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Constructive invariant theory was a preoccupation of many nineteenth century mathe-
maticians, but the topic fell out of fashion in the early twentieth century. In the latter
twentieth century the topic enjoyed a resurgence, partly due to its connections with
the construction of moduli spaces in algebraic geometry and partly due to the devel-
opment of computational algorithms suitable for implementation in modern symbolic
computation packages. In this survey paper we briefly discuss some of the history and
applications of invariant theory and apply one particular algorithm that uses Gröbner
bases to find invariants of linearly reductive algebraic groups acting on the Weyl alge-
bra. After showing how we can present the ring of invariant differential operators in
terms of generators and relations, we turn to the operators on the invariant ring itself.
The theory is particularly nice for finite groups acting on polynomial rings, but we
also compute an example involving an SL2C-action. In this example, we give a com-
plete description of the generators and relations of D(G(2, 4)), the ring of differential
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operators on the Grassmannian of 2-planes in 4-space (or on the affine cone over the
Grassmannian of lines in projective 3-space).

This paper is based on my talk in the workshop on Gröbner Bases in Symbolic Analysis
held at RISC and RICAM in May 2006. Many of the technical details are omitted.
The interested reader can find them in my paper [34] or in Derksen and Kemper’s
monograph [8], as indicated in the text.

1 Invariant Theory

When a group G acts on an affine algebraic variety X , then it makes sense to ask
whether the orbits of G form an algebraic variety in their own right. This is the basic
question at the heart of geometric invariant theory and the answer is subtle [24]. To
make matters much easier, we restrict ourselves to the non-modular case: throughout
this paper we work with complex varieties but all the results hold over any field of
characteristic zero or in any situation where the characteristic of the field does not
divide the order of a finite group G. Two simple examples suffice to introduce the
theory.

Example 1.1 If G = Z2 = {−1, 1} acts on the affine plane X = A2
C by scalar mul-

tiplication, g • (x, y) = (gx, gy), then all the orbits consist of two points except for
the orbit of the origin, which is a fixed point of the group action. If the orbits do
form an algebraic variety X/G then the natural projection map X → X/G that sends
each point to its orbit is surjective and corresponds to an injective map of the coordi-
nate rings C[X/G] ↪→ C[X] = C[x, y]. So C[X/G] can be identified with the subring
of C[x, y] consisting of functions that are constant on each orbit. In our example,
this just consists of those polynomials f(x, y) such that f(x, y) = f(−x,−y) and so
C[X/G] = C[x2, xy, y2] ∼= C[a, b, c]/(b2 − ac). Though the space X and the G-action
were about as nice as possible, the quotient variety X/G is a singular surface, a cone
with vertex at the origin.

Generalizing this example, when G acts on a variety X there is a natural left action on
f ∈ R = C[X] given by (g • f)(x) = f(g−1 • x) and

RG = {f ∈ R : g • f = f for all g ∈ G}
is the ring of G-invariant functions on X . The variety X//G = Spec(RG) is called
the categorical quotient of X by G. However, the categorical quotient may not be the
quotient X/G as the next example demonstrates.

Example 1.2 If G = C∗ = C \ {0} acts on X = A2
C by scalar multiplication then most

of the orbits have the form L \ {(0, 0)}, where L is a line in X passing through the
origin. The sole exception is the orbit of the fixed point, (0, 0). However, since any
continuous function that is constant on an orbit must also take the same value on its
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closure, the fact that (0, 0) is in the closure of all orbits forces C[X//G] = C. That
is, X//G = Spec(C) is a point. Since this doesn’t seem to reflect the structure of the
orbit space, the common approach is to restrict our attention to an open subset of points
Y ⊂ X on which G acts; these form a ringed space and on each affine chart U ⊂ Y we
can consider the ring of invariants C[U ]G. Patching together the Spec(C[U ]G) gives a
variety Y/G. For instance, in the case of the torus acting on the plane, the algebraic
variety Y = X \ {(0, 0)} is covered by two affine charts Y1 = {(x, y) : x 6= 0}
and Y2 = {(x, y) : y 6= 0}. Now it is not hard to see that on each chart the slope
parameterizes the orbits – Y1/G = Spec(C[y/x]) and Y2/G = Spec(C[x/y]). Since
these are also the charts for the projective line, Y/G ∼= P1

C.

Generalizing the method of the last example, we call a point x in a projective variety
X semi-stable (and write x ∈ Xss) if there is an affine neighborhood U of x on which
there is an invariant f ∈ C[U ]G such that f(x) 6= 0. The quotient Xss//G is a projective
variety, called the geometric invariant theory (G.I.T.) quotient of X under the G-action.
It may still occur that the points in Xss//G do not correspond to the orbits of G on Xss

(roughly speaking, the invariants may fail to separate orbits in Xss), but even in this
case, the variety Xss//G enjoys many functorial properties that we would expect of
a quotient. A trivial example of this construction occurs when G is finite; then every
point in X is semi-stable and X/G = X//G. Here we ought to be clear that we are
omitting many details of the G.I.T. construction. The interested reader is encouraged
to consult [24] for the full story (or [9, chapters 6 and 8] for a cogent précis).

Let’s look at some more complicated examples to further illustrate the power and ap-
plicability of the invariant theory viewpoint.

Example 1.3 One of the great tools in algebraic geometry is the construction of mod-
uli spaces whose points parameterize varieties of interest. For instance, consider the
variety M0,d(P2) that parameterizes degree-d rational curves in the plane. Geometric
invariant theory appears in the description of this space: we’d like to describe each
curve using an explicit parametrization P1 → P2 but then we need to identify those
curves that differ only by a linear change of coordinates on the domain P1. To do this
we take the quotient of the space of parameterizations by an Aut(P1) = PGL2-group
action.

Example 1.4 Another important example of the G.I.T. method involves the construc-
tion of the Hilbert scheme parameterizing subvarieties of projective space with given
Hilbert polynomial. A simple example is the Hilbert scheme parameterizing two points
in P1, corresponding to the constant Hilbert polynomial with value 2. It is easy to pa-
rameterize pairs of points, just take (a, b) ∈ P1 × P1. However, since the order of the
points doesn’t matter we should identify (a, b) with (b, a). Taking the quotient by the
Z2-action that swaps the points, we obtain the Hilbert scheme for pairs of points in P1:
(P1 × P1)/Z2. Though it is a standard exercise in a first course in algebraic geometry
to show that P1×P1 6∼= P2, it is less common to explain that once we quotient by the Z2

action we do get P2. Indeed, if we think of the points on P1×P1 as pairs of polynomials
(a1x + a2y, b1x + b2y) the multiplication map sends this pair to a degree two homoge-
neous polynomial, which is identified with an element of P2. The multiplication map
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is generically 2-to-1 but since we identify the pre-images of (a1x + a2y)(b1x + b2y)
in (P1 × P1)/Z2 the induced map to P2 is an isomorphism. The book [25] contains a
detailed exposition on Hilbert schemes.

Example 1.5 Another interesting example involves the Grassmannian G(k, n), a va-
riety whose points parameterize k-dimensional subspaces of n-space. Equivalently
one could consider G(k − 1, n − 1) = P(G(k, n)), a projective variety parameterizing
the projective (k − 1)-dimensional linear spaces in Pn−1. To describe each (k − 1)-
dimensional linear space P(V ) in Pn−1, we choose a basis {b1, . . . , bk} of V and as-
sociate to their span the k by n matrix whose rows consist of the bi’s. Among all k
by n matrices, only the full-rank matrices correspond to (k − 1)-dimensional spaces
P(V ), so we only consider the open set of Ank consisting of full-rank matrices. More-
over, there are several parameterizations for each P(V ), one for each choice of basis
for P(V ). To identify these copies we quotient by an SLk-action, where SLk acts
on the k by n matrices by left multiplication. The quotient is precisely the Grass-
mannian G(k − 1, n − 1). The common way to describe this space is to compute
C[Xn//SLkC] = C[Xn]SLkC where X = Ck and setG(k−1, n−1) = P(Xn//SLkC)
(see [8, Section 4.4] or [32, Chapter 3] for details). In section 6 we compute the ring
C[G(2, 4)] = C[(C2)4//SL2C] of functions on the Grassmannian G(2, 4) and describe
the ring of differential operators on G(2, 4).

2 Structural Properties of Rings of Invariants

In general it is difficult to compute the ring of invariants RG = C[X//G]. Indeed, this
was a major field of research for mathematicians in the nineteenth century. In 1868 the
acknowledged “king of invariant theory” Paul Gordan proved that when G = SL2C
acts on a finite dimensional C-vector space X , the ring of invariants RG is a finitely
generatedC-algebra. Moreover, his proof was constructive so that – at least in principle
– it was possible to compute a set of generators. In 1890 David Hilbert stunned the
mathematical community by giving a nonconstructive proof that whenever a linearly
reductive group G acts on a finite dimensional C-vector space, the ring of invariants
RG is a finitely generated C-algebra. Hilbert’s nonconstructive proof met with serious
opposition. Gordan even described it as “Theologie und nicht Mathematik!”. Hilbert
continued to consider invariant theory a major area of mathematics: his 14th problem
[12] is related to the question of whether RG is finitely generated for any group acting
on a finite dimensional vector space. Masayoshi Nagata answered this question – and
Hilbert’s 14th problem – in the negative [26], providing an example where G is not
linearly reductive and RG fails to be finitely generated. For details, see the expository
article [23].

In today’s mathematical culture it may seem hard to believe that nonconstructive meth-
ods like those used by Hilbert met with such fierce resistance. Perhaps in order to
counter his critics, Hilbert provided a constructive method to compute the generators
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for RG just three years after the publication of his controversial proof [11]. However,
nearly a hundred years went by before Harm Derksen turned Hilbert’s ideas into some-
thing that could actually be used for symbolic computation. We’ll describe Derksen’s
algorithm in the next section. For now, let’s examine Hilbert’s proof that RG is finitely
generated. The proof depends on a certain map R : R → RG called the Reynolds
operator.

Recall that an algebraic group G is called linearly reductive if every G-invariant sub-
space W of a G-vector space V has a G-invariant complement: V = W ⊕WC . Exam-
ples of linearly reductive groups in characteristic zero are GLn, all semi-simple groups
including SLn, On and Spn, finite groups and tori. Finite groups are also linearly
reductive in prime characteristic when the characteristic does not divide the order of
the group. Now let a linearly reductive group G act on a finite dimensional vector
space X . Since the induced G-action on R = k[X] preserves degree we see that the
inclusion RG ↪→ R is a graded map of RG-algebras. Restricting to the degree d piece,
the G-invariant subspace RG

d of Rd has a G-invariant complement and for each d we
can project Rd onto RG

d . The Reynolds operator R is the RG-linear map R → RG

that agrees with this projection in each degree. Note that the Reynolds operator is a
splitting of the inclusion RG → R as a map of RG-algebras.

In general it can be quite difficult to compute the Reynolds operator for a given group
action. However, when G is a finite group the Reynolds operator just averages the
group action:

R(f) =
1
|G|

∑

g∈G

g • f.

When G is infinite then we can compute the Reynolds operator by integrating over a
compact subgroup. In particular when G is a connected semi-simple group there are ex-
plicit algebraic algorithms [8, Algorithm 4.5.19] to compute the value of the Reynolds
operator on any element of R, though no simple closed form algebraic expression for
R is known in these cases. In the special case of G = SLn or G = GLn, Cayley’s
Omega process does give a closed form expression for the Reynolds operator (see [8,
section 4.5.3]).

Theorem 2.1 (Hilbert (1890)) If G is a linearly reductive group acting on a Noethe-
rian k-algebra R, then RG is a finitely generated k-algebra.

Proof. Let I be the Hilbert ideal of R, the ideal generated by all the G-invariant func-
tions of positive degree: I = (f ∈ RG

>0)R. Since R is Noetherian, I is a finitely
generated ideal in R. Moreover, I is a homogeneous ideal, so we can find homoge-
neous elements f1, . . . , ft in RG

>0 generating the R-ideal I . Now k[f1, . . . , ft] ⊆ RG,
but we claim that we actually have equality. We prove this for each graded piece of
RG by induction. The base case is trivial since k[f1, . . . , ft]0 = RG

0 = k. Now assume
that the rings agree in degree less than d and let g ∈ RG

d . Then g ∈ I so there exist
homogeneous elements h1, . . . , ht of R such that deg(hi) = d− deg(fi) < d and

g = h1f1 + · · ·+ htft.
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Applying the RG-linear Reynolds operator R gives

g = R(g) = R(h1)f1 + · · ·+R(ht)ft. (2.1)

Now sinceR(hi) ∈ RG has degree less than d,R(hi) ∈ k[f1, . . . , ft]. Now (2.1) shows
that g ∈ k[f1, . . . , ft]. This completes the inductive step so RG = k[f1, . . . , ft].

It is possible to use the Reynolds operator, together with the theory of tight closure,
to give an elegant proof [14, Theorem 3.6] of a theorem due to Hochster and Roberts
[13].

Theorem 2.2 If a linearly reductive group G acts on a Noetherian C-algebra R, then
RG is Cohen-Macaulay. That is, there is a homogeneous system of parameters
f1, . . . , fd in RG such that C[f1, . . . , fd] is a polynomial ring, and RG is a finite
C[f1, . . . , fd]-module. The parameters fi are said to be primary invariants and the
module generators are called secondary invariants.

Finding primary and secondary invariants tends to require significant computation, but
the amount of computation is reduced if we know the number and degree in which these
invariants occur. This is precisely the information contained in the classical statement
of Molien’s theorem, which deals with finite group actions.

If G is a group acting on R = C[x1, . . . , xn], then the Molien series is the Hilbert series
for the ring RG, a series that encodes the dimensions of the graded pieces of RG:

H(RG, t) =
∞∑

d=0

(
dimCRG

d

)
td.

In 1897 Molien proved that it is possible to compute H(RG, t) without first computing
RG.

Theorem 2.3 (Molien’s Theorem) If G is a finite group of order |G| acting on R =
C[V ] = C[x1, . . . , xn] via the representation ρ : G → GL(V ) then the Molien series
can be expressed as

H(RG, t) =
1
|G|

∑

g∈G

1
det(1− tρ(g))

.

We refer the reader to Sturmfels’s account [32, Theorem 2.2.1] for a very readable
proof that only relies on elementary linear algebra. Replacing the sum by an integral,
Molien’s theorem can be extended to algebraic groups (see [8] for details).

The Molien series can be expressed in the form

H(RG, t) =
P (t)∏p

i=1(1− tdi)
.

The degrees di of the primary invariants can be read off this expression, as can the de-
grees ki and number in each degree mi of the secondary invariants: these are encoded
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by the polynomial P (t) =
∑

mit
ki . There are algorithms to compute the primary

invariants (see [5]). Once these are found, we can apply the Reynolds operator to a
basis for Rd until the results (together with the polynomials of degree d in the poly-
nomial algebra generated by the primary invariants) span a vector space of dimension
dimC(RG

d ), as predicted by the Molien series.

We end this section with a short example to illustrate Molien’s theorem.

Example 2.4 Let G = Z/2Z × Z/4Z = 〈γ, δ : γ2 = δ4 = idG〉 act on X = C3

so that γ is a reflection in the x2x3-plane and δ is a 90-degree rotation about the x1-

axis: the representation ρ : G → EndC(C3) is given by ρ(γ) =



−1 0 0
0 1 0
0 0 1


 and

ρ(δ) =




1 0 0
0 0 −1
0 1 0


. The Molien series is

H(RG, t) =
1 + t4

(1− t2)2(1− t4)
.

It is not hard to see that x2
1, x

2
2 + x2

3, x
4
2 + x4

3 is a system of parameters of the degrees
required by the Molien series. These form the primary invariants. There is a single
secondary invariant in degree 4. Using the Reynolds operator, we find the secondary
invariant to be x2x

3
3 − x3

2x3. We will return to this example throughout the paper.

3 Computing Rings of Invariants

There are a variety of algorithms to compute rings of invariants. One of the old-
est is Gordan’s symbolic calculus [27], which deals with the important case where
G = SLn(C) acts on n-ary d-forms. Cayley’s Omega process [32] uses differential op-
erators to compute invariants ([8, section 4.5.3],[32, section 4.3]) and when G is a Lie
group, we also have access to infinitesimal methods1 based on the induced Lie algebra
action [32, section 4.3]. Additionally, in many circumstances we can use Molien’s the-
orem to help search for generators, as described above. If we can find a homogeneous
system of parameters for RG to serve as the primary invariants then we can reduce the
problem of finding the secondary invariants to a large linear algebra problem. This is
a very appealing approach but it is not always easy to find a set of primary invariants.
Kemper [16] gives a good exposition describing many methods to compute rings of
invariants (also see [6]).

1Recently Bedratyuk [1, 2] produced invariants and co-variants for binary forms in previously inaccessible
cases by solving the differential equations coming from the infinitesimal action of SL2(C). These very interest-
ing papers are only peripherally related to the material in this paper but they are highly recommended.
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Instead of describing these approaches, we return to Hilbert’s original construction
of the finite set of generators. This algorithm was generally dismissed as being far too
computationally expensive, but in 1999 Harm Derksen surprised many mathematicians
by finding an elegant way to recast Hilbert’s ideas into a simple algorithm [7]. Though
other algorithms may be faster than Derksen’s algorithm, it is appealing because it can
be applied in a wide variety of contexts. We choose to describe it in detail since it uses
Gröbner bases and fits in well with the theme of these conference proceedings.

Let G be a linearly reductive group acting on a vector space X = Spec(R). Derksen’s
algorithm is based on the observation that the zero set of the Hilbert ideal I of R =
C[x1, . . . , xn], the ideal generated by all positive degree invariants, is precisely the
non-semi-stable points of X (see [8, Lemma 2.4.2]). The collection of these points
V(I) = X \Xss is called the nullcone of X and denotedNX . To describe the algorithm
we first parameterize G so that we can think of G as an algebraic variety. If G is a
finite group then we can identify the elements of G with a finite set of points and if
G is an algebraic group then this parametrization is implicit in the definition of G.
Now let ψ : G × X → X × X be the map of varieties given by ψ(g, x) = (x, g • x).
Let Z be the image of ψ and let Z be its Zariski-closure. Identify C[X × X] with
C[x,y] = C[x1, . . . , xn, y1, . . . , yn]. Now we claim that

Z ∩ (X × {0}) = NX ∩ {0}. (3.1)

If (w, 0) ∈ NX ∩ {0} then w is not a semi-stable point and so 0 ∈ Gw. Thus (w, 0) is
in the closure of the image Z. For the other inclusion, we prove that if (w, 0) ∈ Z then
w ∈ V(I) = NX . Suppose that f ∈ I has positive degree. Then f(x)− f(y) vanishes
on all of Z because f(x)− f(g · x) = 0. But then f(x)− f(y) must also vanish on the
closure of Z. In particular, f(w)− f(0) = f(w) = 0. Thus w ∈ V(I), as desired.

Derksen [8, Theorem 4.1.3] used the Reynolds operator to show that the equality (3.1)
of sets actually descends to an equality of ideals. If B = I(Z) then

B + (y1, . . . , yn) = I + (y1, . . . , yn).

Now we can compute the ideal B by elimination using Gröbner basis methods and then
setting each of y1, . . . , yn to zero we get the generators for the ideal I .

These observations lead to the following algorithm to compute RG:

Algorithm 3.1 (Derksen’s algorithm) INPUT: A linearly reductive algebraic group
G acting on a finite dimensional complex vector space X by the representation ρ.
OUTPUT: A generating set for C[X]G.
STEP 1: Parameterize the group G by the zero set of an ideal J ⊂ C[t] = C[t1, . . . , tk].
As well, express the representation ρ in as a matrix A whose entries are polynomials in
C[t].
STEP 2: Construct the ideal I(Γ) describing the graph Γ of ψ : G × X → X × X as
follows. Identify the first copy of X in the range with the copy of X in the domain and,
writing x for the column vector containing the variables x1, . . . , xn, construct the ideal

I(Γ) = (y1 − (Ax)1, . . . , yn − (Ax)n) + JC[t,x,y]
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in the ring C[t,x,y].
STEP 3: Compute a Gröbner basis for I(Γ) in an elimination order on C[t,x,y] that
gives the parameters t higher weight that the x’s and y’s (see [4] or [17] for details on
elimination). Intersecting this basis with C[x,y] gives generators for the ideal B.
STEP 4: Set y1 = · · · = yn = 0 to get generators for the Hilbert ideal I of R.
STEP 5: The generators from step 4 may fail themselves to be invariants. So apply the
Reynolds operator to each of them to get invariants that generate the Hilbert ideal I .
These invariants also generate the ring RG, as described in Theorem 2.

Example 3.2 Let G = Z/2Z × Z/4Z = 〈< γ, δ : γ2 = δ4 = idG〉 act on X = C3 as
in Example 2.4 so that γ is a reflection in the x2x3-plane and δ is a 90-degree rotation
about the x1-axis. We parameterize G by the pairs (s, t) where s is a square root of 1
(s = −1 corresponds to γ) and t is a fourth root of 1 (t = i corresponds to δ). Then
interpolating the representation matrices gives a parametrization of the representation,

ρ(s, t) =




s 0 0
0 1 0
0 0 1







1 0 0

0 t3+t
2

(t−t3)i
2

0 (t3−t)i
2

t3+t
2


 =




s 0 0

0 t3+t
2

(t−t3)i
2

0 (t3−t)i
2

t3+t
2


 .

We compute the ring of invariants using Derksen’s algorithm. We write I(Γ) = (s2 −
1, t4−1, y1− (sx1), y2− ( t3+t

2 x2 + (t3−t)i
2 x3), y3− ( (t−t3)i

2 x2 + t3+t
2 x3)) and compute

a Gröbner basis in an elimination order designed to eliminate s and t. For example, we
can use a product order, refined by degree lex order ≺, in which the first block of vari-
ables is s ≺ t and the second block of variables is x1 ≺ x2 ≺ x3 ≺ y1 ≺ y2 ≺ y3. The
Gröbner basis G contains 22 polynomials. Considering only G∩C[x1, x2, x3, y1, y2, y3]
gives seven polynomials and setting y1 = y2 = y3 = 0 kills 3 of these, leaving
{x2

2 +x2
3, x

2
1, x

4
3, x2x

3
3 + ix4

3}. Applying the Reynolds operator to these four polynomi-
als produces a Gröbner basis for the Hilbert ideal I: I = (x2

2 + x2
3, x

2
1, x

4
2 + x4

3, ix
4
2 −

x3
2x3+x2x

3
3+ix4

3). Cleaning this up shows that I = (x2
2+x2

3, x
2
1, x

4
2+x4

3, x
3
2x3−x2x

3
3).

So C[x1, x2, x3]G = C[x2
2 + x2

3, x
2
1, x

4
2 + x4

3, x
3
2x3 − x2x

3
3], as in Example 2.4. Now

another elimination computation shows that the quotient variety is a singular hypersur-
face: setting a = x2

2 + x2
3, b = x2

1, c = x4
2 + x4

3 and d = x3
2x3 − x2x

3
3 gives

C[x1, x2, x3]G ∼= C[a, b, c, d]/(a4 − 3b2c + 2c2 + 2d2).

Note that the singularities lie along the line a = c = d = 0, which corresponds to the
quotient of the x1-axis by the group action.

4 Group Actions on the Weyl Algebra

The Weyl algebra is the algebra of differential operators on affine n-space. It can
be used to formulate quantum mechanics (see [3]) and to study systems of differ-
ential equations in an algebraic manner (see, for example, [30]). To be precise, if
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R = C[x1, . . . , xn] is the coordinate ring of X = An
C then the Weyl algebra D(R) is

the ring C〈x1, . . . , xn, ∂1, . . . , ∂n〉 in which the variables x1, . . . , xn commute among
themselves, the variables ∂1, . . . , ∂n commutate among themselves, and the ∂i’s and the
xj’s interact via the commutator relation [∂i, xj ] := ∂ixj − xj∂i = δij , where δij = 1
if i = j and 0 otherwise. The variables ∂i should be thought of as the operators ∂/∂xi

on the ring R = C[x1, . . . , xn] and the variables xj ∈ D(R) should be thought of as
the operators that multiply functions in R by xj . Under this interpretation the rule for
commuting ∂i and xi corresponds to the product rule in multi-variable calculus:

(∂ixi) • f(x1, . . . , xn) = ∂
∂xi

(xif(x1, . . . , xn))
= xi

∂f
∂xi

(x1, . . . , xn) + f(x1, . . . , xn)
= (xi∂i + δii) • f(x1, . . . , xn).

When G acts on affine space X = An
C, it not only induces an action on the coordinate

ring R = C[X] but also on the Weyl algebra D(R). For g ∈ G, θ ∈ D(R) and f ∈ R,

(g • θ)(f) = g • (θ(g−1 • f)).

Those readers familiar with differential geometry will not find it surprising that G acts
on the operators ∂1, . . . , ∂n via the contragredient representation: if g ∈ G acts on
R = C[x1, . . . , xn] via the matrix A, g •x = Ax (all vectors are represented by column
matrices), then g acts on C[∂] = C[∂1, . . . , ∂n] via

(
AT

)−1, where T stands for the
Hermitian transpose. However, many readers might enjoy an explicit proof of this fact
communicated to the author by Harrison Tsai. To establish this claim, it is enough to
show that the defining identities [∂i, xj ] := ∂ixj − xj∂i = δij for the Weyl algebra
D(R) are preserved under the proposed group action.

We first observe that the identities can be written in the matrix formulation

[∂,x] = ∂xT − (x∂T )T = 1.

At first sight this may seem odd because we are familiar with the formula (AB)T =
BT AT in GLn(C) but such a formula depends on the commutativity of multiplication
in C, while here the x’s and the ∂’s do not commute.

Now we show that the identity is preserved under the group action. For ease of notation,
let B stand for

(
AT

)−1, then

[g • ∂, g • x] = (g • ∂)(g • x)− (g • x)(g • ∂)

= B∂ (Ax)T −
(
Ax (B∂)T

)T

= B∂xT AT − (
Ax∂T BT

)T

= B∂xT AT + B
(−x∂T

)T
AT

= B∂xT AT + B
(
1− ∂xT

)
AT

= B
(
∂xT + 1− ∂xT

)
AT

= B1AT

= (AT )−1AT = 1.
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In an earlier paper [34] it was shown how to extend Derksen’s algorithm to the Weyl
algebra in order to compute the ring of invariant differential operators D(R)G. For this
we exploit the close connection between D(R) and the commutative ring GrD(R). To
introduce GrD(R), note that D(R) is a filtered ring: if we assign degree 1 to each
∂i and degree 0 to each xj we say that an operator in D(R) has order ≤ n if some
representation of the operator has degree no greater than n. Note that it we need to
be cautious when determining the order of an operator: for example, the operator 1 =
∂ixi− xi∂i seems to have order 0 or 1, depending on its representation. Of course, 1 is
an operator of order≤ 0. If Fn consists of those operators of order≤ n, it is immediate
that (1) Fn ⊂ Fn+1, (2) Fn is closed under addition and (3) Fn · Fm ⊂ Fn+m. These
properties ensure that the Fn define a filtration on the algebra D(R) = ∪n≥0Fn.

Whenever we have a filtered ring such as D(R), we can form its graded ring,

GrD(R) =
⊕

n≥0

Fn

Fn+1
.

The graded ring comes equipped with a symbol map, σ : D(R) → GrD(R), assigning
σ(θ) = θ mod Fn+1 to each θ ∈ Fn. If we write ξi for σ(∂i) (and abuse notation by
writing xj for σ(xj) ∈ GrD(R) too) it is easy to see that GrD(R) is generated by
x1, . . . , xn, ξ1, . . . , ξn. Moreover, GrD(R) is a commutative ring since the commuta-
tion relation ∂ixj − xj∂i = δij in D(R) becomes ξixj − xjξi = 0 mod F0 in GrD(R).
Indeed, this shows that GrD(R) = C[x1, . . . , xn, ξ1, . . . , ξn] is a polynomial ring in 2n
variables.

The group G preserves the order filtration when it acts on D(R), so there is an induced
action on the graded ring GrD(R). Indeed, the action of G on D(R) is compatible
with the symbol map, so if g ∈ G acts on x1, . . . , xn via the matrix A then as in D(R),
g acts on ξ1, . . . , ξn via the matrix (AT )−1. Moreover, the filtration {Fn} restricts
to a filtration on RG, giving rise to the graded ring Gr(D(R)G). Since the action
is compatible with the filtration, it should come as no surprise that Gr(D(R)G) =
[GrD(R)]G; see [34, Theorem 1] for a proof.

Now we can apply Derksen’s algorithm to the polynomial ring GrD(R) to compute
[GrD(R)]G = Gr(D(R)G). Then we can lift the generators of Gr(D(R)G) to elements
of D(R)G. It is not hard to prove that if S is a filtered C-algebra then any lifting of a
set of generators for GrS is a set of generators for S, so the lifts of the generators of
Gr(D(R)G) generate the ring of invariant differential operators D(R)G.1

Example 4.1 We compute generators for D(R)G where G and R are as in Example
3.2. Listing the generators for GrD(R) in the order x1, x2, x3, ξ1, ξ2, ξ3, the action of

1It is possible to simplify the previous discussion using the Poincare-Birkhoff-Witt theorem on normal or-
derings in D(R); however, it is not clear how to apply Derksen’s algorithm directly to D(R), so we’ve taken a
more elementary approach in this paper.
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G on GrD(R)1 is given by ρ̃ : G → AutC(GrD(R)1), where

ρ̃(s, t) = ρ(s, t)⊕ ρ(s, t) =




s 0 0 0 0 0

0 t3+t
2

(t−t3)i
2 0 0 0

0 (t3−t)i
2

t3+t
2 0 0 0

0 0 0 s 0 0

0 0 0 0 t3+t
2

(t−t3)i
2

0 0 0 0 (t3−t)i
2

t3+t
2




.

Following Derksen’s algorithm, we write I(Γ) = (s2 − 1, t4 − 1, y1 − (sx1),
y2−( t3+t

2 x2+ (t3−t)i
2 x3), y3−( (t−t3)i

2 x2+ t3+t
2 x3), η1−(sξ1), η2−( t3+t

2 ξ2+ (t3−t)i
2 ξ3),

η3 − ( (t−t3)i
2 ξ2 + t3+t

2 ξ3)) and compute a Gröbner basis in an elimination order de-
signed to eliminate s and t. The Gröbner basis G consists of 92 polynomials. But
G ∩ C[x1, x2, x3, y1, y2, y3, ξ1, ξ2, ξ3, η1, η2, η3] consists of only 48 polynomials. After
setting y1 = y2 = y3 = η1 = η2 = η3 = 0, we recover only 17 polynomials and
applying the Reynolds operator to these gives seventeen generators for Gr(D(R)G).
Replacing ξi with ∂i and clearing fractions, et cetera, we get the following seventeen
generators for the ring of invariant differential operators D(R)G:





∂2
2 + ∂2

3 , x3∂2 − x2∂3, x2∂2 + x3∂3,

∂2
1 , x1∂1, −x2x3∂

2
2 + x2x3∂

2
3 ,

x2
1, ∂4

2 + ∂4
3 , −∂3

2∂3 + ∂2∂
3
3 ,

x2∂
3
2 + x3∂

3
3 , −x3∂

3
2 + x2∂

3
3 , x2

2∂
2
2 + x2

3∂
2
3 ,

x2
2 + x2

3, x3
2∂2 + x3

3∂3, −x2
2x3∂2 + x2x

2
3∂3,

x4
2 + x4

3, −x3
2x3 + x2x

3
3





.

It is worth noting that the Molien series for (GrD(R))G is

1 + 2t2 + 10t4 + 2t6 + t8

(1− t2)5(1− t4)
.

Thus, it requires 16 secondary generators to generate (GrD(R))G as a module over
a polynomial ring generated by 6 primary invariants. In this example, Derksen’s al-
gorithm finds fewer generators of (GrD(R))G and D(R)G than Molien’s method, but
they are algebra generators rather than module generators. Perhaps this trade-off is
inevitable: we seem to need a larger number of generators if we require them to enjoy
better structural properties.

Not only can we compute the generators for D(R)G, but we can also compute the
relations among these generators. Using elimination we can compute the relations
among the generators of [GrD(R)]G = Gr(D(R)G). Each of these can be lifted to a
relation in D(R)G (see below for an example). The complete set of relations among
the generators in D(R)G is the two-sided ideal of D(R)G generated by these lifted
relations and the commutator relations among the generators. For details, see [34,
Algorithm 10]).
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Example 4.2 We continue Example 4.1 and find the relations among the 17 generators
of D(R)G. To start we perform an elimination computation to compute the relations
among the 17 generators of Gr(D(R)G). This computation is surprisingly fast (under
6 seconds on a Pentium III 933 MHz computer with 376 MB of RAM), but yields 221
relations among the generators in the graded ring. For instance, one of these relations
indicates that

(x1ξ1)2 − (x2
1)(ξ

2
1) = 0 in Gr(D(R)G).

This only means that (x1∂1)2 − (x2
1)(∂

2
1) is an operator of order less than 2 in D(R)G.

Performing the computation in the Weyl algebra2 the operator equals x1∂1 so the
graded relation lifts to the relation

(x1∂1)2 − (x2
1)(∂

2
1)− (x1∂1) = 0 in D(R)G.

The 221 lifted relations, together with the commutator relations among the 17 gen-
erators (there are 82 nontrivial commutator relations) generate the two-sided ideal in
D(R)G of relations among the given generators.

At this stage the reader might well wonder whether there is a smaller set of generators
for the ring D(R)G. In fact, Levasseur and Stafford [19] prove that for finite groups G,
the ring D(R)G is generated as a noncommutative algebra by the operators generating
C[x1, . . . , xn]G and the operators generating C[∂1, . . . , ∂n]G. This greatly reduces the
number of generators, but at the moment there is no good way to determine the relations
among these generators. As well, the symbols of the generators that Levasseur and
Stafford provide are not sufficient to generate Gr(D(R)G). There seems to be a need
for a noncommutative version of Derksen’s algorithm – one that works directly in D(R)
and not through GrD(R) – though it remains an open problem to generalize Derksen’s
work in this direction.

5 Rings of Differential Operators

Alexander Grothendieck [10] introduced rings of differential operators associated to
algebraic varieties. Suppose that X ⊂ An

C is an algebraic variety and that X is the van-
ishing set of the ideal I ⊂ R = C[x1, . . . , xn]. Then the ring of differential operators
can be described in terms of the Weyl algebra D(R) (see [21, Chapter 15] for details):

D(X) := D(R/I) :=
{θ ∈ D(R) : θ • I ⊆ I}

ID(R)
.

The ring D(X) inherits a filtration from the ring D(R) and, just as for the Weyl algebra,
GrD(X) is a commutative ring (see [21] or [22] for a nice explanation of these facts).

2Many computer algebra systems can compute in the Weyl algebra: in SINGULAR we can use the PLURAL
package; in Macaulay2 we can use the Dmodules package; in MAPLE we can use the Ore algebra package and
both RISA/ASIR and CoCoA also support such computations.
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The rings D(R) have been the subject of intense study for many years. Levasseur and
Stafford’s monograph [18] is a good description of rings of differential operators and
their connection to invariant theory.

We apply these definitions to the case where X = An
C//G for some linearly reductive

group G. We first realize X as an embedded variety in an affine space Ad
C by presenting

the ring RG = C[X] as a finitely generated algebra: RG ∼= C[t1, . . . , tn]/J . Then
D(RG) = {θ ∈ D(C[t1, . . . , td]) : θ • J ⊆ J}/JD(C[t1, . . . , td]). Now we need to be
cautious: the ring of differential operators on the quotient variety is not the same thing
as the ring of invariant differential operators! However, the natural map π : X → X//G
induces the inclusion RG ↪→ R = C[An

C] = C[x1, . . . , xn] and in turn this induces a
map π∗ : D(R)G → D(RG) given by restriction. To be precise, if θ ∈ D(R)G, then
π∗(θ) is the map that makes the diagram commute.

R
θ // R

R

²²²²
RG

Â ?

i

OO

π∗θ

// RG

If θ ∈ D(R)G, and r ∈ RG then (π∗θ)(r) = θ(r). We check that θ(r) ∈ RG: for any
g ∈ G,

g • (θ(r)) = g • (θ(g−1 • r)) = (g • θ)(r) = θ(r).

In general π∗θ = R(θ ◦ i) is a differential operator on RG of no higher order than θ.

5.1 Finite group actions

We turn to the case of a finite group action on a polynomial algebra over a characteristic
zero field.

Theorem 5.1 (Kantor [15], Levasseur [20]) When G is a finite group acting on a
polynomial ring R, the map π∗ : D(R)G → D(RG) is injective.

Proof. See [34, Theorem 2].

Example 5.2 The map π∗ can fail to be surjective. Consider the group G = Z2 acting
on R = C[x] so that the generator of G sends x to −x. Then RG = C[x2] is a polyno-
mial ring and D(RG) is a Weyl algebra. However, D(R)G = C〈x2, x∂, ∂2〉 so D(R)G

is not isomorphic to D(RG). Thus π∗ is not a surjection. Schwarz [31, Example 5.7]
gives a more detailed argument.
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The group action in Example 5.2 was generated by a reflection. We say that an element
g ∈ G acts as a pseudoreflection if it acts on X such that the eigenvalues of the action of
g are all 1 except for a single value (which must be a root of unity since G is assumed to
be finite). Equivalently, g ∈ G is a pseudoreflection when the action of G fixes (point-
wise) a codimension 1 hypersurface; in our case, the fixed set is a hyperplane since
the action of G is linear. We call a group a reflection group if G is generated by pseu-
doreflections. The celebrated Sheppard-Todd-Chevalley theorem shows that D(RG) is
a Weyl algebra precisely when G is a reflection group, as illustrated in Example 5.2.

Theorem 5.3 (Sheppard-Todd-Chevalley) Let G be a finite group acting on a poly-
nomial ring R = C[x1, . . . , xn]. Then RG is a polynomial ring (and D(RG) is a Weyl
algebra) if and only if G is a reflection group.

Kantor [15, Theorem 4 in section 3.3.1] showed that the other extreme case – when G
contains no pseudoreflections – characterizes the case where π∗ is surjective.

Theorem 5.4 (Kantor) When G is a finite group acting on a polynomial ring R =
C[x1, . . . , xn], the map π∗ is a surjection precisely when G contains no pseudoreflec-
tions. In this case, D(RG) = D(R)G.

When G acting on a polynomial ring R contains some pseudoreflections, but G is not a
reflection group, we factor the action of G on X = Spec(R) as follows. First note that
the subgroup P generated by the pseudoreflections is a normal subgroup of G. To see
this, it is enough to check that if p is a pseudoreflection and g ∈ G, then gpg−1 ∈ P ;
this follows since (g · Xp) ⊂ Xgpg−1

so codim(Xgpg−1
) ≤ codim(g ·Xp) = 1. Now

G/P acts1 on the polynomial ring RP and RG = (RP )G/P .

Since G/P contains no pseudoreflections, the map π∗ : D(RP )G/P → D(RG) is an
isomorphism, so D(RG) can be described as the ring of invariant differential operators
of the group G/P acting on the Weyl algebra D(RP ). It is in this sense that we will be
able to describe D(RG) for finite groups G.

Example 5.5 We return to Example 3.2 and compute a presentation for D(RG) in
terms of generators and relations. First note that the subgroup P / G of pseudoreflec-
tions is generated by γ, the reflection in the x2x3-plane. Direct observation shows that
RP = C[x2

1, x2, x3]. Write z = x2
1. The quotient G/P is generated by the image of δ

and this element acts on RP by sending z to itself, x2 to x3, and x3 to −x2. Apply-
ing Derksen’s algorithm to G/P acting on D(RP ) = C〈z, x2, x3, ∂z, ∂2, ∂3〉 gives six
generators for D(RP )G/P = D(RG):

{
∂z, z, ∂2

2 + ∂2
3 , x3∂2 − x2∂3, x2∂2 + x3∂3, x

2
2 + x2

3

}
.

1I’m grateful to Gregor Kemper who provided the following short proof that the action of G/P on RP is
linear in the non-modular case. The vector space (RP

>0)2 has a G/P -complement U with basis B. Then G/P
acts by linear transformations on the vectors of B. But by the homogeneous version of Nakayama’s lemma, B
generates RP minimally.
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Let a, b, c, d, e, f denote these six operators and let [a], [b], [c], [d], [e], [f ] denote their
symbols. The symbols of these six operators generate Gr(D(RP ))G/P and an elimina-
tion computation shows that there is only one syzygy on these generators, [d]2 + [e]2−
[c][f ] = 0. This lifts to a single syzygy on the generators of D(RP )G/P = D(RG),

d2 + e2 − cf + 4e + 4 = 0. (5.1)

There are also four nontrivial commutator relations among the generators:

[a, b] = 1, [c, e] = 2c, [c, f ] = 4e + 4, [e, f ] = 2f.

The third commutator relation shows that the syzygy (5.1) has a nicer form,

d2 + e2 + fc = 0 (5.2)

The commutator relations, together with the syzygy (5.2) generate the two-sided ideal
of relations in among the generators of D(RG).

6 Differential Operators on G(2,4)

We now give an example involving G = SL2C. If V is a 2-dimensional complex
vector space, then C[V 4]SL2C is the coordinate ring of the affine cone over the Grass-
mannian G(2, 4) of 2-planes in C4. Let {x1i, x2i} be coordinate functions on the ith

copy of V in V 4, then the Fundamental Theorems of Invariant Theory for SLn (see
DK, Theorems 4.4.4 and 4.4.5) imply that C[V 4]SL2C is generated by six polynomials
[12], [13], [14], [23], [24], [34], where [ij] = x1ix2j − x1jx2i is the 2 × 2 minor of the
matrix [

x11 x12 x13 x14

x21 x22 x23 x24

]
.

The ideal of relations on these generators is generated by the Plücker relation

[12][34]− [13][24] + [14][23] = 0.

We apply Derksen’s algorithm to compute the ring of differential operators on the affine
cone over the Grassmannian G(2, 4).

Example 6.1 We represent the group SL2C as the vanishing set of a1a3 − a2a4 − 1,

where the point (a1, a2, a3, a4) corresponds to the matrix

[
a1 a2

a3 a4

]
∈ SL2C. The

group G acts on the xij by matrix multiplication on the left. This induces an action
on GrD(C[V 4]); writing ξij for the symbol of ∂/∂xij , the matrix corresponding to
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(a1, a2, a3, a4) acts on




x11 x12 x13 x14

x21 x22 x23 x24

ξ11 ξ12 ξ13 ξ14

ξ21 ξ22 ξ23 ξ24


 to give




a1 a2 0 0
a3 a4 0 0
0 0 a4 −a3

0 0 −a2 a1







x11 x12 x13 x14

x21 x22 x23 x24

ξ11 ξ12 ξ13 ξ14

ξ21 ξ22 ξ23 ξ24


 .

Applying Derksen’s algorithm we obtain 28 generators for (GrD(C[V 4]))SL2C. Each
of these is already invariant under SL2C, so there is no need to apply the Reynolds
operator. Lifting these operators gives generators for D(C[V ])SL2C:





∂14∂23 − ∂13∂24, ∂14∂22 − ∂12∂24, ∂13∂22 − ∂12∂23, ∂14∂21 − ∂11∂24,

∂13∂21 − ∂11∂23, ∂12∂21 − ∂11∂22, x14∂14 + x24∂24, x13∂14 + x23∂24,

x12∂14 + x22∂24, x11∂14 + x21∂24, x14∂13 + x24∂23, x13∂13 + x23∂23,

x12∂13 + x22∂23, x11∂13 + x21∂23, x14∂12 + x24∂22, x13∂12 + x23∂22,

x12∂12 + x22∂22, x11∂12 + x21∂22, x14∂11 + x24∂21, x13∂11 + x23∂21,

x12∂11 + x22∂21, x11∂11 + x21∂21, x14x23 − x13x24, x14x22 − x12x24,

x13x22 − x12x23, x14x21 − x11x24, x13x21 − x11x23, x12x21 − x11x22





.

Furthermore, in an important paper about the behavior of π∗ [31] Gerald Schwarz
showed that the LS-alternative holds for SL2C: either C[V 4]SL2C is regular or the
map π∗ : D(C[V 4])SL2C → D(C[V 4]SL2C) is surjective. Since C[V ]SL2C represents
a cone it is not a regular ring so π∗ is surjective. It follows that the generators for
D(C[V 4])SL2C generate D(C[V 4]SL2C), when restricted to C[V 4]SL2C.

This example illustrates the power and the generality of the Gröbner basis techniques,
but the result also follows from the Fundamental Theorems of Invariant Theory for
SLnC (for details see see [29, sections 9.3 and 9.4]). We now explain this connection.

Let V be an n-dimensional complex vector space and let V ∗ be the dual space of V .
Then C[V r ⊕ (V ∗)s] is generated by the coordinates xij and ξij (1 ≤ i ≤ r, 1 ≤ j ≤ r;
here ξij = x∗ij). If 〈·, ·〉 : V × V ∗ → C is the canonical pairing, for each i ≤ r and
j ≤ s we have an invariant 〈ij〉 : V r ⊕ (V ∗)s → C that sends (v1, . . . , vr, w1, . . . , ws)
to 〈vi, wj〉. In coordinates 〈ij〉 =

∑n
k=1 xkiξkj .

There are other invariants too. If 1 ≤ i1 < i2 < · · · < in ≤ r, we have a bracket
invariant [i1i2 · · · in] : V r ⊕ (V ∗)s → C given by

(v1, . . . , vr, w1, . . . , ws) → det(vi1vi2 · · · vin).

This is an operator of degree n that only involves the xij . As well, if 1 ≤ j1 < j2 <
· · · < jn ≤ s, we have an invariant |j1j2 · · · jn| : V r ⊕ (V ∗)s → C given by

(v1, . . . , vr, w1, . . . , ws) → det(wj1wj2 · · ·wjn).

This is an operator of total degree n that only involves the ξij .
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Theorem 6.2 (Fundamental Theorem of Invariant Theory for SLnC) Let V be an
n-dimensional complex vector space. The invariant ring

C[V r ⊕ (V ∗)s]SLnC

is generated by all 〈ij〉 (1 ≤ i ≤ r, 1 ≤ j ≤ s), all [i1i2 · · · in] (1 ≤ i1 < i2 < · · · <
in ≤ r) and all |j1j2 · · · jn| (1 ≤ j1 < j2 < · · · < jn ≤ s). The relations among these
generators are of five types:
(a) For 1 ≤ i1 < i2 < · · · < in ≤ r and 1 ≤ j1 < j2 < · · · < jn ≤ s:
det(〈ikj`〉)n

k,`=1 = [i1i2 · · · in]|j1j2 . . . jn|
(b) For 1 ≤ i1 < i2 < · · · < in+1 ≤ r and 1 ≤ j ≤ s:∑n+1

k=1(−1)k−1[i1i2 · · · îk · · · in+1]〈ikj〉 = 0
(c) For 1 ≤ j1 < j2 < · · · < jn+1 ≤ s and 1 ≤ i ≤ r:∑n+1

k=1(−1)k−1〈ijk〉|j1j2 · · · ĵk · · · jn+1| = 0
(d) For 1 ≤ i1 < i2 < · · · < in−1 ≤ r and 1 ≤ j1 < j2 < · · · < jn+1 ≤ r:∑n+1

k=1(−1)k−1[i1i2 · · · in−1jk][j1j2 · · · ĵk · · · jn+1]
(e) For 1 ≤ i1 < i2 < · · · < in−1 ≤ s and 1 ≤ j1 < j2 < · · · < jn+1 ≤ s:∑n+1

k=1(−1)k−1|i1i2 · · · in−1jk| |j1j2 · · · ĵk · · · jn+1|.

Now (GrD(C[V 4]))SL2C = C[V 4 ⊕ (V ∗)4]SL2C so we can apply Theorem 6.2 in the
case r = s = 4. We see that (GrD(C[V 4]))SL2C is generated by twenty eight operators:
the six [ij], the six |ij| and the sixteen 〈ij〉. These are precisely the operators found in
Example 6.1.

There are 156 relations among the generators of (GrD(C[V 4])SL2C, 36 each of types
(a), (d) and (e) and 24 each of types (b) and (c). Each of these extends to an ordered
relation on D(C[V 4]SL2C) = (GrD(C[V 4])SL2C. In most cases no modification of the
formula is needed, if we take care to write the relations in the order given by Theorem
6.2. However, the relations in part (a) need to be properly interpreted. We explain how
to do this for the case SL2C. Each term in the determinant det(〈ikj`〉)n

k,`=1 involves the
product of two terms 〈ikj`〉. When possible we write these products in an order where
the last entry of the first term does not coincide with the first entry of the second term. If
this can be achieved, then no modification to the formula in part (a) is necessary. If not,
then we have a term 〈ab〉〈ba〉 in the expansion of the determinant and to compensate
we must add 〈aa〉 to the right-hand side of the relation:

det

(
〈aa〉 〈ab〉
〈ba〉 〈bb〉

)
+ 〈aa〉 = 〈aa〉〈bb〉 − 〈ab〉〈ba〉+ 〈aa〉 = [ab]|ab|.

The commutator relations among the 28 generators also give rise to relations. Unfor-
tunately, many of these are non-trivial, [ai, aj ] 6= 0 in 156 of 406 cases. However, we
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do have a compact description of the commutator relations:

[|ij|, [ij]] = 〈ii〉+ 〈jj〉+ 2,

[|ij|, [ik]] = 〈kj〉,
[[ij] , 〈ii〉] = [ji] ,
[|ij|, 〈ii〉] = |ij|,
[[ij] , 〈kj〉] = [ki] ,
[|ij|, 〈ik〉] = |kj|,
[〈ij〉, 〈ji〉] = 〈ii〉 − 〈jj〉,
[〈ij〉, 〈ii〉] = −〈ij〉,
[〈ij〉, 〈jj〉] = 〈ij〉,
[〈ij〉, 〈ki〉] = −〈kj〉,
[〈ij〉, 〈jk〉] = 〈ik〉.

The relations described so far are enough to determine D(R)G. However, the map
π∗ : D(R)G → D(RG) is not injective. It is known [31] that the kernel of π∗ consists
of the G-stable part of the left ideal of D(R) generated by the Lie algebra g = sl2C.
The Lie algebra sl2 is generated by three elements g12, g21 and g11 − g22, where gij

corresponds to the adjoint action of the matrix Eij with a 1 in the (i, j)th position and
zero elsewhere. Explicitly,

g12 = x11∂21 + x12∂22 + x13∂23 + x14∂24,

g21 = x21∂11 + x22∂12 + x23∂13 + x24∂14,

g11 − g22 = x11∂11 + x12∂12 + x13∂13 + x14∂14

−x21∂21 − x22∂22 − x32∂32 − x42∂42.

We can compute the part of the left ideal generated by g11, g22 and g11 − g22 that is
G-invariant by intersecting with the subalgebra generated by the invariants. This is
a gigantic computation that was performed in SINGULAR using the nctools pack-
age. In an extension of GrD(R), C[xij , ξij , [ij], |ij|, 〈ij〉], we form an ideal containing
g12, g21, g11 − g22, and the relations that describe [ij], |ij|, and 〈ij〉 in terms of the xij

and ξij . Imposing the block order that places the xij and ξij in the first block and the
[ij], |ij| and 〈ij〉 in the second block, we compute a Gröbner basis of the ideal. After
intersecting withC[[ij], |ij|, 〈ij〉] we have 191 polynomials in the Gröbner basis. These
polynomials generate the graded kernel K of the map π∗ : GrD(R)G → GrD(RG).
Each of these graded generators extend to an element in D(R)G.

As a result, we’ve shown that the ring of differential operators on the Grassmannian
D(G(2, 4)) = D(RG) is generated by 28 operators satisfying a two-sided ideal of
relations generated by the commutator relations and the extensions of the relations
from K.

Among the extensions of the generators of K is the interesting element

θ(θ + 2)− 4
∑

i<j

[ij]|ij|, (6.1)
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where θ is the operator

〈11〉+ 〈22〉+ 〈33〉+ 〈44〉.

The generator (6.1) is a multiple of the Casimir operator of sl2C. This is easily verified
by an explicit computation as follows. The Lie algebra sl2C has inner product given
by the Killing form

κ(δ, γ) = Tr(ad(δ), ad(γ)),

where Tr is the trace and ad(δ)(γ) = δγ − γδ is the adjoint action of δ ∈ sl2C on itself.
A dual basis for sl2C with respect to the Killing form is given by g12/4, g21/4, and
(g11 − g22)/8. Then the Casimir operator [8, Definition 4.5.10] is just given by

g12g21

4
+

g21g12

4
+

(g11 − g22)2

8
.

Explicit computation in D(R) then shows that the Casimir operator is equal to the
operator (6.1) divided by 8.

At one time I conjectured that the kernel of π∗ was a two-sided ideal of D(R)G gener-
ated by the Casimir operator. Many people suggested that this should be the case since
the Casimir operator generates the center of sl2C; however, it turns out that the Casimir
operator does not generate the kernel of π∗ (see Traves [35] for details).

7 Conclusion

This paper dealt with constructive techniques in invariant theory for rings of differ-
ential operators. Derksen’s algorithm was applied to GrD(R) in order to compute
Gr(D(R)G) and then the relationship between D(R)G and D(RG) was used to find
generators and relations for the ring of differential operators on the quotient variety,
D(RG). In particular, the generators and relations for D(G(2, 4)) were described.

Levasseur and Stafford [18] work out many other cases of invariant rings of differen-
tial operators for the classical groups. As well, Schwarz’s work on lifting differential
operators [31] is crucial in understanding the relation between D(R)G and D(RG).

The ring of invariants RG is a module over the invariant differential operators D(R)G.
Of course, in many cases RG is a simple D(R)G module, but if we restrict ourselves to
looking at RG as a module over a subalgebra of D(R)G, then it may well be possible to
find many fewer module generators for RG. This topic is central to invariant theory in
prime characteristic, where the subalgebra of choice is the Steenrod algebra (see Smith
[33] for details). Pleskin and Robertz [28] investigate the characteristic zero case, but
one gets the feeling that much more can be said about the theory of invariant rings RG

as modules over appropriately chosen submodules of D(R)G.
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phismes de schémas IV, Inst. Hautes Études Sci. Publ. Math., 32 (1967).
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