NA)

andNA is scored, we seea + b ∈ NA. Hencea ∈ NA + Z(A ∩ σ). �
Example 2.7. Let

A =
(

0 1 2
1 1 0

)
.

This A satisfies (S2). Hence the semigroup ringC[NA] is also Cohen–Macaulay sinc
RH(A) is simplicial. ThusC[NA] is Cohen–Macaulay butNA is not scored (see Fig. 2).

Example 2.8. Let

A =
(1 1 1 1 1 1

0 2 3 0 2 3

)
.

0 0 0 1 1 1
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� � � � �
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�

�

σ2

σ1

Fig. 2. The semigroupNA in Example 2.7 is not scored.

Then the semigroupNA is clearly scored. However, the semigroup ringC[NA] is not
Cohen–Macaulay [16, Example 3.9].

3. Graded associated primes

In this section we describe the holes of the semigroupNA, Holes(A) = R�0A ∩
Zd \ NA, using the graded associated primes of certainZd -graded modules.

A moduleM overR := RA = C[NA] is said to beZd -gradedif M has a decompositio
M =⊕

a∈Zd Ma such thatRaMb ⊂ Ma+b for all a andb.
First, we recall a lemma from [5].

Lemma 3.1 [5, Proposition 1.3].The set ofZd -graded prime ideals ofR = C[NA] equals{
Pτ := C

[
NA \ N(A ∩ τ )

]
: τ is a face ofR�0A

}
.

We also have the following lemma.

Lemma 3.2 (see, e.g., [1, Exercise 3.5]).Let M be a Zd -gradedR-module. Then an
associated prime ofM is Zd -graded, and is the annihilator of a homogeneous elemen

Lemma 3.3. TheR-moduleC[R�0A ∩ Zd ] is finitely generated.

Proof. Choose a finite subsetG ⊆ NA that generates the coneR�0A. Then{∑
a∈G

caa ∈ Zd : 0 � ca < 1

}

generatesR�0A ∩ Zd as anNA-set. �
Proposition 3.4. There existm ∈ N, bi ∈ Zd , and facesτi of R�0A with i = 1,2, . . . ,m

such that

Holes(A) =
m∐

i=1

(
bi + N(A ∩ τi)

)
. (4)



M. Saito, W.N. Traves / Journal of Algebra 278 (2004) 76–103 83

of
Proof. Put N := C[R�0A ∩ Zd ] and M0 := C[NA]. SupposeN/M0 
= 0. Then
Ass(N/M0) 
= ∅. Hence, by Lemma 3.2, there existsx1 ∈ Nb1 such thatP1 := Ann(x1) ∈
Ass(N/M0). By Lemma 3.1, there exists a unique faceτ1 such thatP1 = Pτ1; equivalently

R/Pτ1[−b1] � Rx1 ⊂ N/M0,

whereR/Pτ1[−b1] is theZd -graded module shifted by−b1, i.e.,(
R/Pτ1[−b1]

)
a := (R/Pτ1)a−b1.

Hence we obtain (
b1 + N(A ∩ τ1)

)∩ NA = ∅.

PutM1 := M0 + Rx1. If N/M1 
= 0, then there existb2 ∈ Zd , x2 ∈ Nb2, and a faceτ2
such thatPτ2 = Ann(x2) ∈ Ass(N/M1). SinceR/Pτ2[−b2] � Rx2 ⊂ N/M1, we obtain(

b2 + N(A ∩ τ2)
)∩

(
NA

∐(
b1 + N(A ∩ τ1)

))= ∅.

PutM2 := M1 + Rx2, repeat this process, and obtain astrictly increasing sequence
graded submodules ofN : M0 ⊂ M1 ⊂ M2 ⊂ · · · . This sequence must stop sinceN is a
NoetherianR-module (by Lemma 3.3). Thus we obtain (4).�

Note that the expression (4) is not unique.We fix an expression(4) once and for all.
Put

M := max
{
Fσ (bi ): σ, i

}+ 1. (5)

WhenNA is normal, i.e.,NA = R�0A ∩ Zd , we putM = 0. Note that for allσ ∈ F ,

{k ∈ Z: k � M} ⊂ Fσ (NA), (6)

or equivalently

N ⊂ −M + Fσ (NA). (7)

Example 3.5 (Continuation of Example 2.4). Let

A = (a1,a2,a3) =
(

1 1 1
0 2 3

)
.

Then

N \ Fσ1(NA) = {1}, N \ Fσ3(NA) = ∅.

We haveM = 2.
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Lemma 3.6. Let τ be a face of the coneR�0A. Then

NA + Z(A ∩ τ ) = [
R�0A + R(A ∩ τ )

]∩ Zd
∖ ⋃

τi�τ

(
bi + Z(A ∩ τi)

)
.

In particular, if c ∈ Zd satisfiesFσ (c) � M for all σ � τ , thenc ∈ NA + Z(A ∩ τ ).

Proof. ⊆: Let d ∈ NA+Z(A∩τ ). Then there existsdτ ∈ N(A∩τ ) such thatd+dτ ∈ NA.
Suppose thatd ∈ bi + Z(A ∩ τi) for someτi � τ . Then there existsdi ∈ N(A ∩ τi) such
thatd+di ∈ bi +N(A∩τi). Sinceτ � τi , we haved+di +dτ ∈ bi +N(A∩τi). However
(d + dτ ) + di ∈ NA which leads to a contradiction because(bi + Z(A ∩ τ )) ∩ NA = ∅ by
Proposition 3.4.

⊇: Assumed ∈ [R�0A + R(A ∩ τ )] ∩ Zd \ (NA + Z(A ∩ τ )). Becaused ∈ (R�0A +
R(A ∩ τ )) ∩ Zd , there existsdτ ∈ N(A ∩ τ ) such thatd + dτ ∈ R�0A ∩ Zd . Since
d /∈ NA + Z(A ∩ τ ), d + dτ /∈ NA. So by Proposition 3.4,d + dτ ∈ bj + N(A ∩ τj )

for someτj . We claim that we can take the abovedτ so thatd + dτ ∈ bi + N(A ∩ τi)

for someτi � τ . To prove the claim it is enough to show that we can takedτ so that
d+dτ /∈ bj +N(A∩τj) for anyτj � τ . For eachτj � τ , there exists a facetσj with σj � τ

andσj � τj . Take a vectordj ∈ N(A ∩ τ ) \ N(A ∩ σj ). Setd′
τ = dτ + M

∑
dj , where the

sum is over all facesτj not containingτ . Thend + d′
τ /∈ bj + N(A ∩ τj ) if τj � τ because

there exists a facetσj containingτj with Fσj (d + d′
τ ) = Fσj (d + dτ +M

∑
dk) � M. �

4. Decomposition of the lattice Zd

In this section, we decompose the latticeZd into finite pieces suitable for the finite
generation arguments in Sections 5 and 6.

The ringD(R) localizes well:D(S−1R) = S−1R ⊗R D(R) [12, Lemma 3.2.1]. This
allows us to reduce structural questions aboutD(C[NA]) to the case where the con
σ = R�0A generated by the columns ofA is strongly convex (σ does not contain an
lines through the origin). If the coneσ is not strongly convex thenNA contains a finite
subsetB so thatR�0B is strongly convex andRA = C[NA] is a localization ofC[NB].
From now on we assume that the coneR�0A is strongly convex.

We call a coneρ = R�0vρ a ray of the hyperplane arrangement determined byA if vρ

is a nonzero integral vector, andRρ is an intersection of hyperplanes(Fσ = 0) (σ ∈ F ).
Let Ray(A) denote the set of rays of the hyperplane arrangement determined byA. Let
ρ ∈ Ray(A), and leteρ be the generator ofZd ∩ ρ, i.e.,Zd ∩ ρ = Neρ .

Set

Facet+(ρ) := {
σ ∈F : Fσ (eρ) > 0

}
, Facet0(ρ) := {

σ ∈F : Fσ (ρ) = 0
}
,

Facet−(ρ) := {
σ ∈ F : Fσ (eρ) < 0

}
.

Let M be the nonnegative integer defined by (5). For a rayρ ∈ Ray(A), take a nonzero
vectordρ from Zd ∩ ρ satisfying the condition:
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Fig. 3;
Fσ (dρ) � M if σ ∈ Facet+(ρ), Fσ (dρ) = 0 if σ ∈ Facet0(ρ),

Fσ (dρ) � −M if σ ∈ Facet−(ρ). (8)

Note that the second condition above is automatically satisfied sincedρ ∈ ρ.

Example 4.1 (Continuation of Example 2.2). Let

A = (a1,a2,a3,a4) =
(1 0 0 1

0 1 0 1
0 0 1 −1

)
.

SinceNA is normal,M = 0. We have

(Fσ23 = 0) ∩ (Fσ13 = 0) = Rt (0,0,1), (Fσ23 = 0) ∩ (Fσ24 = 0) = Rt (0,1,0),

(Fσ23 = 0) ∩ (Fσ14 = 0) = Rt (0,1,−1), (Fσ13 = 0) ∩ (Fσ24 = 0) = Rt (1,0,−1),

(Fσ13 = 0) ∩ (Fσ14 = 0) = Rt (1,0,0), (Fσ24 = 0) ∩ (Fσ14 = 0) = Rt (1,1,−1).

Hence we can take

{
dρ : ρ ∈ Ray(A)

}=
{ ±t (0,0,1), ±t (0,1,0), ±t (0,1,−1)

±t (1,0,−1), ±t (1,0,0), ±t (1,1,−1)

}
.

Note that Ray(A) has more elements than{±(1-dimensional face ofR�0A)
}
.

We now decompose the latticeZd into pieces. Letµ be a map fromF to a set

M̃ := {−∞} ∪ {+∞} ∪ {m ∈ Z: |m| < M
}
.

Define a subsetSµ of Zd by

Sµ := {
d ∈ Zd : Fσ (d) = µ(σ) for all σ ∈F

}
, (9)

where we agree thatFσ (d) = +∞ (−∞, respectively) meansFσ (d) � M (� −M, respec-
tively). Note thatSµ could be empty. Clearly, we have

Zd =
⋃
µ

Sµ.

TheSµ are the integral points (represented by large dots) in the shaded regions in
see Example 4.3.
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Fig. 3. The setsSµ,R.

Example 4.2 (Continuation of Example 3.5). In the example,M = 2 andM̃ = {±∞} ∪
{−1,0,1}. We can take {

dρ : ρ ∈ Ray(A)
}= {±a1,±a3}.

Consider the following mapsµ1 andµ2:

µ1(σ1) = 1µ1(σ3) = −1, µ2(σ1) = 1µ2(σ3) = −∞.

Then

Sµ1 = {
d ∈ Z2: d2 = 1, 3d1 − d2 = −1

}= {
t (0,1)

}
,

Sµ2 = {
d ∈ Z2: d2 = 1, 3d1 − d2 � −2

}= N(−a1) + t (−1,1).

We also construct similar subsets ofRd ; set

Sµ,R := {
d ∈ Rd : Fσ (d) = µ(σ) for all σ ∈ F

}
,

Fµ,R :=
⋂
σ

d ∈ Rd :
Fσ (d) = 0 if µ(σ) 
= ±∞
Fσ (d) � 0 if µ(σ) = +∞
Fσ (d) � 0 if µ(σ) = −∞

 , (10)

and

Fµ := {dρ : ρ ⊂ Fµ,R}.

For example, ifµ is the constant function+∞, thenFµ,R = R�0A. We have

Sµ = Zd ∩ Sµ,R.
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Example 4.3 (Continuation of Example 4.2).
In our example,

Fµ1 = ∅, Fµ2,R = {
d ∈ R2: d2 = 0, 3d1 − d2 � 0

}= {
d ∈ R2: d2 = 0, d1 � 0

}
,

Fµ2 = {−a1}, Sµ1,R = {
t (0,1)

}
, Sµ2,R = Fµ2,R + t (−1/3,1).

Lemma 4.4. LetVµ denote the set of vertices of the polyhedronSµ,R. Then

Sµ,R = Fµ,R + conv(Vµ),

whereconv(Vµ) denotes the convex hull ofVµ.

Proof. Fµ,R is the characteristic cone ofSµ,R. See [13, §8.9 (28)]. �
Lemma 4.5. Fµ,R = R�0Fµ.

Proof. This follows from the fact that a strongly convex cone is generated by its 1-di
sional faces. �
Proposition 4.6. The setSµ is Fµ-finite, i.e., there existv1, . . . ,vr ∈ Sµ such thatSµ =⋃r

j=1((NFµ) + vj ), whereNFµ =∑
u∈Fµ

Nu.

Proof. Let

Gµ :=
({∑

u∈Fµ

auu: 0 � au < 1

}
+ conv(Vµ)

)
∩ Zd .

ThenGµ is a finite set. LetGµ = {v1, . . . ,vr}. ClearlySµ ⊇⋃r
j=1((NFµ) + vj ).

Now suppose thatv ∈ Sµ. Then, by Lemmas 4.4 and 4.5, there existcu ∈ R�0 and
w ∈ conv(Vµ) such thatv =∑

u∈Fµ
cuu + w. Hence

v =
∑

u∈Fµ

�cu�u +
( ∑

u∈Fµ

(
cu − �cu�)u + w

)
∈

r⋃
j=1

(
(NFµ) + vj

)
. �

Example 4.7 (Continuation of Example 4.3). In the example,

Gµ1 = {
t (0,1)

}
and Gµ2 = {−ca1 + t (−1/3,1) ∈ Z2: 0 � c < 1

}= {
t (−1,1)

}
.

5. Finite generation of D(RA)

In this section, we prove thatD(RA) is always finitely generated.
Let d ∈ Zd . Recall thatΩ(d) = {a ∈ NA: a + d /∈ NA}. First, we describe the Zarisk

closure of the setΩ(d) using (4). We denote the Zariski closure of a setV in Cd by ZC(V ).



88 M. Saito, W.N. Traves / Journal of Algebra 278 (2004) 76–103
Proposition 5.1.

ZC
(
Ω(d)

)= [−d + ZC
(
(d + NA) \ R�0A

)]∪ [−d + ZC
(
(d + NA) ∩ Holes(A)

)]
=
( ⋃

σ :Fσ (d)<0

⋃
m<−Fσ (d),m∈Fσ(NA)

F−1
σ (m)

)

∪
( ⋃

bi−d∈NA+Z(A∩τi)

(
bi − d + C(A ∩ τi)

))
,

whereHoles(A) =∐m
i=1(bi + N(A ∩ τi)) as in Proposition3.4.

Proof. Recall that

Ω(d) = −d + [
(d + NA) \ NA

]
. (11)

So we consider the set(d + NA) \ NA. First, we have

(d + NA) \ NA = [
(d + NA) \ R�0A

]
(12)

∪ [(d + NA) ∩ Holes(A)
]
. (13)

The Zariski closure of the first set (12) is easy to describe:

ZC
(
(d + NA) \ R�0A

)=
⋃

σ :Fσ (d)<0

⋃
m<0,m∈Fσ (NA)+Fσ (d)

F−1
σ (m). (14)

The second set (13) is written as

(d + NA) ∩ (Holes(A)
)=

⋃
i

(d + NA) ∩ (
bi + N(A ∩ τi)

)
.

Note that shifting the set(d + NA) ∩ (bi + N(A ∩ τi)) by adding elements ofN(A ∩ τi)

produces no new elements. Hence, if the set is not empty then its Zariski closure is

ZC
(
(d + NA) ∩ (bi + N(A ∩ τi)

))= bi + C(A ∩ τi). (15)

Finally, note that

(d + NA) ∩ (bi + N(A ∩ τi)
) 
= ∅ ⇐⇒ bi − d ∈ NA + Z(A ∩ τi). (16)

We have thus proved the proposition.�
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Example 5.2 (Continuation of Example 2.7). Let

A =
(

0 1 2
1 1 0

)
.

ThenFσ1(θ) = θ2, Fσ2(θ) = θ1, andFσi (NA) = N (i = 1,2). We haveNA = N2\[t (1,0)+
Nt (2,0)] andM = Fσ2(

t (1,0)) + 1 = 2. The semigroupNA is not scored.
As described in Lemma 3.6,

NA + Z(A ∩ σ1) = {
t (a1, a2) ∈ Z2: a2 � 0

}∖[
t (1,0) + Zt (2,0)

]
= {

t (a1, a2) ∈ Z2: a2 � 1
}∪ {t (a1,0) ∈ Z2: a1 ∈ 2Z

}
.

Hencet (1,0) − t (d1, d2) ∈ NA + Z(A ∩ σ1) if and only if d2 � −1 or [d2 = 0 andd1 is
odd]. Therefore, by Proposition 5.1,

ZC
(
Ω(d)

)=


V

( ∏
di<0

−di−1∏
m=0

(θi − m)

)
if d2 > 1 or [d2 = 0 andd1 ∈ 2Z],

V

(
(θ2 + d2) ·

∏
di<0

−di−1∏
m=0

(θi − m)

)
otherwise,

whereV(f ) is the largest subset ofCd on whichf vanishes.

Example 5.3. Let

A =
(

2 0 1 1 2
0 2 1 2 1

)
.

We use this example to outline our approach to showing thatD(RA) is finitely ge-
nerated (Fig. 4). Consider the indexd = t (−8,−4). We aim to expressD(RA)d as
D(RA)d1D(RA)d2 for d1 and d2 vectors of smaller norm such thatd1 + d2 = d. For
instance, ifd1 = t (−6,−4) andd2 = t (−2,0) thenD(RA)d1D(RA)d2 is a module ove
the ringD(RA)0 = C[θ1, θ2]. This module equals

� � � � �

� � � � �

� � � � �

� � � � �

�

�

�

σ2 : θ1 = 0

σ1: θ2 = 0

Fig. 4. The semigroupNA in Example 5.3.
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Zariski
of
ple, if

).
eals

p
n,

e

t−6
1 t−4

2

6∏
i=0

(θ1 − i)

4∏
j=0

(θ2 − j) · t−2
1

2∏
i=0

(θ1 − i)C[θ1, θ2]

= td
8∏

i=0

(θ1 − i)

4∏
j=0

(θ2 − j) · (θ1 − 2)C[θ1, θ2]

= D(RA)d(θ1 − 2).

So it is not possible to use just this paird1 andd2 to generate the moduleD(RA)d. We
say that the paird1, d2 is deficient by the ideal〈θ1 − 2〉 of C[θ1, θ2]. However, for the pair
d′

1 = t (−4,−4) andd′
2 = t (−4,0), D(RA)d′

1
D(RA)d′

2
= D(RA)d(θ1 − 4) so

D(RA)d1D(RA)d2 + D(RA)d′
1
D(RA)d′

2
= D(RA)d

[〈θ1 − 2〉 + 〈θ1 − 4〉]= D(RA)d.

So it is possible to expressD(RA)d as asumof terms of the formD(RA)d1D(RA)d2.
However, as in the example, we need to choose the termsd1 andd2 carefully in order that
the deficiency ideals sum to the unit ideal ofD(RA)0 = C[θ ].

Definition 5.4. Given d1,d2 ∈ Zd with d1 + d2 = d, thedeficiency idealof d1 andd2 is
the idealI of C[θ1, . . . , θd ] such thatD(RA)d1D(RA)d2 = D(RA)dI .

The example suggests that the deficiency ideal is the ideal that vanishes on the
closure of a translate of some of the holes ofNA. However, the exact portion of the set
holes that is involved can depend on parity considerations. For instance, in the exam
d = t (−4,0) andd1 = t (−1,0) andd2 = t (−3,0) then the deficiency ideal is〈θ1 −3〉〈θ2〉2

while if d1 = d2 = t (−2,0), it is 〈θ1 − 2〉. We handle parity concerns by choosingd2
carefully (as a multiple of a particularly good vectordρ ; see definition (8) and (17) below

We show that the pairsd1 andd2 can be chosen so that the sum of the deficiency id
is the unit ideal in Theorem 5.14. Moreover, we locate a good set of generators forD(RA).
This requires a description of the two idealsI(Ω(d1) + d2) andI(Ω(d2)) appearing in the
expression

D(RA)d1D(RA)d2 = tdI
(
Ω(d1) + d2

)
I
(
Ω(d2)

)
.

In turn this requires some computations based on the geometry of the semigrouNA

(Lemmas 5.6–5.12). SinceS and its Zariski-closure ZC(S) have the same idealizatio
I(S) = I(ZC(S)), the Zariski-closure of the setsΩ(d1) + d2 andΩ(d2) play a significant
role in the description of the deficiency ideal ofd1 andd2. In Corollary 5.13, we describ
the deficiency ideal in a form suitable for our purpose.

Let ρ ∈ Ray(A). Takedρ so that

dρ ∈ Z(A ∩ τ ) ∩ ρ for all facesτ of R�0A satisfyingRτ ⊃ ρ. (17)

Indeed, this is possible; for example, for a faceτ with Rτ ⊃ ρ, let mτ be the index
[Zd ∩ Q(A ∩ τ ) : Z(A ∩ τ )]. Let mρ be a common multiple, not less thanM, of themτ .
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nt
Thendρ := mρeρ satisfies the condition since(Zd ∩ ρ)/(Z(A ∩ τ ) ∩ ρ) is a subgroup o
(Zd ∩ Q(A ∩ τ ))/(Z(A ∩ τ )).

We want to show thatD(R)d equals a sum ofD(R)d1 · D(R)d2 for some choices ofd2,
whered1 = d − d2. In Theorem 5.14 we will choose thed2’s to be multiples ofdρ . Until
then, we concentrate on what happens whend2 = dρ .

Note thatD(R)d1 · D(R)dρ = tdI(X)I(Y ), where

X := (−dρ + NA) \ (−d + NA) = −d + [
(d1 + NA) \ NA

]
, (18)

Y := NA \ (−dρ + NA) = Ω(dρ). (19)

Remark 5.5. If ρ ⊂ Fµ,R (see Section 4 for the notation), then

Facet+(ρ) ⊂ µ−1(+∞), Facet−(ρ) ⊂ µ−1(−∞).

Lemma 5.6. Let d1 ∈ Sµ, ρ ⊂ Fµ,R, andd = d1 + dρ . Then

ZC
(
(d + NA) ∩ (bi + N(A ∩ τi)

))= ZC
(
(d1 + NA) ∩ (

bi + N(A ∩ τi)
))

(20)

for all i.

Proof. By (15) it is enough to show that

(d + NA) ∩ (bi + N(A ∩ τi)
)= ∅ ⇐⇒ (d1 + NA) ∩ (bi + N(A ∩ τi)

)= ∅.

This is equivalent to saying that

bi − d ∈ NA + Z(A ∩ τi) ⇐⇒ bi − d1 ∈ NA + Z(A ∩ τi)

by (16). We divide the proof into several cases.

Case I. There existsσ ∈ Facet+(ρ) such thatσ � τi .

Then, by Remark 5.5,Fσ (d),Fσ (d1) � M. We claim that both(d + NA) ∩ (bi +
N(A ∩ τi)) and(d1 + NA) ∩ (bi + N(A ∩ τi)) are empty. Suppose that the set(d + NA) ∩
(bi + N(A ∩ τi)) is not empty. Letx ∈ (d + NA) ∩ (bi + N(A ∩ τi)). Sincex belongs
to (d + NA), we haveFσ (x) � Fσ (d) � M. Sinceσ � τi and x ∈ bi + N(A ∩ τi), we
haveFσ (x) = Fσ (bi ), and this is less thanM by the definition ofM (5). We thus have a
contradiction. Hence, the set(d + NA) ∩ (bi + N(A ∩ τi)) is empty. The same argume
works ford1, too.

Case II. σ ∈ Facet−(ρ) ∪ Facet0(ρ) for all σ � τi .

If a faceτ satisfiesRτ ⊃ ρ, thendρ ∈ Z(A ∩ τ ) by (17). Hence

bi − d ∈ NA + Z(A ∩ τ ) ⇐⇒ bi − d1 ∈ NA + Z(A ∩ τ ). (21)
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We divide Case II into three subcases: II-a, II-a′, and II-b.

Case II-a. There exists a faceτ � τi such thatRτ ⊃ ρ andbi − d /∈ NA + Z(A ∩ τ ).

In this case, we havebi − d1 /∈ NA + Z(A ∩ τ ) by (21). Hencebi − d,bi − d1 /∈
NA + Z(A ∩ τi). Hence, we obtain

(d + NA) ∩ (
bi + N(A ∩ τi)

)= ∅ = (d1 + NA) ∩ (
bi + N(A ∩ τi)

)
.

Case II-a′. There exists a faceτ � τi such thatRτ ⊃ ρ andbi − d1 /∈ NA + Z(A ∩ τ ).

Similarly to Case II-a, we obtain

(d + NA) ∩ (
bi + N(A ∩ τi)

)= ∅ = (d1 + NA) ∩ (
bi + N(A ∩ τi)

)
.

Case II-b. bi − d,bi − d1 ∈ NA + Z(A ∩ τ ) for all facesτ satisfyingτ � τi andRτ ⊃ ρ.

In this case, we prove that

(d + NA) ∩ (
bi + N(A ∩ τi)

) 
= ∅, (d1 + NA) ∩ (bi + N(A ∩ τi)
) 
= ∅,

or equivalently

bi − d,bi − d1 ∈ NA + Z(A ∩ τi). (22)

To prove (22), we use Lemma 3.6; we first claim that

bi − d,bi − d1 ∈ R�0A + R(A ∩ τi), (23)

and we next claim that

bi − d,bi − d1 /∈ bj + Z(A ∩ τj ) (∀τj � τi). (24)

To prove (23), sinceR�0A + R(A ∩ τi) = ⋂
σ�τi ,σ∈F (Fσ � 0), it is enough to show

thatFσ (bi − d),Fσ (bi − d1) � 0 for all facetsσ � τi .
If a facet σ satisfiesσ � τi and Rσ ⊃ ρ, thenFσ (bi − d),Fσ (bi − d1) � 0, since

bi − d,bi − d1 ∈ NA + Z(A ∩ σ) by our assumption II-b.
If a facet σ � τi does not satisfyRσ ⊃ ρ, then by our assumption for Case II, w

haveσ ∈ Facet−(ρ), sinceRσ ⊃ ρ ⇔ σ ∈ Facet0(ρ). Now, by the definition ofdρ (8),
Fσ (dρ) � −M. Sinced1 ∈ Sµ, Remark 5.5 impliesFσ (d1) � −M. HenceFσ (bi − d1) =
Fσ (bi ) − Fσ (d1) � M � 0 andFσ (bi − d) = Fσ (bi − d1) − Fσ (dρ) � 2M � 0. We have
thus proved the claim (23).

Next we prove the claim (24). Suppose thatτj � τi satisfiesRτj ⊃ ρ. Then, by our
assumption II-b,bi − d,bi − d1 ∈ NA + Z(A ∩ τj ). Hence, by Lemma 3.6, we hav
bi − d,bi − d1 /∈ bj + Z(A ∩ τj ).
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II-b

have

a

Next suppose thatτj � τi does not satisfyRτj ⊃ ρ. Then there exists a facetσ � τj

such thatRσ 
⊃ ρ by the Sublemma below. Now by the same argument as in Case
(using Remark 5.5 and the assumptions from Case II), we have

σ ∈ Facet−(ρ) ⊂ µ−1(−∞),

andFσ (bi − d),Fσ (bi − d1) � M. Thereforebi − d,bi − d1 /∈ bj + Z(A ∩ τj ) by the
definition ofM (5). We have thus proved the claim (24). Hence by Lemma 3.6 we
proved (22).

We have examined all cases, and thus completed the proof.�
Sublemma 5.7. Let τ be a face of the coneR�0A. Then

Rτ =
⋂

σ�τ, σ facet

Rσ. (25)

Proof. The inclusion ‘⊂’ is trivial. Let x belong to the right-hand side of (25). Letσ ′ � τ .
Then there existsaσ ′ ∈ τ \ σ ′. We haveFσ ′(aσ ′) > 0. So we can takeaσ ′ such that
Fσ ′(x + aσ ′) > 0. Do this for allσ ′ � τ . Thus we finda ∈ τ such thatFσ ′(x + a) > 0
for all σ ′ � τ .

Forσ � τ , we haveFσ (x + a) = Fσ (x) = 0.
Thereforex + a ∈ R�0A ∩⋂

σ�τ σ = τ . Hencex ∈ Rτ . �
Definition 5.8. For d ∈ Zd , we definePd ∈ C[θ ] = C[θ1, . . . , θd ] by

Pd(θ) :=
∏
σ∈F

∏
m∈Fσ (NA)\[−Fσ (d)+Fσ (NA)]

(
Fσ (θ) − m

)
. (26)

Lemma 5.9. I(Ω(d)) ⊂ 〈Pd〉.

Proof. Let σ be a facet. We aim to show that{
F−1

σ (m): m ∈ Fσ (NA) \ [−Fσ (d) + Fσ (NA)
]
, m � −Fσ (d)

}
⊆ {

bi − d + C(A ∩ τi): bi − d ∈ NA + Z(A ∩ τi)
}
,

after which the result willfollow from Proposition 5.1.
To verify the inclusion, take

x ∈ {F−1
σ (m): m ∈ Fσ (NA) \ [−Fσ (d) + Fσ (NA)

]
, m � −Fσ (d)

}
.

Then becausem + Fσ (d) � 0, Fσ (x + d) = m + Fσ (d) ∈ Fσ (Sat(NA)), where Sat(NA)

is the saturation of the semigroupNA (because we assumedZA = Zd , we can think of
Sat(NA) asR�0A∩ Zd ). In addition, we haveFσ (x) = m ∈ Fσ (NA). Hence there exists
t1 ∈ C(A∩σ) such thatx+d+ t1 ∈ Sat(NA), andx+ t1 ∈ NA. However,x+d+ t1 /∈ NA

sinceFσ (x + d + t1) = m + Fσ (d) /∈ Fσ (NA) by the definition ofx.
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So we have

x + d + t1 ∈ Sat(NA) \ NA = Holes(A) =
∐

bi + N(A ∩ τi).

Moreover,

x + d + t1 + N(A ∩ σ) ⊂
⋃

bi + Z(A ∩ τi),

and in fact the left-hand side must be contained in asinglefactor on the right-hand side
So there exists abi + Z(A ∩ τi) with

x + d + t1 + N(A ∩ σ) ⊂ bi + Z(A ∩ τi).

It follows thatσ = τi and

x + d + t1 ∈ bi + Z(A ∩ τi).

Now there exists at2 ∈ Z(A ∩ τi) with x + d + t1 = bi + t2. Solving for x gives:
x = bi − d + (t2 − t1), wheret2 − t1 ∈ C(A ∩ τi) (this last comment comes from th
definition oft1 and the fact thatσ = τi ). Thusx ∈ bi − d + C(A ∩ τi).

It remains to show thatbi − d ∈ NA + Z(A ∩ τi). Recall thatx + t1 ∈ NA. Thus

bi − d = (x + t1) − t2 ∈ NA + Z(A ∩ τi). �
We use the following lemma in Section 6.

Lemma 5.10. Let d1 ∈ Sµ andρ ⊂ Fµ,R. Then

td1+dρ Pd1+dρ (θ) = td1Pd1(θ) · tdρ Pdρ (θ).

Proof. We havetd1Pd1(θ) · tdρ Pdρ (θ) = td1+dρPd1(θ + dρ) · Pdρ (θ) (becauseθi = ti∂i )
and

Pd1+dρ (θ) =
∏
σ∈F

∏
m∈Fσ (NA)\[−Fσ (d1+dρ )+Fσ (NA)]

(
Fσ (θ) − m

)
,

Pd1(θ + dρ) =
∏
σ∈F

∏
m∈[−Fσ (dρ)+Fσ (NA)]\[−Fσ (d1+dρ )+Fσ (NA)]

(
Fσ (θ) − m

)
,

Pdρ (θ) =
∏
σ∈F

∏
m∈Fσ (NA)\[−Fσ (dρ)+Fσ (NA)]

(
Fσ (θ) − m

)
.

Forσ ∈ Facet0(ρ), the polynomialPdρ (θ) does not have anFσ -factor, and the polynomial
Pd1+dρ (θ) and Pd1(θ + dρ) have the sameFσ -factors. If σ ∈ Facet+(ρ), then σ ∈
µ−1(+∞). Hence none of the above three polynomials hasFσ -factors forσ ∈ Facet+(ρ),
since we tookdρ so thatFσ (dρ) � M for such aσ . Suppose thatσ ∈ Facet−(ρ). Then
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Fσ (NA) \ [−Fσ (d1 + dρ) + Fσ (NA)
]

= ([−Fσ (dρ) + Fσ (NA)
]∖[−Fσ (d1 + dρ) + Fσ (NA)

])
∐(

Fσ (NA) \ [−Fσ (dρ) + Fσ (NA)
])

,

since

−Fσ (dρ) + Fσ (NA) ⊂ Fσ (NA)

and [−Fσ (d1 + dρ) + Fσ (NA)
]⊂ [−Fσ (dρ) + Fσ (NA)

]
thanks to (6) and the propertiesFσ (dρ),Fσ (d1) � −M. �
Lemma 5.11. Let d1 ∈ Sµ, ρ ⊂ Fµ,R, andd = d1 + dρ . Then

I
(
Ω(d)

)= I(X) ∩ 〈Pdρ 〉 = I(X) · 〈Pdρ 〉,

whereX = (−dρ + NA) \ (−d + NA) and, as in(26),

Pdρ (θ) =
∏

σ∈Facet−(ρ)

∏
m∈Fσ (NA)\[Fσ (−dρ)+Fσ (NA)]

(
Fσ (θ) − m

)
.

Proof. First note thatFσ (NA) \ [Fσ (NA) − Fσ (dρ)] = ∅ for σ ∈ Facet+(ρ) ∪ Facet0(ρ),
sinceFσ (dρ) � M for σ ∈ Facet+(ρ). This justifies the expression forPdρ .

We have

Fσ (NA) + Fσ (d1) ⊂ Fσ (NA) + Fσ (d) (27)

for facetsσ with Fσ (d1) < 0. Indeed, for suchσ , we haveFσ (dρ) � 0, and hence
Fσ (dρ) = 0 or Fσ (dρ) � −M. WhenFσ (dρ) = 0, the inclusion (27) trivially holds with
equality. WhenFσ (dρ) � −M, we haveN ⊂ Fσ (NA) + Fσ (dρ), and henceFσ (NA) +
Fσ (d1) ⊂ N + Fσ (d1) ⊂ Fσ (NA) + Fσ (d). Thus from (14), we obtain

ZC
(
(d + NA) \ R�0A

)= ZC
(
(d1 + NA) \ R�0A

)∪
⋃

σ∈Facet−(ρ)

⋃
m∈Jσ

F−1
σ (m), (28)

where

Jσ = {
m < 0: m ∈ [Fσ (NA) + Fσ (d)

]∖[
Fσ (NA) + Fσ (d1)

]}
= {

m < 0: m ∈ Fσ (d) + (
Fσ (NA) \ [Fσ (NA) − Fσ (dρ)

])}
= Fσ (d) + (

Fσ (NA) \ [Fσ (NA) − Fσ (dρ)
])

. (29)
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Note that the last equation holds, sinceFσ (d1) � −M and m /∈ Fσ (d) + [Fσ (NA) −
Fσ (dρ)] = Fσ (d1) + Fσ (NA) imply m /∈ N. Then the first equation of the lemma follow
from Eq. (11) and Lemma 5.6,

ZC
(
Ω(d)

)= −d + ZC
(
(d + NA) \ NA

)
= −d +

[
ZC(d + NA \ R�0A)

∪
⋃
i

ZC
(
(d + NA) ∩ (

bi + N(A ∩ τi)
))]

.

This last equality interprets−d + ZC((d + NA) \ NA) as the Zariski-closure of th
elements ofNA that are shifted out ofNA by addingd. This can happen in two ways: th
element can be shifted out of the coneR�0A entirely or the element can be shifted in
the Zariski-closure of the holes, ZC((d + NA) ∩ (bi + N(A ∩ τi))). Now, using (28) and
Lemma 5.6,

ZC
(
Ω(d)

)= −d +
[
ZC(d1 + NA \ R�0A) ∪

{ ⋃
σ∈Facet−(ρ)

⋃
m∈Jσ

F−1
σ (m)

}

∪
⋃
i

ZC
(
(d1 + NA) ∩ (bi + N(A ∩ τi)

))]
= −d +

[
ZC

(
(d1 + NA) \ NA

)∪
{ ⋃

σ∈Facet−(ρ)

⋃
m∈Jσ

F−1
σ (m)

}]
(by (4))

= {−d + ZC(d1 + NA \ NA)
}∪

{ ⋃
σ∈Facet−(ρ)

⋃
m∈Jσ

−d + F−1
σ (m)

}
.

Now by (29),

ZC
(
Ω(d)

)= V
(
I(X)

) ∪
{ ⋃

σ∈Facet−(ρ)

⋃
m∈Fσ (d)+Fσ (NA)\[Fσ(NA)−Fσ (dρ)]

−d + F−1
σ (m)

}

= V
(
I(X)

) ∪
{ ⋃

σ∈Facet−(ρ)

⋃
m∈Fσ (NA)\[Fσ(NA)−Fσ (dρ)]

F−1
σ (m)

}
= V

(
I(X)

) ∪ V(Pdρ ).

To see thatI(X) ∩ 〈Pdρ 〉 = I(X) · 〈Pdρ 〉, it is enough to show thatX ∩ V(Pdρ ) = ∅ since
thenfPdρ ∈ I(X) impliesf ∈ I(X). But if σ ∈ Facet−(ρ) andm ∈ Fσ (NA) \ [Fσ (NA) −
Fσ (dρ)], then

F−1
σ (m) ∩ X = F−1

σ (m) ∩ (
(−dρ + NA) \ (−d + NA)

)
.

But m = Fσ (F−1
σ (m)) /∈ Fσ (NA) − Fσ (dρ), so F−1

σ (m) ∩ X = ∅. It follows that X ∩
V(Pdρ ) = ∅ so the second equation of the lemma holds.�
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Lemma 5.12. We have

I(Y ) = I
(
Ω(dρ)

)= 〈Pdρ 〉 · I

(⋃
i∈I

(
bi − dρ + C(A ∩ τi)

))
,

where

I =
{
i:

bi − dρ ∈ NA + Z(A ∩ τi),

Fσ (bi ) ∈ Fσ (NA) for all σ ∈ Facet−(ρ) containingτi

}
.

Proof. Recall that

Y = NA \ (−dρ + NA) = −dρ + [
(dρ + NA) \ NA

]
.

By (14),

ZC
(
(dρ + NA) \ R�0A

)=
⋃

σ∈Facet−(ρ)

⋃
m<0,m∈Fσ (NA)+Fσ (dρ)

F−1
σ (m).

Note that(dρ + NA) ∩ (bi + N(A ∩ τi)) = ∅ for all τi contained in a facetσ ∈ Facet+(ρ),
sinceFσ (dρ) � M. Also note that(dρ + NA) ∩ (bi + N(A ∩ τi)) = ∅ for all τi satisfying
Rτi ⊃ ρ; otherwise the factdρ ∈ Z(A∩τi) contradicts the factbi /∈ NA+Z(A∩τi). Recall
from (16) that

(dρ + NA) ∩ (bi + N(A ∩ τi)
) 
= ∅ ⇐⇒ bi − dρ ∈ NA + Z(A ∩ τi).

If this is the case, then (15) implies that ZC((dρ + NA) ∩ (bi + N(A ∩ τi))) equals
bi + C(A ∩ τi).

Hence, we obtain

ZC(Y ) =
⋃

σ∈Facet−(ρ)

⋃
m<−Fσ (dρ),m∈Fσ (NA)

F−1
σ (m)

∪
⋃

bi−dρ∈NA+Z(A∩τi)

(
bi − dρ + C(A ∩ τi)

)
.

Next, we claim that⋃
bi−dρ∈NA+Z(A∩τi)

(
bi − dρ + C(A ∩ τi)

)
=

⋃
σ∈Facet−(ρ)

⋃
m�−Fσ (dρ),m∈Fσ (NA)\[−Fσ (dρ)+Fσ (NA)]

F−1
σ (m)

∪
⋃(

bi − dρ + C(A ∩ τi)
)
. (30)
i∈I
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To prove ‘⊂’, let bi − dρ ∈ NA + Z(A ∩ τi) andi /∈ I . Then there existsσ ∈ Facet−(ρ)

containingτi such thatFσ (bi ) /∈ Fσ (NA). We see thatm := Fσ (bi − dρ) ∈ Fσ (NA) \
[−Fσ (dρ) + Fσ (NA)] and bi − dρ + C(A ∩ τi) ⊂ F−1

σ (m). To prove ‘⊃’, let σ ∈
Facet−(ρ), m � −Fσ (dρ), andm ∈ Fσ (NA) \ [−Fσ (dρ)+Fσ (NA)]. Thenm+Fσ (dρ) ∈
N \ Fσ (NA). Hence

F−1
σ

(
m + Fσ (dρ)

)∩ Zd =
⋃

Fσ (bi )=m+Fσ (dρ), τi=σ

(
bi + Z(A ∩ τi)

)
,

or equivalently

F−1
σ (m) ∩ Zd =

⋃
m=Fσ (bi−dρ ), τi=σ

(
bi − dρ + Z(A ∩ τi)

)
.

Sincem ∈ Fσ (NA), there existsa ∈ NA such thata + Z(A ∩ σ) ⊂ F−1
σ (m) ∩ Zd . Hence

there existsi such thatbi − dρ ∈ NA + Z(A ∩ τi) with m = Fσ (bi − dρ) andτi = σ . For
suchi, F−1

σ (m) = bi − dρ + C(A ∩ τi). This completes the proof of equality (30).
HenceI(Y ) = 〈Pdρ 〉 ∩ I

(⋃
i∈I (bi − dρ + C(A ∩ τi)

)
. Here the roots of theFσ -factor

of Pdρ do not belong to−Fσ (dρ) + Fσ (NA) whereas those of the generators
I
(⋃

i∈I (bi − dρ + C(A ∩ τi)
)

do. Therefore, we conclude thatV(Pdρ ) ∩⋃i∈I (bi − dρ +
C(A ∩ τi)) = ∅ and the assertion follows.�

The following corollary is immediate from Lemmas 5.11 and 5.12.

Corollary 5.13. Letd1 ∈ Sµ, ρ ⊂ Fµ,R, andd = d1 + dρ . Then the deficiency ideal for th
pair d1, dρ equals

I

(⋃
i∈I

(
bi − dρ + C(A ∩ τi)

))
.

We are now ready to prove that allD(RA) are finitely generated. In [12], we define
a chamberto be the closure of a connected component ofRd \ ⋃σ∈F (Fσ = 0) in the
Euclidean topology.

Theorem 5.14. LetC be any chamber. Then theC-algebra

D(RA)C :=
⊕
a∈C

D(RA)a

is finitely generated. In particular, theC-algebraD(RA) is finitely generated.

Proof. The second claim follows from the first since there are finitely many chambeC

andD(RA) =⊕
C D(RA)C.
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To a mapµ fromF to M̃ , associate the following subspaces ofD(RA):

D(RA)Sµ :=
⊕
a∈Sµ

D(RA)a, D(RA)Fµ,R
:=

⊕
a∈Fµ,R

D(RA)a.

ThenD(RA)Fµ,R
is a subalgebra ofD(RA), andD(RA)Sµ is a D(RA)Fµ,R

-module. We
claim that

D(RA)Sµ is a finitely generatedD(RA)Fµ,R
-module. (31)

Suppose thatd ∈ Sµ and ρ ⊂ Fµ,R. Recall that we tookdρ so that it satisfies th
condition |Fσ (dρ)| � M for all σ ∈ Facet−(ρ) ∪ Facet+(ρ). From Proposition 4.6 ther
exists a finite setSµ,fin such that

Sµ =
⋃

v∈Sµ,fin

(
v +

∑
ρ⊂Fµ,R

Ndρ

)
.

Recall that we fixed a description of the holes ofNA:

Holes(A) =
m∐

i=1

(
bi + N(A ∩ τi)

)
.

Assume that

d ∈ Sµ

∖ ⋃
v∈Sµ,fin

(
v +

∑
ρ⊂Fµ,R

N<m+2dρ

)
,

whereN<m+2 is the set of nonnegative integers less thanm+2. Then there existsρ ⊂ Fµ,R

such thatd − kdρ ∈ Sµ for k = 1,2, . . . ,m + 1. Putd(k)
ρ := kdρ for k = 1,2, . . . ,m + 1.

Then we have

(1) Fσ (d(1)
ρ ) � −M for all σ ∈ Facet−(ρ),

(2) Fσ (d(k+1)
ρ ) − Fσ (d(k)

ρ ) � −M for all k andσ ∈ Facet−(ρ).

When Lemmas 5.11 and 5.12 are applied tod(k)
ρ , it produces three sets,X(k), Y (k), and

I (k), corresponding to the setsX, Y , andI in Lemmas 5.11 and 5.12. Corollary 5.13 sa
that for allt = 1,2, . . . ,m + 1,

I
(
X(t)

) · I
(
Y (t)

)= I
(
Ω(d)

) · I

( ⋃
(t)

(
bi − d(t)

ρ + C(A ∩ τi)
))

. (32)

i∈I
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Hence

m+1∑
t=1

I
(
X(t)

) · I
(
Y (t)

)= I
(
Ω(d)

) ·
m+1∑
t=1

(
I

( ⋃
i∈I (t)

(
bi − d(t)

ρ + C(A ∩ τi)
)))

.

To prove that

m+1∑
t=1

I

( ⋃
i∈I (t)

(
bi − d(t)

ρ + C(A ∩ τi)
))= (1),

it is enough to show that the intersection
⋂m+1

t=1
⋃

i∈I (t) (bi − d(t)
ρ + C(A ∩ τi)) is empty,

since it equals

V

(
m+1∑
t=1

I

( ⋃
i∈I (t)

(
bi − d(t)

ρ + C(A ∩ τi)
)))

.

Suppose that the intersection
⋂m+1

t=1
⋃

i∈I (t) (bi − d(t)
ρ + C(A ∩ τi)) is nonempty; we aim

for a contradiction. By the pigeon-hole principle, there exists an indexi (1 � i � m) and
two numberst andt ′ between 1 andm + 1 such that

[
bi − d(t)

ρ + C(A ∩ τi)
]∩ [bi − d(t ′)

ρ + C(A ∩ τi)
] 
= ∅.

Then

d(t)
ρ − d(t ′)

ρ ∈ C(A ∩ τi) ∩ Zd .

But this last element is just a multiple ofeρ soρ ⊂ Rτi . Thendρ ∈ Z(A∩ τi) by (17). Now

bi − d(t)
ρ ∈ NA + Z(A ∩ τi) because that is how we defined the setI in Lemma 5.12. But

together withdρ ∈ Z(A ∩ τi), this givesbi ∈ NA + Z(A ∩ τi). This cannot be the cas
becausebi was a “hole.” So we get a contradiction. Thus, the intersection is empty a

m+1∑
t=1

I
(
X(t)

) · I
(
Y (t)

)= I
(
Ω(d)

)
.

Therefore, we obtain

D(R)d =
m+1∑

D(R)d−d(t)
ρ

D(R)d(t)
ρ

.

t=1
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of
The above argument shows the claim (31), more precisely, thatD(RA)Sµ is generated by⊕
d D(RA)d with d running over the finite set

⋃
v∈Sµ,fin

(
v +

∑
ρ⊂Fµ,R

N<m+2dρ

)

as a rightD(RA)Fµ,R
-module.

For any chamberC, C ∩ Zd = ⋃
Sµ⊂C Sµ. Moreover,Sµ ⊂ C ⇒ Fµ,R ⊂ C and

Fµ,R ∩ Zd = ⋃
Sµ′⊂Fµ,R

Sµ′ . Hence, the above argument also shows that theC-algebra

D(RA)C is finitely generated. Thus, we have proved the theorem.�

6. Finite generation of GrD(RA) for scored semigroups

In this section we prove that ifNA is scored, then GrD(RA) is finitely generated
Together with [12, Theorem 3.2.12], this completes the proof of Theorem 1.1(1).
Throughout this section, we assumeNA to be scored.

Proposition 6.1. I(Ω(d)) = 〈Pd〉.

Proof. SinceNA is scored,a ∈ Ω(d) if and only if Fσ (a) ∈ Fσ (NA) for all σ ∈ F , and
Fσ ′(a) /∈ −Fσ ′(d) + Fσ ′(NA) for someσ ′ ∈F . �
Corollary 6.2.

Gr
(
D(RA)

)=
⊕
d∈Zd

tdC[θ1, θ2, . . . , θd ](P d),

whereθj = tj ξj and

P d =
∏
σ∈F

Fσ (θ1, θ2, . . . , θd)
(Fσ (NA)\(−Fσ(d)+Fσ (NA))).

Proof. This follows immediately from Proposition 6.1, Theorem 2.1, and the definition
Pd in (26). �
Theorem 6.3. LetC be any chamber. Then theC-algebra

Gr
(
D(RA)C

)= Gr
(
D(RA)

)
C

:=
⊕
a∈C

Gr
(
D(RA)

)
a

is finitely generated. Moreover, theC-algebraGr(D(RA)) is finitely generated.
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Proof. For eachρ ∈ Ray(A), we tookdρ so that it satisfies the condition|Fσ (dρ)| � M

for all σ ∈ Facet−(ρ)∪Facet+(ρ). For anyµ, as in Section 4, there exists a finite setSµ,fin
such that

Sµ =
⋃

v∈Sµ,fin

(
v +

∑
ρ⊂Fµ,R

Ndρ

)
.

Assume thatd ∈ Sµ \ Sµ,fin. Then there exists a rayρ ⊂ Fµ,R such thatd − dρ ∈ Sµ. By
Lemma 5.10 and Corollary 6.2, we have

Gr
(
D(R)

)
d = Gr

(
D(R)

)
d−dρ

· Gr
(
D(R)

)
dρ

.

Hence Gr(D(RA))Sµ is generated by
⊕

d∈Sµ,fin
D(RA)d as a rightD(RA)Fµ,R

-module.
The same remark as in the final paragraph of the proof of Theorem 5.14 show

Gr(D(RA)) is finitely generated. �
Corollary 6.4. LetC be a chamber. IfNA is scored, then

(1) Gr(D(RA))C andGr(D(RA)) are Noetherian;
(2) D(RA)C andD(RA) are left and right Noetherian.

Proof. (1) is an immediate consequence of Hilbert’s basis theorem.
(2) follows from the standard argument using induction on the order of differentia

erators: Let{In}n=1,2,... be an increasing sequence of left ideals ofD(RA)C . Define a filtra-
tion F of eachIn by Fm(In) := Dm(RA)∩ In and put Gr(In) :=⊕∞

m=0 Fm+1(In)/Fm(In).
Then {Gr(In)} is an increasing sequence of ideals of Gr(D(RA))C . By (1), there exists
N such that Gr(IN+k) = Gr(IN) for all k ∈ N. Suppose thatIN � IN+k . Take the small-
est m such thatFm(IN) � Fm(IN+k). ThenFm−1(IN) = Fm−1(IN+k) and Grm(IN) =
Grm(IN+k) imply Fm(IN) = Fm(IN+k), which contradicts the choice ofm.

The right Noetherian property can be proved similarly.�

Acknowledgments

The authors thank Bernd Sturmfels for encouragement throughout the projec
second author gratefully acknowledges the support of the Naval Academy Re
Council.

References

[1] D. Eisenbud, Commutative Algebra—with a View Toward Algebraic Geometry, in: Grad. Texts in M
vol. 150, Springer-Verlag, New York, 1995.

[2] I.M. Gel’fand, A.V. Zelevinskii, M.M. Kapranov, Equations of hypergeometric type and Newton polyhe
Soviet Math. Dokl. 37 (1988) 678–683.



M. Saito, W.N. Traves / Journal of Algebra 278 (2004) 76–103 103

.

l.

nd

0.
th.

s,

in:

26.

95)

er.
[3] I.M. Gel’fand, A.V. Zelevinskii, M.M. Kapranov, Hypergeometric functions and toral manifolds, Funct
Anal. Appl. 23 (1989) 94–106.

[4] A. Grothendieck, J. Dieudonné, Élements de Géométrie Algébrique IV, Inst.Hautes Études Sci. Pub
Math. 32 (1967).

[5] M.-N. Ishida, The Local Cohomology Groups of an Affine Semigroup Ring, in: Algebraic Geometry a
Commutative Algebra, vol. I, Kinokuniya, Tokyo, 1988, pp. 141–153.

[6] A.G. Jones, Rings of differential operators on toric varieties, Proc. Edinburgh Math. Soc. 37 (1994) 143–16
[7] T. Levasseur, J.T. Stafford, Rings of differential operators on classical rings of invariants, Mem. Amer. Ma

Soc. 412 (1999).
[8] I.M. Musson, Differential operators on toric varieties, J. Pure Appl. Algebra 95 (1994) 303–315.
[9] I.M. Musson, M. van den Bergh, Invariants under tori of rings of differential operators and related topic

Mem. Amer. Math. Soc. 650 (1998).
[10] M. Saito, Isomorphism classes ofA-hypergeometric systems, Compositio Math. 128 (2001) 323–338.
[11] M. Saito, B. Sturmfels, N. Takayama, Gröbner deformations of hypergeometric differential equations,

Algorithms Comput. Math., vol. 6, Springer-Verlag, New York, 2000.
[12] M. Saito, W.N. Traves, Differential algebras on semigroup algebras, Contemp. Math. 286 (2001) 207–2
[13] A. Schrijver, Theory of Linear and Integer Programming, Wiley–Interscience, Chichester, 1986.
[14] G.W. Schwarz, Lifting differential operators from orbit spaces, Ann. Sci. École Norm. Sup. (4) 28 (3) (19

253–305.
[15] M. Sweedler, Groups of simple algebras, Inst. Hautes Études Sci. Publ. Math. 44 (1974) 79–189.
[16] N.V. Trung, L.T. Hoa, Affine semigroups and Cohen–Macaulay rings generated by monomials, Trans. Am

Math. Soc. 298 (1986) 145–167.


