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a b s t r a c t

In this note we study modules of derivations on collections of linear subspaces in a finite
dimensional vector space. The central aim is to generalize the notion of freeness from hy-
perplane arrangements to subspace arrangements. We call this generalization ‘derivation
radical’. We classify all coordinate subspace arrangements that are derivation radical and
show that certain subspace arrangements of the Braid arrangement are derivation radical.
We conclude by proving that under an algebraic condition the subspace arrangement con-
sisting of all codimension c intersections,where c is fixed, of a free hyperplane arrangement
are derivation radical.

Published by Elsevier B.V.

1. Introduction

Let V be a vector space of dimension ℓ over a field K and S := Sym(V ∗) ∼= K[x1, . . . , xℓ] be the polynomial ring. Here an
arrangement of subspaces A will mean a finite collection of linear subspaces in V . Suppose that A = {X1, . . . , Xn} and the
defining ideal of Xi is Ii. The radical ideal defining the variety of the union of the subspaces is I(A) = ∩ Ii. The main focus
here is the module of derivations of A (also known as the module of logarithmic vector fields along A) defined as

D1(A) := {θ ∈ Der|θ(I(A)) ⊆ I(A)}

where Der is the S-module of K linear S-derivations. The elements of Der ∼=
n

i=1 S
∂
∂xi

can be viewed as polynomial vector
fields.

Algebraic properties of subspace arrangements were studied in several recent papers. In [12] Peeva et al. showed that
the cohomology of the complex complement of some specific subspace arrangements, there called diagonal arrangements,
given by intersections of hyperplanes from the braid hyperplane arrangement Aℓ = {V(xi − xj)|1 ≤ i < j ≤ ℓ}, can be
calculated via algebraic techniques. Li and Li in [8], Lovász and Klietman in [9], and Sidman in [14] all studied generators of
the defining ideal of certain types of diagonal subspace arrangements. In [5] Derksen and Sidman prove the Castelnuovo–
Mumford regularity of I(A) is less than or equal to |A|. In [4] Derksen examines the Hilbert series of I(A) and studies when
it is a combinatorial invariant. A good summary of some of this algebraic work can be found in [15] by Sidman.

Given the literature on algebraic properties of I(A) for A a subspace arrangement and the vast amount of literature on
D1(A) where A is a hyperplane arrangement it is somewhat surprising that D1(A) has received relatively little attention
whenA is a subspace arrangement. In [3] Brumatti and Simis study derivations onmonomial ideals, which if they are square
free are the defining ideals of subspace arrangements given by intersections of coordinate hyperplanes. There Brumatti and
Simis present a combinatorially defined generating set and compute bounds on the depth of the derivation module. Very
recently Tadesse [17] has shown that the derivations on a monomial ideal I also preserve its multiplier ideals and certain
closures of I .
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A gateway paper to the topic of derivations on subspace arrangements was written by Wiens [18]. He proves that if a
subspace arrangement A contains a subspace of codimension higher than 1 then D1(A) is not a free S-module. ThenWiens
presents generators forD1(A)whereA is a subspace arrangement given by intersections of hyperplanes in general position.

In this paper we present a class of subspace arrangements generalizing that of free hyperplane arrangements. Towards
this aimwe define exterior products of derivations on subspace arrangements and study their properties in Section 2. In the
same section we define derivation radical subspace arrangements, which generalize free hyperplane arrangements. These
are pure c-codimensional subspace arrangements A such that the defining ideal I(A) is equal to the ideal Mc(A) which is
generated by ℓ− c + 1 minors of the coefficient matrix for a set of generators for D1(A).

In Section 3we classify all the coordinate subspace arrangements (whose defining ideals are square freemonomial ideals)
that are derivation radical. In Section4we show that certain diagonal arrangements are derivation radical. Finally in Section 5
we compare the derivation radical property on subspace arrangements to that of free hyperplane arrangements. In doing
so, we find that the algebraic information contained in derivations on a subspace arrangement can be very subtle.

In [2] Björner et al. present combinatorialmethods to find the generators of an arbitrary subspace arrangement’s defining
ideal. They focused primarily on the casewhere the generators can be taken to be products of linear forms.We are interested
in a class of subspace arrangements that arise from combinatorics and geometry. In particular, let A(c) be the collection of
all codimension c intersections of a hyperplane arrangement A. Theorem 5.8 states that ifMc(A) has no embedded primes
then A(c) is derivation radical and the generators of the defining ideal I(A(c)) of the subspace arrangement can be easily
described by the derivations on the hyperplane arrangement A. The embedded primes condition is surprising but cannot
be avoided by assuming that the hyperplane arrangement A is free, as we show in Example 5.11.

2. Exterior products of derivations

In this section we define higher derivations on a subspace arrangement. Some of this introductory material is taken
from [16] and generalized to the more general setting of subspace arrangements. For a general reference on subspace
arrangements see [1].

Definition 2.1. The p-th derivation module is Derp :=
p Der for p ≥ 1 and Der0 := S. So Derp is an S-module by multi-

plication. Let θ1, . . . , θp ∈ Der1 and f1, . . . , fp ∈ S then the monomial θ1 ∧ · · · ∧ θp acts on Sp by

[θ1 ∧ · · · ∧ θp](f1, . . . , fp) =

−
σ∈Sp

(−1)sgn(σ )θ1(fσ(1)) · · · θp(fσ(p))

where Sp is the symmetric group. This extends to an action of Derp on Sp via linearity.

Note that this definition makes θ ∈ Derp a derivation in each variable: θ(f1, . . . , fkgk, . . . , fp) = fkθ(f1, . . . , gk, . . . , fp)+
gkθ(f1, . . . , fk, . . . , fp) .

Let A = {X1, . . . , Xn} be a subspace arrangement in V . The union of these subspaces V(A) =


1≤i≤n Xi is a variety in
Kℓ and its defining ideal is denoted I(A) = {f ∈ S|f (V(A)) = 0}. For now we do not assume there are no inclusions of
elements in A. However, later we will assume that the subspaces in A all have the same codimension. Now we define the
module of derivations on a subspace arrangement.

Definition 2.2. The p-th module of derivations on A is

Dp(A) = {θ ∈ Derp|θ(I(A)× Sp−1) ⊆ I(A)}.

If a subspace arrangement A consists of just one element X then we will write I(X) for its ideal and Dp(X) for its module
of derivations.

Remark 2.3. This definition is different from Wiens’s Definition 2.1 in [18] which presents D1(A) as the intersection of
all the D1(Xi) for all Xi ∈ A. Wiens’s definition is arguably more suitable to subspace arrangements. However it is less
generalizable to arbitrary varieties or schemes. Actually some of the lemmas below can be easily generalized to arbitrary
schemes.

Lemma 2.4. If A is a subspace arrangement with no inclusions then Dp(A) =


X∈A Dp(X).

Proof. Let θ ∈


X∈A Dp(X), s ∈ I(A), and f2, . . . , fp ∈ S. Since s ∈ I(X) for all X we know θ(s, f2, . . . , fp) ∈ I(X) for all X .
Hence, θ ∈ Dp(A).

Let θ ∈ Dp(A). Suppose there exists Y ∈ A such that θ /∈ Dp(Y ). Then there exists s ∈ I(Y ) and f2, . . . , fp ∈ S such that
θ(s, f2, . . . , fp) /∈ I(Y ). Since there are no inclusions


X≠Y I(X) ⊈ I(Y ) and there exists q ∈


X≠Y I(X) such that q /∈ I(Y ).

But qs ∈ I(A), θ(qs, f2, . . . , fp) ∈ I(A) ⊆ I(Y ), and

θ(qs, f2, . . . , fp) = sθ(q, f2 . . . , fp)+ qθ(s, f2, . . . , fp).

This is a contradiction because I(Y ) is a prime ideal, sθ(q, f2 . . . , fp) ∈ I(Y ), and qθ(s, f2, . . . , fp) /∈ I(Y ). Therefore
θ ∈


X∈A Dp(X). �
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For two subspace arrangements A1 and A2 we say that A1 ⊆ A2 if X ∈ A1 implies X ∈ A2. Now the next result follows
from Lemma 2.4.

Lemma 2.5. If A1 ⊆ A2 and both arrangements do not have inclusions then Dp(A1) ⊇ Dp(A2).

Remark 2.6. Lemma’s 2.4 and 2.5 are false for inclusions of subspaces. Let ℓ = 2, X be the origin, and Y a dimension 1
subspace. We can choose coordinates on V ∗ such that I(X) = (x1, x2) and I(Y ) = (x1). With this basis D1(X) is generated
by x1∂1, x2∂2, x1∂2, and x2∂1 and D1(Y ) is generated by x1∂1 and ∂2. Hence D1(X) ⊈ D1(Y ) and D1(X) ⊉ D1(Y ).

Definition 2.7. We will say that a subspace arrangement A is pure c-codimensional if codim(Xi) = c for all Xi ∈ A.

Let L(A) be the set of all intersections of the elements of A. Then one can order L(A) by reverse inclusion to make it a
lattice. The lattice L(A) is an important combinatorial invariant of A.

Definition 2.8. Suppose that A is a pure k-codimensional subspace arrangement. Given an integer c such that k ≤ c ≤

codim(∩A) let A(c) = {X ∈ L(A) | codim(X) = c} be the codimension c loci of A, which we call the level c arrangement
of A.

Contrary to Remark 2.6 we will show that when the subspace arrangement is given by intersections of a larger subspace
arrangement then Lemma 2.5 holds even in the case of inclusions. This result is also crucial to studying the higher
codimension loci of a hyperplane arrangement.

Lemma 2.9. If A is a pure subspace arrangement of codimension k then for all c such that k ≤ c ≤ codim(∩A) we have

Dp(A) ⊆ Dp(A(c)).

Proof. Let θ ∈ Dp(A) and X ∈ A(c). Since k ≤ c ≤ codim(∩A) there exists Ys, . . . , Yc ∈ A such that X = Y1 ∩ · · · ∩ Yc .
Because I(X) =

∑
I(Yi) Lemma 2.4 says that for all i and ft ∈ S, θ(I(Yi), f2, . . . , fp) ⊆ I(Yi) ⊆ I(X) and hence θ ∈ Dp(X).

Since A(c) has no inclusions Lemma 2.4 again shows that θ ∈ D1(A(c)). �

Lemma 2.10. IfA is an arrangement of subspaces of an ℓ-dimensional vector space and I(A) is its ideal then Dℓ(A) = I(A)Derℓ.

Proof. For any subspace X the module Dℓ(X) = I(X)Derℓ. We may assume that A has no inclusions because the ideal
I(A) only contains the information of the subspace arrangement with no inclusions. Then the statement follows from
Lemma 2.4. �

The next theorem is a generalization of Saito’s criterion (see [13,11]) and provides the basis for the primary definition
of this paper. This theorem is known by some experts but because it is crucial to the main definition of this paper and the
authors could not find it in the literature we include it and a proof. If A is an arrangement where all the subspaces have
codimension c then

ℓ−c+1 D1(A) ∧ Derc−1
= Mc(A)Derℓ where Mc(A) is an ideal of S. Note that Mc(A) can also be

thought of as the ideal generated by all ℓ− c + 1 minors of the coefficient matrix of a generating set of D1(A).

Theorem 2.11. If A is a pure c-codimensional arrangement then
√
Mc(A) = I(A).

Proof. First we show thatMc(A) ⊆ I(A). Let θ1, . . . , θℓ−c+1 ∈ D1(A) andψ1, . . . , ψc−1 ∈ Der1. Fix coordinates for V ∗ and
then note that Derℓ ∼= S(∂1 ∧ · · · ∧ dℓ) so

θ1 ∧ · · · ∧ θℓ−c+1 ∧ ψ1 ∧ · · · ∧ ψc−1 = g∂1 ∧ · · · ∧ ∂ℓ.

Let X ∈ A and suppose that I(X) = (α1, . . . , αc). The forms α1, . . . , αc are linearly independent over K. Choose
β1, . . . , βℓ−c linear forms such that α1, . . . , αc, β1, . . . , βℓ−c are linearly independent linear forms. Rename this list as
follows: (α1, . . . , αc, β1, . . . , βℓ−c) = (f1, . . . , fℓ). Now

θ1 ∧ · · · ∧ θℓ−c+1 ∧ ψ1 ∧ · · · ∧ ψc−1(α1, . . . , αc, β1, . . . , βℓ−c)

=

−
σ∈Sℓ

(−1)sgn(σ )θ1(fσ(1)) · · · θℓ−c+1(fσ(ℓ−c+1))ψ1(fσ(ℓ−c+2)) · · ·ψc−1(fσ(ℓ))

is in I(X) because in each term of the sum at least one αi will be acted on by some θj and θj ∈ D1(X) by Lemma 2.5. Since

∂1 ∧ · · · ∧ ∂ℓ(f1, . . . , fℓ)

is a non-zero constant, then

θ1 ∧ · · · ∧ θℓ−c+1 ∧ ψ1 ∧ · · · ∧ ψc−1(f1, . . . , fℓ)

is a non-zero multiple of g . Hence g ∈ I(X) for all X ∈ A impliesMc(A) ⊆ I(A).
We conclude by showing that I(A) ⊆

√
Mc(A). Let s ∈ I(A) and put θi = s∂i. Then θi ∈ D1(A) and

θ1 ∧ · · · ∧ θℓ−c+1 ∧ ∂ℓ−c+2 ∧ · · · ∧ ∂ℓ = sℓ−c+1∂1 ∧ · · · ∧ ∂ℓ ∈ Mc(A)Derℓ.

Hence s ∈
√
Mc(A). �
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Now we state the main definition of the paper.

Definition 2.12. We say that a pure c-codimensional subspace arrangement A is derivation radical ifMc(A) = I(A).

If A is a hyperplane arrangement then A is free if and only if A is derivation radical due to Saito’s criterion in [13] (also
see Theorem 4.19 in [11]). So, if a hyperplane arrangement is not free then it is not derivation radical. Wiens [18] proved
that if a subspace arrangement A has a subspace of codimension higher than 1 then the module D1(A) is not free. However,
many subspace arrangements are derivation radical (see the following example) and these arrangements exhibit properties
similar to free hyperplane arrangements.

Example 2.13. Let A be the collection of coordinate axes in K3. The defining ideal can be written as

I(A) = (x1, x2) ∩ (x1, x3) ∩ (x2, x3) = (x1x2, x1x3, x2x3)

and has pure codimension c = 2. The module of derivations is

D(A) = ⟨x1∂1, x2∂2, x3∂3, x2x3∂1, x1x3∂2, x1x2∂3⟩.

Now the idealM2(A) is clearly equal to I(A).

One might wonder whether the derivation radical property is preserved when we intersect with a generic hyperplane
arrangement. The following example shows that this is not the case.

Example 2.14. LetA be the Boolean arrangement in P3: I(A) = (x1x2x3x4). The arrangementA is free and hence derivation
radical. Intersecting with a generic plane defined by L = 0 in P3 gives a subspace arrangement A ∩ L consisting of four
coplanar lines in P3. To check whether A ∩ L is derivation radical, we note that ℓ − c + 1 = 4 − 2 + 1 = 3 so we need to
check whether the ideal I(A ∩ L) is generated by the 3× 3-minors of the coefficient matrix of a generating set of D1(A ∩ L).
However, it is easy to check that all derivations on A ∩ L must have degree ≥1 so the linear form L ∈ I(A ∩ L) cannot
be generated. Thus the subspace arrangement A ∩ L obtained by intersecting with a generic hyperplane is not derivation
radical. Moreover, restricting to a generic hyperplane also produces a non-derivation radical subspace arrangement. Thus
restricting the previous example A to a generic plane L = 0 gives a non-derivation radical arrangement in the space
L = 0 since the restriction is a generic hyperplane arrangement of four lines in P2, which is always non-free and hence
not derivation radical.

It is also natural to wonder how derivation radical arrangements behave when combined using various products.

Definition 2.15. Let Ai be a pure subspace arrangement of codimension ci in the vector space Vi of dimension ℓi (i = 1, 2).
Define the product

A1 × A2 = {X ⊕ V2 : X ∈ A1} ∪ {V1 ⊕ Y : Y ∈ A2}.

Then I(A1 × A2) = I(A1)I(A2) in a polynomial ring in ℓ1 + ℓ2 variables. Define a second product

A1 ⊙ A2 = {X ⊕ Y : X ∈ A1, Y ∈ A2}.

Then I(A1 ⊙ A2) = I(A1)+ I(A2), where the sum again takes place in a polynomial ring in ℓ1 + ℓ2 variables.

Remark 2.16. The product×may seem less natural than the product⊙; however, it is the usual notion of a product used in
the hyperplane literature (see Orlik and Terao’s Definition 2.13 in [11]). The product × is a very natural notion of a product
because the intersection lattice of the product of two arrangements is isomorphic to the product of the two intersection
lattices and the characteristic polynomial of the product is the product of the respective characteristic polynomials.

Remark 2.17. It is easy to see that a subspace arrangement A contained in the vector space V is derivation radical if and
only if A ⊙ K (or equivalently A × {∅}) is derivation radical in the larger vector space V ⊕ K. In this vein, it is natural to
wonder whether A ⊙ {0} is derivation radical in V ⊕ K when A is derivation radical in V — that is, whether the notion of
derivation radical is intrinsic to the variety corresponding to A. However, the notion of derivation radical depends on the
ambient vector space; for example, let A be the arrangement of two coordinate axes in K2. The arrangement A is clearly
derivation radical though the arrangement A ⊙ {0} fails to be derivation radical in K3 because the defining ideal contains a
linear form that cannot be realized as a 2 × 2 minor of the appropriate matrix. Hence we assume for the rest of the paper that
all arrangements are not contained in a proper subspace of V .

It is natural to ask whether A1 × A2 or A1 ⊙ A2 are derivation radical subspace arrangements when both A1 and A2
are derivation radical. In fact, neither product preserves the derivation radical property (see Examples 3.6 and 3.7).

3. Coordinate subspace arrangements

In this section we focus on those subspace arrangements defined by intersections of coordinate hyperplanes. These are
called coordinate arrangements. Let K ⊆ 2[ℓ] be a simplicial complex with ℓ vertices and IK = ⟨xi1 · · · xis |{i1, . . . , is} ∉ K⟩ its



Author's personal copy

1496 W. Traves, M. Wakefield / Journal of Pure and Applied Algebra 215 (2011) 1492–1501

Fig. 1. The simplicial complex with all subsets except those containing {1, 2}.

Stanley–Reisner ideal in the polynomial ring S. Let max K be the set of all maximal subsets of K . The subspace arrangement
associated to K is AK = {Xσ }σ∈max K where Xσ = {x ∈ V |xi = 0 if i /∈ σ }. Then the defining ideal of AK is IK .
Remark 3.1. There are coordinate subspace arrangements, intersections of coordinate hyperplanes, that are not AK for
some simplicial complex K . These are the coordinate subspace arrangements that have all subspaces inside a proper sub-
space of V . These arrangements cannot be derivation radical see Remark 2.17.

The goal of this section is to characterize the coordinate subspace arrangements that are derivation radical. While one
could do this without the use of simplicial complexes we feel that it more clearly illuminates the details.
Definition 3.2. We call a simplicial complex K a k-skeleton if its maximal subsets are all the possible subsets of [ℓ] of size
k + 1. A cone of a simplicial complex is a new simplicial complex obtained by adding a vertex and inserting this vertex into
every non-trivial subset.

Wewill say that a simplicial complex is a coning of a skeleton if it can be constructed from successive cones of a skeleton.
By Remark 2.17, coning does not affect the derivation radical property since the arrangement corresponding to a coning of
a simplicial complex K can be obtained by the product AK ⊙ K.
Example 3.3. Let ℓ = 4 and K be the simplicial complex consisting of all subsets of [ℓ] except any that contain {1, 2}. Fig. 1
is a realization of this simplex. It can be viewed as a double cone over the simplicial complex consisting of just two points,
which is a 0-skeleton. Hence K is a coning of a skeleton. The ideal is IK = (x1x2). Then the arrangement consists of two
hyperplanes. Such arrangements are always free, and hence derivation radical.

Nowwe state themain theorem of this sectionwhich together with Remark 3.1 characterizes all the coordinate subspace
arrangements that are derivation radical.
Theorem 3.4. AK is derivation radical if and only if K is a coning over a skeleton of a simplex.
Proof. If K is a coning of a (k−2)-skeleton then there existG ⊆ [ℓ] such that I(AK ) = (xi1 · · · xik){i1,...,ik}∈G. The codimension
of I(AK ) is c = |G| − k + 1 so |G| − c + 1 = k. Let θi = xi∂i and note that θi ∈ D1(AK ). Let W ⊆ [ℓ] such that |W | = k. If
W = {i1, . . . , ik} then put θW = θi1 ∧ · · · ∧ θik . If [ℓ]\W = {j1, . . . , jℓ−k} then put ∂[ℓ]\W = ∂j1 ∧ · · · ∧ ∂jℓ−k . Then for every
W ⊆ [ℓ] let sW be the polynomial resulting from the product

θW ∧ ∂[ℓ]\W = sW∂1 ∧ · · · ∧ ∂ℓ ∈

k
D1(AK ) ∧ Derℓ−k.

Hence sW ∈ Mc(AK ) and sW = xi1 · · · xik . Thus I(AK ) ⊆ Mc(AK )which implies AK is derivation radical.
Suppose that AK is derivation radical and the codimension of I(AK ) is c. Without loss of generality we may assume that

K is not a coning of any simplex. Let I = (xi1 · · · xik){i1,...,ik}∈[ℓ] where k = ℓ − c + 1 then I(AK ) ⊆ I . We know that the θi
from above are always contained in D1(AK ) for all simplicial complexes. Hence I ⊆ I(AK ) from the argument above. �
Remark 3.5. Notice that the derivation radical coordinate subspace arrangements correspond to the coordinate subspace
arrangements that are level c arrangements A(c) of a Boolean hyperplane arrangement A (i.e. the hyperplane arrangement
consisting of some of the coordinate hyperplanes). In the next section we will see another example of this form and in the
last section we will focus primarily on this topic.

We use Theorem 3.4 to give two examples that show that the product operations defined in Definition 2.15 do not
preserve the derivation radical property.
Example 3.6. Let A1 be the arrangement in V1 ∼= K2 defined by I(A1) = (x1, x2) and let A2 be the arrangement in
V2 ∼= K2 defined by I(A2) = (x3, x4). Then A1 × A2 has defining ideal (x1, x2)(x3, x4) = (x1x3, x1x4, x2x3, x2x4) in the
ring K[x1, x2, x3, x4]. Both A1 and A2 are derivation radical since they are the coordinate arrangements associated to (−1)-
skeletons. However, A1 × A2 is the coordinate arrangement associated to the simplicial complex on 4 vertices that consists
of two non-adjacent line segments. This is not a cone and not a skeleton, so the product A1 × A2 is not derivation radical.
Example 3.7. Let A1 be the arrangement in V1 ∼= K2 defined by I(A1) = (x1x2) and let A2 be the arrangement in V2 ∼= K2

defined by I(A2) = (x3x4). Then A1 ⊙ A2 has defining ideal (x1x2, x3x4) in the ring K[x1, x2, x3, x4]. Both A1 and A2 are
derivation radical since they are the coordinate arrangements associated to 0-skeletons. However,A1 ⊙A2 is the coordinate
arrangement associated to the simplicial complex on 4 vertices that consists of 4 edges forming a square. This is not a cone
and not a skeleton, so A1 ⊙ A2 is not derivation radical.
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4. Braid subspace arrangements

Let Hij = {xi − xj = 0} then Aℓ = {Hij}1≤i<j≤ℓ is the famous Braid arrangement (also known as a Coxeter arrangement
of type A). Here we want to study the collection of all codimension c subspaces arising from intersections of hyperplanes
from Aℓ which we will denote Aℓ(c) = {X ∈ L(Aℓ) | codim(X) = c}. In this section we show that this arrangement is
derivation radical andmoreover that the defining ideal I(Aℓ(c)) is generated byminors of the derivations on the hyperplane
arrangement Aℓ. To do this we need a little combinatorial notation.

It is well known that the intersection lattice L(Aℓ) is isomorphic to the partition lattice Πℓ. For each partition π ∈ Πℓ

there corresponds a subspace Xπ (the subspacewhere xi = xj if i and j are in the same block ofπ ) and if the number of blocks
of π is m then codim(Xπ ) = ℓ− m. Then

Aℓ(c) = {Xπ | π has ℓ− c blocks}.

With a fixed partition π and i, j ∈ [ℓ] we say that i ≡ j if i and j are in the same block in π . Let

fπ =

∏
i<j;i≡j

(xi − xj).

Then in [9] Lovász presents the following result of Kleitman and Lovász (unpublished).

Theorem 4.1. The ideal I(Aℓ(c)) is generated by all fπ where π has only one non-trivial block and this block has size c − 1.

Now we recall a basis for D1(Aℓ) (see [11]). For 0 ≤ i ≤ ℓ− 1 let θi =
∑ℓ

j=1 x
i
j∂j. Then the collection {θ0, . . . , θℓ−1} is a

basis for D1(Aℓ). Let M(θ0, . . . , θℓ−1) = (θi(xj)) be the coefficient matrix of this basis. Then each upper-most minor of size
ℓ− c + 1 is a Vandermonde determinant and any other minor is a product of variables times a Vandermonde determinant.
Hence the ideal of ℓ − c + 1 minors of M(θ0, . . . , θℓ−1) is equal to the ideal Mc(Aℓ). Now the polynomials fπ where π is a
partition with only one non-trivial block of size c + 1 are equal to the upper-most ℓ− c + 1 minors ofM(θ0, . . . , θℓ−1). We
have established the following result.

Corollary 4.2. The subspace arrangements Aℓ(c) are derivation radical. Moreover, Mc(Aℓ) = I(Aℓ(c)).

Remark 4.3. Corollary 4.2 shows that the generating set of the ideal I(Aℓ(c)) of the subspace arrangement Aℓ(c) can be
obtained from the derivations on the hyperplane arrangement Aℓ. This presents an attractive way to find generators of the
defining ideals of level arrangements of hyperplane arrangements. We study this topic in the next section.

5. Subspace arrangements from hyperplane arrangements

In this section we will assume A = {H1, . . . ,Hn} is an essential (i.e. ∩A = 0) hyperplane arrangement. Then Saito’s
criterion (see [13,11]) and Theorem 2.11 imply that D1(A) is a free S-module (we will also say ‘A is free’) if and only if A is
derivation radical. Given an integer 1 ≤ c ≤ ℓ recall the notation from Section 2: let A(c) = {X ∈ L(A) | codim(X) = c}
be the codimension c loci of A. In this case A(1) = A and A(ℓ) is the origin. The following lemma is a special case of
Lemma 2.9.

Lemma 5.1. D1(A) ⊆ D1(A(c))

Recall that Mc(A) is the ideal generated by the ℓ − c + 1 minors of the generating matrix for D1(A). Lemma 5.1 and
Theorem 2.11 implyMc(A) ⊆ Mc(A(c)) ⊆ I(A(c)). In many casesMc(A) = Mc(A(c)); however this is not true in general:
see Example 5.12. In any case, we have two chains of ideals

0 ⊆ I(A) ⊆ I(A(2)) ⊆ · · · ⊆ I(A(ℓ− 1)) ⊆ I(A(ℓ)) = S+ ⊆ S

and

0 ⊆ M1(A) ⊆ M2(A) ⊆ · · · ⊆ Mℓ−1(A) ⊆ Mℓ(A) = S+ ⊆ S.

Note that I(A) = (Q ) and M1(A) ⊆ (Q ) where Q is the defining polynomial of the hyperplane arrangement A. However,
M1(A) = (Q ) if and only if D1(A) is free. In this section we will study the difference between the idealsMc(A) and I(A(c)).

Suppose that A is free and D1(A) is generated by {θ1, . . . , θℓ}. We briefly describe the generators of the ideal Mc(A) in
terms of the polynomial Q . For any ℓ− c+1-tuple I = {i1, . . . , iℓ−c+1} ⊆ [ℓ] let C(I) = [ℓ]\I be its complement and denote
θI = θi1 ∧ · · · ∧ θiℓ−c+1 and ∂I = ∂i1 ∧ · · · ∧ ∂iℓ−c+1 . For any i the derivation Q∂i ∈ D1(A) and Q c−1∂C(I) ∈ Dc−1(A). Let
ℓ[c − 1] be the set of c − 1 tuples in [ℓ]. Since A is free, by Proposition 3.4 of [16], for any (c − 1)-tuple T there exist fT ,J ∈ S
such that

Q c−1∂T =

−
J∈ℓ[c−1]

fT ,JθJ .
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For any (ℓ − c + 1)-tuple I the derivation θI ∧ Q c−1∂T is in Dℓ(A) and since it is divisible by Q c−1 there is a polynomial
gI,T ∈ S such that

θI ∧ Q c−1∂T = Q c−1gI,T∂[ℓ].

In fact dividing this equation by Q c−1 we see that gI,T are the generators ofMc(A). We also have

θI ∧ Q c−1∂T = θI ∧

 −
J∈ℓ[c−1]

fT ,JθJ


= θI ∧ fT ,C(I)θC(I) = fT ,C(I)Q∂[ℓ].

Hence

Q c−1gI,T = fT ,C(I)Q

and

gI,T =
fT ,C(I)
Q c−2

.

Thus, the generators ofMc(A) are the coefficients of the decomposition of the derivation

Q∂T =

−
J∈ℓ[c−1]

fT ,J
Q c−2

θJ .

However these coefficients are still very hard to compute let alone tell whether or not the ideal generated by them is radical.
Actually the derivation radical property of a codimension c loci of a free hyperplane arrangement can be very subtle. The
rest of the paper is focused on this topic. We first assume that A is an arbitrary essential hyperplane arrangement (not
necessarily free).

Let θ ∈ Der1 and {e1, . . . , eℓ} be a basis for V dual to the basis {x1, . . . , xℓ} for V ∗. We can write θ =
∑ℓ

i=1 pi∂i where
pi ∈ S. Then for v ∈ V we define θ(v) =

∑ℓ
i=1 pi(v)ei. Notice the ambiguity with a derivation evaluated on a polynomial;

we will note the difference whenever there could be confusion. For any v ∈ V let Av = {H ∈ A | v ∈ H}. The following
lemma is essentially Proposition 9.4 in [10]; however the language is slightly different so we state it and include a proof.

Lemma 5.2. For any v ∈ V

D1(A)(v) =


H∈Av

H.

Proof. If θ ∈ D1(A) and H ∈ Av then θ(αH)(v) = αH(θ(v)) = 0 since αH |θ(αH). Hence θ(v) ∈ H for every H ∈ Av and
we have D1(A)(v) ⊆


H∈Av

H .
Proving the opposite inclusion requires a little more machinery. For anyw ∈ V withw =

∑
wiei let ∂w =

∑
wi∂i. Put

θw =

 ∏
H∈A\Aw

αH


∂w.

For anyw ∈ V the derivation θw ∈ D1(A) and θw(w) = cw where c is a non-zero constant.
Let {b1, . . . , bk} be a basis for


H∈Av

H . Then any z ∈


H∈Av
H can be written as z =

∑k
i=1 zibi. Also note thatAbi ⊇ Av .

Hence θbi(v) = fibi for a non-zero constant fi. Now let

θ =

k−
i=1

zi
fi
θbi .

Then θ(v) = z and we have completed the proof. �

Theorem 2.11 says that the defining ideal of A(c) is determined by the derivations on A(c). However, the following
theorem shows that the level c arrangementsA(c) of a hyperplane arrangementA are in fact determined by the derivations
on A.

Theorem 5.3. If A is any essential hyperplane arrangement then
√
Mc(A) = I(A(c)).

Proof. Fix 1 ≤ c ≤ ℓ. We will show that the solution sets of the two ideals are equal. So, let ZM and ZI be the solution sets
of the ideals Mc(A) and I(A(c)) respectively. Lemma 5.1 states that D1(A) ⊆ D1(A(c)), hence Mc(A) ⊆ Mc(A(c)). Since
Mc(A(c)) ⊆ I(A(c))we have thatMc(A) ⊆ I(A(c)) and ZM ⊇ ZI .

Choose bases for V and V ∗ as before. Let {θ1, . . . , θt} be a generating set for D1(A). We call

M(θ1, . . . , θt) = (θj(xi))



Author's personal copy

W. Traves, M. Wakefield / Journal of Pure and Applied Algebra 215 (2011) 1492–1501 1499

a generatingmatrix forD1(A). For all ordered (ℓ−c+1)-tuples I = (i1, . . . , iℓ−c+1) ∈ [ℓ]ℓ−c+1 and all ordered (c−1)-tuples
J = (j1, . . . , jc−1) ∈ [ℓ]c−1 let gI,J be the polynomial arising from

θI ∧ ∂J = θi1 ∧ · · · ∧ θiℓ−c+1 ∧ ∂j1 ∧ · · · ∧ ∂jc−1 = gI,J∂[ℓ].

This polynomial is equal to the determinant of the ℓ− c + 1 × ℓ− c + 1 minor of M(θ1, . . . , θt)with rows given by I and
columns given by C(J) = [ℓ]\ J . HenceMc(A) can also be characterized as the ideal generated by all ℓ− c + 1 × ℓ− c + 1
minors of a generating matrix for D1(A).

Let v ∈ ZM . This means that any ℓ−c+1×ℓ−c+1minor of a generatingmatrix for D1(A) evaluated at v is zero. Hence
for all θi1 , . . . , θiℓ−c+1 ∈ D1(A) the vectors θi1(v), . . . , θiℓ−c+1(v) are linearly dependent. Now suppose that v ∉ ZI . This
means that dim


H∈Av

H

> ℓ− c . However Lemma 5.2 provides us with a contradiction because


H∈Av

H = D1(A)(v)

and from the above the dim(D1(A)(v)) ≤ ℓ− c. �

For X ∈ L(A) let AX = {H ∈ A | X ⊆ H}.

Lemma 5.4. If A is any arrangement and X ∈ L(A) then Mc(A)I(X) = Mc(AX )I(X) for 1 ≤ c ≤ ℓ.

Proof. Since D1(A) ⊆ D1(AX )we haveMc(A) ⊆ Mc(AX ) and soMc(A)I(X) ⊆ Mc(AX )I(X). We show the opposite inclusion.
Let r ∈ Mc(AX )I(X). Then there exists p ∈ Mc(AX ) and q ∉ I(X) such that r =

p
q . Since p ∈ Mc(AX ) there exists

θ1, . . . , θℓ−c+1 ∈ D1(AX ) and ψ1, . . . , ψc−1 ∈ Der1 such that θ1 ∧ · · · ∧ θℓ−c+1 ∧ ψ1 ∧ · · · ∧ ψc−1 = p∂[ℓ]. Let

Q̄ =

∏
H∈A\AX

αH

be the defining polynomial of A\AX and θ̄i = Q̄ θi. Then θ̄i ∈ D1(A) for all i and Q̄ ∉ I(X). Since

θ̄1 ∧ · · · ∧ θ̄ℓ−c+1 ∧ ψ1 ∧ · · · ∧ ψc−1 = Q̄ ℓ−c+1p∂[ℓ]

the polynomial Q̄ ℓ−c+1p ∈ Mc(A). Then

r =
Q̄ ℓ−c+1p
Q̄ ℓ−c+1q

∈ Mc(A)I(X). �

Remark 5.5. Lemma 5.4 shows that the functor Mc is a local functor in the sense of [16]. This Lemma can also be proved
using the fact that D1(A) is a local functor as in [16] but here we do not need this terminology.

We have shown that the localization at I(X) just depends on the hyperplanes containing X . If X is a codimension c
intersection of hyperplanes in A thenMc(A)I(X) just depends on the level c arrangement A(c).

Lemma 5.6. If A is any essential hyperplane arrangement, 1 ≤ c ≤ ℓ, and X ∈ L(A)c = A(c) then Mc(A)I(X) = I(A(c))I(X) in
the ring SI(X).

Proof. Suppose that we choose coordinates on V ∗ such that I(X) = (x1, . . . , xc). Then for all c + 1 ≤ i ≤ ℓ, ∂i ∈ D1(AX ).
Let di = ∂1 ∧ · · · ∧ ∂i−1 ∧ ∂i+1 ∧ · · · ∧ ∂ℓ and let θE =

∑ℓ
i=1 xi∂i be the usual Euler derivation. Then for 1 ≤ i ≤ c ,

θE ∧ di ∈ Mc(AX ) and θE ∧ di = xi∂i. This means that xi ∈ Mc(AX ) for 1 ≤ i ≤ c . Hence I(X) ⊆ Mc(AX ). But by Lemma 5.1
Mc(AX ) ⊆ I(AX (c)) and I(AX (c)) = I(X) so Mc(AX ) = I(X). By Lemma 5.4 we have Mc(A)I(X) = Mc(AX )I(X). Since
X is codimension c the ideals I(A(c))I(X) and I(X)I(X) are equal in the localized ring SI(X). We conclude that Mc(A)I(X) =

Mc(AX )I(X) = I(X)I(X) = I(A(c))I(X). �

Remark 5.7. Lemma 5.6 shows that the minimal primary components of Mc(A) are prime. Moreover since Mc(A) ⊆

Mc(A(c)) it shows the same for Mc(A(c)). Hence the obstruction to A(c) being derivation radical is the existence of
embedded components inMc(A).

Theorem 5.8. If A is an essential hyperplane arrangement such that Mc(A) has no embedded primes then Mc(A) = I(A(c)).
In particular, if Mc(A) has no embedded primes then A(c) is derivation radical.

Proof. Theorem 5.3 shows that Mc(A) and I(A(c)) have the same minimal associated primes, which are codimension c .
Couple this with the assumption thatMc(A) has no embedded associated primes and we have that

Ass(Mc(A)) = Ass(I(A(c))) = {I(X)|X ∈ A(c)}.

Lemma 5.6 states that Mc(A)I(X) = I(A(c))I(X) for all X ∈ A(c). Hence we have that for any associated prime P of Mc(A)
and I(A(c)) the localization Mc(A)P = I(A(c))P . Therefore Mc(A) = I(A(c)). �

Remark 5.9. We give a brief interpretation of Theorem 5.8 for the case when c = 1. The minimal prime of M1(A) is the
ideal of the defining polynomial Q and any embedded prime will have more than one generator. The upshot is that A is a
free hyperplane arrangement if and only ifM1(A) is a principal ideal.
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Fig. 2. Projectivized picture of the non-Fano arrangement.

Remark 5.10. The hypothesis of Theorem 5.8 is unfortunately unavoidable. The reader well-studied in free hyperplane
arrangements might want to guess that the hypothesis of Theorem 5.8 could be replaced with ‘‘A is a free hyperplane
arrangement’’. However, this is not true as the following example illustrates. Moreover, this example shows that even when
A is free A(2) need not be derivation radical.

Example 5.11. Let ℓ = 3, c = 2, and A be the hyperplane arrangement defined by the polynomial Q (A) = xyz(x − y)(x −

z)(y− z)(x+ y− z). This arrangement is referred to as the non-Fano arrangement in the literature because of the form of its
associated matroid. The module of derivations D1(A) of this arrangement is a free module with three generators of degree
1,3, and 3. Hence theminimal degree generators ofM2(A) have degree 4. However,A(2) consists of nine points, hence there
is a degree 3 polynomial in the ideal I(A(2)). Thus M2(A) ≠ I(A(2)) even though A is free. In this case the maximal ideal
is an embedded prime of the ideal M2(A). Furthermore, a Macaulay 2 (see [7]) calculation shows that M2(A(2)) = M2(A),
henceM2(A(2)) ≠ I(A(2)) and A(2) is not derivation radical. Fig. 2 is a projective picture of A. The dotted lines are in the
arrangement, but they also constitute the unique cubic that contains the nine codimension 2 intersection points.

The next example shows that Mc(A) can have many embedded primes and that Mc(A) can be different than Mc(A(c))
where A is a hyperplane arrangement.

Example 5.12. Let ℓ = 4, c = 2, and A be the hyperplane arrangement defined by the polynomial

Q (A) =

∏
a,b,c,d∈{0,1}

ax + by + cz + dw

where of course not all a, b, c, and d are zero. This arrangement is the restriction of the famous counterexample to Orlik’s
conjecture found by Edelman and Reiner in [6]. Using the computer algebra system Macaulay 2 (see [7]) one can show that
M2(A(2)) = M2(A) ≠ I(A(2)) andM3(A(3)) ≠ M3(A). Moreover Macaulay 2 states that the embedded associated primes
of I(A(2)), which is a codimension 2 ideal, consists of the maximal ideal (x, y, z, w) and all of the codimension 3 ideals that
are intersections of 5 hyperplanes:

{(w, y + z, x), (w, z, y), (w, z, x), (w, z, x + y), (w, y, x),
(w, y, x + z), (z, y + w, x), (z, y, x), (z, y, x + w), (z + w, y, x)}.
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