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Abstract

This thesis is concerned with differential operators on algebraic varieties.
The main goal is to understand how the presence of singularities is reflected
in the algebraic structure of the ring of differential operators. Motivated by
applications to tight closure, we study varieties in arbitrary characteristic.
The thesis focuses on the study of ideals stable under differential operators
and applies results in this area to Nakai’s conjecture and the theory of tight
closure. As well, results on differential operators on étale extensions are
applied to show that the ring of differential operators on a smooth variety
is equal to the Hasse-Schmidt algebra. Along the way, the Hasse-Schmidt

derivations are shown to extend over étale extensions.

The ring of differential operators on a Stanley-Reisner ring R of arbitrary
characteristic is explicitly described in terms of the minimal primes of R.

As well, the D-module structure of R is completely determined.

The structure of a k-algebra R as a module over the ring of differential
operators D(R/k), the Hasse-Schmidt algebra HS(R/k) and the deriva-
tion algebra der(R/k) is investigated. In particular, the conductor of the
normalization R’ of R into R is HS(R/k)-stable and Hasse-Schmidt deriva-
tions on R extend to R'. This is the key observation in the proof that a
characteristic—free analogue of Nakai’s conjecture holds for varieties whose

normalization is smooth.
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Differential operators can also be applied to Hochster and Huneke’s the-
ory of tight closure. We show that Stanley-Reisner rings are Frobenius-split
by constructing an ezplicit splitting of Frobenius in terms of differential op-
erators. The D-module structure of a Stanley-Reisner ring R is used to easily

compute the test ideal of R, recovering a result originally due to Cowden.
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Chapter 1

Introduction

1.1 Context and summary of main results

This thesis is concerned with the study of rings of differential operators on
algebraic varieties in the sense described by Grothendieck [12, chapter 16].
Rings of differential operators are one of the most important noncommuta-
tive (associative) algebras. They play an important role in the representation
theory of Lie algebras [2] and the algebraic analysis of systems of partial dif-
ferential equations as developed by Bernstein [3] and Kashiwara [26]. The
aim of this thesis is to use the techniques of commutative algebra to study
the D-module structure of the coordinate ring of a singular affine variety
and to study the algebraic structure of its ring of differential operators. The
objective is to better understand how the nature of singularities of a variety

is reflected in the structure of its ring of differential operators.



1.1.1 Background on operators

Background material on differential operators is included in chapter 2. This
material is well-known in characteristic zero, but there is no complete treat-
ment of the prime characteristic case. Following Grothendieck [12], the ring
of differential operators D(R/k) and the modules of higher differentials are
defined relative to an arbitrary commutative k-algebra R. In particular, we
do not assume that R is smooth over k and if & is a field, then it may be of
arbitrary characteristic. The differential operators are continuous in every
I-adic topology on R and this property characterizes differential operators
on an algebra of finite type over an algebraically closed field.

Chapter 2 also contains background information on the Hasse-Schmidt
derivations (also called higher order derivations in the literature), studied
by Ribenboim [39, 40], Brown [6] and Heerema [13]. The Hasse-Schmidt
algebra HS(R/k) is introduced as an analogue of the algebra dery(R) gener-
ated by k-derivations; HS(R/k) agrees with dery(R) in characteristic zero
and is better behaved in prime characteristic. The exponential map send-
ing a Hasse-Schmidt derivation to a ring endomorphism of R[[t]] is used to
characterize Hasse-Schmidt derivations (Theorem 2.2.6).

The Weyl algebra is introduced in chapter 2 as the ring of differential
operators on a polynomial ring over a field. With this definition, the Weyl
algebra is simple in any characteristic and equals its Hasse-Schmidt sub-
algebra. As well, the polynomial ring is D-simple; that is, it is a simple
module over its ring of differential operators. The following two theorems

from chapter 3 generalize this result.

Theorem 3.3.1. Let R be a smooth algebra of finite type over o field k.

Then the ring of differential operators equals the Hasse-Schmidt algebra:



D(R/k) = HS(R/E).

Theorem 3.3.4. If R is a smooth algebra over a field k, then R is a finite

product of D-simple domains.

These generalize a result due to Grothendieck [12, 16.11.2] and appear
to be unpublished folklore. The proof of these results involves a detailed
study of differential operators on étale extensions. Our presentation of this
investigation is based on Mdsson’s doctoral thesis [30]. Our contribution
includes a study of the behavior of Hasse-Schmidt derivations under étale
extensions. The following theorem extends results of Brown [5] and Riben-

boim [40] on the behavior of Hasse-Schmidt derivations under localization.

Theorem 3.2.6. Let A i> B be a formally étale extension of k-algebras
and suppose that A = {6,} C HS(A/k) is a Hasse-Schmidt derivation on
A. Then there exists a unique Hasse-Schmidt derivation , = {y,} on B

such that f o dy, =ypo f.

We also use the characterization of Hasse-Schmidt derivations on R in
terms of ring maps on R[[t]] to answer a question of Brown and Kuan [7]: not
every Hasse-Schmidt derivation on a localization of R arises as the extension

of a Hasse-Schmidt derivation on R.

1.1.2 D-module structure of R

The D-module structure of R is a powerful tool in understanding the alge-
braic structure of both the ring R and its ring of differential operators D(R).
In chapter 4, we treat the structure of R as a module over several natural

rings of operators: der(R), HS(R) and D(R). The exponential map intro-



duced in chapter 2 is used to show that Hasse-Schmidt stable ideals behave

particularly well with respect to primary decomposition.

Theorem 4.2.4. The associated primes of HS(R)-stable ideals are HS(R)-
stable and every HS(R)-stable ideal admits a primary decomposition with
HS(R)-stable components.

Hasse-Schmidt derivations also behave well with respect to normaliza-
tion.
Theorem 4.3.2. Let R be a reduced Noetherian k-algebra and let R' be
its integral closure in the total quotient ring L of R. Every Hasse-Schmidt

derivation on R extends to a Hasse-Schmidt derivation on R'.

Corollary 4.3.3. The conductor of a reduced Noetherian k-algebra R is
HS(R/k)-stable.

These last three results extend important results of Seidenberg [43, 44]
on derivations. A detailed study of the D-module structure of R has im-
plications for our treatment of Nakai’s conjecture. Corollary 4.3.3 lays the
foundation for our assault on Nakai’s conjecture in chapter 6.

The D-module structure of R ought to have some bearing on the algebraic
structure of R. Brown [6] showed that when the ring of differential operators
on a C-algebra R is generated by derivations, certain D-module conditions
imply that R is normal. In chapter 6, our results on Nakai’s conjecture are

used to extend Brown’s result to arbitrary characteristic.

Theorem 6.3.2. Let R be a finitely generated reduced algebra over a field
k and suppose that:

(1) D(R/k) = HS(R/k) and

(2) every D-stable prime ideal of R has height less than or equal to 1.

Then R is normal.



1.1.3 Computing differential operators

The ring of differential operators D(R/C) on a smooth complex affine variety
X = Spec(R) agrees with the R-algebra generated by the derivations on R
(all varieties are assumed to be reduced but not necessarily irreducible: R is
a reduced C-algebra of finite type). As such, the algebraic structure of these
rings is well understood (see, for example, McConnell and Robson [33]). For
example, D(R/C) is a finitely generated, simple Noetherian domain.

In contrast to the smooth case, it may be difficult to describe the al-
gebraic structure of the ring of differential operators on a singular variety.
For example, Bernstein, Gelfand and Gelfand [4] showed that the ring of
differential operators on the affine cone over a particular plane cubic curve
is not finitely generated. In general, it is very difficult to compute rings of
differential operators. In chapter 5, the ring of differential operators on a
Stanley-Reisner ring R defined over an arbitrary commutative domain k is
explicitly described. Such a ring R comes equipped with a monomial grad-
ing; this induces a powerful grading on D(R/k). In turn, this facilitates the

description of D(R/k) in terms of the minimal primes of R.
Theorem 5.2.3. Let R be a Stanley-Reisner ring defined over a commuta-
tive domain k. Then D(R/k) is generated as an R-module by

{zP0? . zP € P or 2® & P for each minimal prime P of R},

and the nonzero operators of this form determine a free basis for D(R/k) as

a k-module. The condition on zP0® above is equivalent to

zP e ﬂ P;,

2 €P;

where the P; are the minimal primes of R.
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This extends Brumatti and Simis’s description [8] of the derivations on a
Stanley-Reisner ring of arbitrary characteristic. This theorem was indepen-
dently established by Tripp [55] in the case that & is a field of characteristic
zero using different methods. The ring of differential operators on R can
also be described in terms of the local cohomology of R (Theorem 5.3.6) or
the simplicial complex associated to R (Theorem 5.3.4). We also completely
describe the D-module structure of a Stanley-Reisner ring defined over a

field in terms of its minimal primes.

Theorem 5.4.5. The D-submodules of a Stanley-Reisner ring R defined
over a field k are precisely the intersections of sums of minimal primes of

R.

1.1.4 Nakai’s conjecture

Stafford and Smith [52] connect the local geometry of a complex curve
X = Spec(R) with the structure of its ring of differential operators: the
normalization map X — X is injective if and only if D(R/C) is a simple
ring. Similarly, Nakai’s conjecture relates the algebraic structure of the ring
of differential operators on a finitely generated C-algebra R to the presence
of singularities in Spec(R). Inspired by Grothendieck’s observation that the
ring of differential operators on a smooth complex variety is generated by
derivations, Nakai conjectured the converse: the ring of differential oper-
ators on a complex variety is generated by derivations if and only if the
variety is nonsingular. Nakai appears not to have stated the conjecture in
the literature but it is often quoted in connection with his paper [38]. The
first statement of the conjecture appears in [37]. Ishibashi [23] restated

the conjecture in a characteristic—free manner by using the Hasse-Schmidt



derivations: an affine variety Spec(R) defined over an algebraically closed
field k is nonsingular if and only if the ring of differential operators D(R/k)
equals the Hasse-Schmidt algebra, HS(R/E).

As we have already remarked, Grothendieck’s result can be extended to
the situation where £ is an arbitrary field (Theorem 3.3.1). As well, since the
ring of differential operators on R over k is a relative object, it makes more
sense to relate the structure of D(R/k) to the smoothness of the extension

k — R. This leads to the following more general statement of the conjecture.

Nakai’s Conjecture: Let X = Spec(R) be a variety defined over a field k;
then X is smooth over k if and only if D(R/k) = HS(R/k).

Nakai’s conjecture is known to imply the Zariski-Lipman conjecture: if
X = Spec(R) is a complex variety and the module of derivations, Derc(R),
is a locally free R-module, then R is nonsingular. We record a proof of this
result (originally due to Becker and Rego [1]) in chapter 6.

Nakai’s conjecture remains open though it is known to hold for several
important classes of varieties. By relating the structure of the ring of differ-
ential operators on a curve to the ring of differential operators on its normal-
ization, Mount and Villamayor [37] established the conjecture for complex
curves. Ishibashi [25] established the conjecture for characteristic zero rings
of invariants of finite groups. Schwarz [42] later proved substantially more
general results. As well, Ishibashi [24] proved that Nakai’s conjecture holds
for two—dimensional weighted complete intersections in characteristic zero.

We establish a very general case of Nakai’s conjecture that does not

require any assumptions on the dimension of R.

Theorem 6.2.4. Let R be a reduced algebra over a field k. If HS(R/k) =



D(R/k) and the normalization R' of R is smooth over k, then R is smooth

over k.

In particular, Nakai’s conjecture holds for curves of arbitrary character-

istic, extending the result of Mount and Villamayor [37].

Corollary 6.2.5. Let R be a reduced algebra over o field k. If R is 1-
dimensional and HS(R/k) = D(R/k) then R is smooth over k.

Theorem 6.2.4 can also be used to give a simple proof that Nakai’s con-
jecture holds for Stanley-Reisner rings, extending a result of Schreiner [41].
More generally, the theorem implies that Nakai’s conjecture holds for vari-

eties all of whose components are smooth.

Corollary 6.2.6. Let R be a reduced algebra over a field k. If HS(R/k) =
D(R/k) and if I—I_i; is smooth over k for each minimal prime P of R, then R is
smooth over k. In particular, if R is a Stanley-Reisner ring and HS(R/k) =
D(R/k) then R is a polynomial ring.

1.1.5 Tight closure

It turns out that the differential operators on a variety X = Spec(R) of finite
type over a perfect field of characteristic p are just the endomorphisms of
R that are RP"-linear for sufficiently high Frobenius powers of R. This
suggests a connection to tight closure, a technique in commutative algebra
that uses the Frobenius morphism to assign to each ideal I in a ring of prime
characteristic a possibly larger ideal, its tight closure I*. Tight closure,
together with the technique of reduction to characteristic p, can be used
to prove characteristic zero results whose statement does not involve tight

closure at all. For instance, these methods give a very elegant proof of the



theorem of Hochster and Roberts [19] that rings of invariants of linearly
reductive groups are Cohen-Macaulay (see [16]). As well, tight closure has
applications to homological algebra and singularity theory.

Smith [48, 47] was the first to articulate the philosophy that differen-
tial operators can be used to study tight closure. Chapter 5 ends with a
survey of Smith’s characterization of strongly F-regular rings in terms of
their D-module structure. Chapter 7 illustrates another instance of this
approach: differential operators are used to study tight closure on Stanley-
Reisner rings. We begin by showing that differential operators give an easy
constructive proof of Hochster and Robert’s observation [20] that Stanley-

Reisner rings defined over a field of prime characteristic are F-split.

Theorem 7.1.1. If R = M is a Stanley-Reisner ring of prime char-

acteristic, then the inclusion map RP — R is split by the differential operator

1 gr-! or—1 _p-1 p—1
— PECERY — x ---x .
107 92T aa T n

We also produce an easy proof that tight closure commutes with localiza-
tion in Stanley-Reisner rings. It is worthwhile to point this out in light of the
difficulty encountered in proving this in general. For different perspectives
on this result, see Smith and Swanson [50] and Katzman [27]. This result
has been extended to a more general class of rings (including the coordinate
ring of any variety defined by binomial equations) by Smith [46].
Corollary 7.1.4. Tight closure commutes with localization in o Stanley-
Reisner ring.

Part of the motivation for studying the D-module structure of a Stanley-
Reisner ring R was Smith’s observation that the test ideal of R is D-stable.
The description of the D-module structure of R in Theorem 5.4.5 can be

used to compute the test ideal of a Stanley-Reisner ring. This gives a new



proof of a result due to Cowden [10].

Theorem 7.1.7. For o Stanley-Reisner ring R with minimal primes

Pi,... P, the test ideal of Ris 3.\ PiN---NP;N---NP,.

10



Chapter 2

Rings of Operators

2.1 The ring of differential operators

This chapter summarizes the elementary theory of rings of differential op-
erators. Much of this material is treated in various places in the research
literature. The reader’s attention is drawn to the work of Grothendieck [12],
Mili¢ié [35] and McConnell and Robson [33]. Unfortunately, these only treat
the characteristic zero theory and only Grothendieck [12] deals with singular
varieties.

The Hasse-Schmidt derivations are also introduced. These were exten-

sively studied by Ribenboim [39, 40], Brown [6] and Heerema [13].

2.1.1 Differential operators

Let X be an affine algebraic variety defined over a commutative domain k.
Let R be the coordinate ring of X: X = Spec(R). The ring R = H°(X, Ox)
can be identified with the commutative ring of regular functions from X to k.

Following Grothendieck [12], we can also associate to the k—variety X a non-

11



commutative ring, its ring of differential operators. Equivalently, the ring of
differential operators D(R/k) is associated to the extension k¥ — R. When
no confusion might arise, we sometimes drop k from the notation and write
D(R) for the ring of differential operators. The ring of differential operators
consists of certain k-linear endomorphisms of R: D(R/k) C Endy(R).

The subring D(R/k) of Endy(R) can be identified in terms of the natural
action of R @y R on Endi(R): a ® b acts on a map 6 : R — R to give the
map

aofob: RARLY RS R

Here we have identified the elements a and b of R with the endomorphisms
of R given by multiplication by a and b, respectively. In what follows, we
continue to make this identification without further comment. In order to
distinguish d o ¢ and the image of a under a differential operator d, we write
the former as da and the latter as d x a or d(a). The ring R ® R is the
coordinate ring of the product variety X XSpec(k) X. Let J C R® R be
the ideal defining the diagonal A C X x X.

Lemma 2.1.1. The ideal J is the kernel of the multiplication map
R®r R — R
a®b —  ab,
and J is generated by aoll elements of the form 1 ® a —a ® 1, where a € R.

Proof. The elements 1®a—a®1 are clearly in the kernel of the multiplication
map. Suppose that > a;b; = 0 (that is, Y a; ® b; is in the kernel of the
multiplication map), then
Yai®by = Ooa;®b)— (O aib®1)
= > (a; ®b; —ab;®1)
= Y (;1)(1®b; —b; ®1).

12



SoJ =(1®a—a®1l)ser. Now it is clear that J defines the subscheme
A. O

Note that a generator (1 ® a —a ® 1) of J acts on an endomorphism

0 € Endy(R) to produce a commutator:
(1®a—a®1)§ =0a—ab =10,al

The multiplication maps determined by r € R are precisely those endomor-
phisms of R killed by J. To see this, note that [r,a] = 0 for all a € R
because R is a commutative ring. Also, if [#,a] = 0 for all a € R, then 6 is
R-linear and so 6 is just multiplication by 6 x 1.

The k-derivations of R are also related to the R®y R action on End(R).
Suppose that d is a k-derivation of R, d € Derg(R). For a and b in R,

d * (ab) = (d x a)b+ a(d = b)

e d*(ab)—a(dxb) = (d*a)b
s (da—ad)+b=(d*a)b
s [da]xb=(d*a)b

— [da] = (d*a)

—  J({d,a]) =0

= J¥=0.

So derivations are killed by J2. Of course, multiplication maps are also killed
by J2. In fact, the endomorphisms of R killed by J? form an R-submodule
of Endy(R) isomorphic to Dery(R) @ R. If J?0 = 0, then § — 0 x 1 is a

13



derivation:

(0 —0x1)(ab) = 6(ab) — (0« 1)(abd)
= [0,a](b) + aB(b) — (6 = 1)(ab)
= ([0, a] x 1)(b) + ab(b) — (6 * 1)(ab)
= 0O(a)b—a(@*1)b+ ab(b) — (6 x 1)(ab)
= 6(a)b+ ab(b) —2(0 « 1)(ab)
= (0—0x1)(a)b+a(d—0x1)(b).

)
(
) —
(a

Now 6 = (0 — 0+ 1) + (0 1) € Derp(R) @ R.

Extending this behavior, we say that an endomorphism 0 € End(R)
is a differential operator of order < n if and only if J"t10 = 0. We write
D™(R/k) for the R-module of differential operators of order < n. The ring
of differential operators D(R/k) is just the direct limit (union) of these
submodules of Endy(R):

D(R/k) = {0 € Endi(R) : J™0 =0 for some m}.

Sometimes it is convenient to speak of differential operators of negative
order. We set D"(R/k) = 0 for m < 0.

A similar construction produces the R—module of differential operators
D(M,N) = Dg/p(M, N) between two modules M and N over a commuta-
tive k-algebra R. This is an R-submodule of Homy (M, N). The ring R®; R
acts on Homy(M,N): a ® b acts on an R-module map 6 : M — N to give
the map

aolob: M5 MLNSN.

A homomorphism ¢ € Homy (M, N) is a differential operator of order < n
if J"*19 =0 and

D(M,N)={0 € Homy(M,N) : J"0 =0 for some m}.

14



Many results about differential operators are proven by induction on
order. In light of this, it is worth reiterating that 6 is a differential operator
of order < n if and only if the commutator [0, a] is a differential operator of
order < n — 1 for all @ € R. This explains why the natural idea in many
proofs is to consider commutators of differential operators with elements of
R.

As yet we have only established that D(R/k) is an R-module, but in fact

it is a ring under composition of operators.

Theorem 2.1.2. If § € D"(R/k) and 0 € D™(R/k) then 6 o 0 €
D™t (R/k).

Proof. By definition, if 6 € D"(R/k) then
0,a] =(1®a—a®1)d € JD"(R/E)

is a differential operator of order < n — 1. We compute:

(1®a—a®1)(d00d) = doda—adod
= 00a — 6ad + dad — add
= 00[0,a]+[0,a]00.

Now the result follows by induction on n + m. O

This description of the ring of differential operators can be stated in the
language of local cohomology. If J is an ideal of a commutative ring R and
M is an R-module, then the zeroth local cohomology of M with support in
J, HY(M), is the module of elements of M killed by some power of .J:

HYM)={meM: J'm =0 for some n}.

It follows that the ring of differential operators D(R/k) is just the zeroth

local cohomology of the R®j R—module Endy(R) with support in the kernel

15



J of the multiplication map R ®; R — R:
D(R/k) = HY(Endy(R)).
More generally, if M and N are R—modules,

D(M,N) = HY(Homy (M, N)).

2.1.2 Modules of differentials

The ring R acts on R ®; R in each factor. When we speak of R ®; R as an

R-module, we will always refer to the action of R on the first factor:
rla®b) =ra®b.

The module Py Ik = % with R—module structure coming from the left
factor of R is called the module of higher differentials of order < n (some-
times Pp Ik is also called the module of n-jets). The module P}, Ik is not only
an R-module, but also an R-algebra.

The map d : R — R ®y R given by d(a) = 1 ® a also plays an important
role in the theory. In particular, the map d' E R — Py Ik induced by d is a
differential operator of R-modules of order < n. The map df, Ik is called the
universal derivation of order n. When no confusion will arise, we will just
write d for dp ;. The map d : R — Py, is a ring map, d(rs) = d(r)d(s),
but the reader is cautioned that d is not an R-algebra map.

We have the natural isomorphism:

D"(M,N) = Hompe,r(Pg),, Homi(M,N)) = Hompg(Pg,, ®r M, N),

where Pp k= %. Here, an R-module homomorphism ¢ : Pp Ik QM — N

is identified with the differential operator of order < n given by

M-=ReM™ Pp, oM N.

m——1Q®m

16



Conversely, given any differential operator § € D™ (M, N), there is a unique

map of R-modules ¢; : Pj},, ® M — N such that § = ¢5°d??,/k' It follows that
dn, ®1

Pﬁ/k ® M, together with the map R AN Pg/k ® M, is characterized by a

universal mapping property. We summarize this discussion in the following

Proposition.

Proposition 2.1.3. The R-module P}%/k and the map d??,/k R — P}%/k are
the unique (up to isomorphism) pair (T,0) of R-module T' and R-module
map 0 : R — T such that given any differential operator 6 € D"(M,N)
between two R-modules M and N, there is a unique R-module map ¢ :

T ®r M — N making the following diagram commute:

TOM
o]
®1 "
RRrM=M 5 N
Lemma 2.1.4. Let R = k[z1,... ,z,] = k[z] be a polynomial ring over the

ring k. Then Pé/k is the free R—module generated by the monomials of

degree <t in dx1,... ,dxy.
Because P?,, — B&R _ ki @ndvidon] - op oo 2o corresponds to
R/k Jn+l (z1—dz1,... Tn—dzp)ttL? 4 p

z; ® 1 and dz; corresponds to 1 ® x;, the proof is easy and is left to the
reader.
2.1.3 Differential operators as continuous maps

Given an ideal [ in a ring R, we consider the I-adic topology on R. A basis

of open sets for this topology is given by the sets
a+ 1",

17



where ¢ € R and n > 0. Differential operators on R are continuous in the

I-adic topology:

Theorem 2.1.5. Let I be an ideal in the ring R. If 6 € D"™(R), then

ox [ C I,

Proof. This follows by induction on n. Since D°(R) = R, the statement

holds for n = 0. Now suppose that
D"(R)«I"™ C 1™ for all m. (%)

We show that D" F1(R) « I"™ C I ("+1 for all m. Let & be a differential

operator on R of order < n + 1. Now
§x1°=§xRCIO-(ntD) = R,
Using nested induction, suppose that
§x 1™ C (D) (xx).

Now compute:

§x I™HL C[6,1] % I™ 4 I6 % I™

e 4 (-t (Use (%) and (%))
— [m—n — [(m+l)—(n+1)

N

This completes the nested induction and shows that ¢ « I'"™ C I"™™" for all

d € D"(R) and all m > 0. O

Remark 2.1.6. This theorem implies that § € D"(R) is continuous in the
I-adic topology. To see this, note that given any ¢ € R and any basic open
neighborhood §(a) 4+ I* of the image §(a), the open neighborhood a + I*

maps into d(a) + I* as long as £ > k + n.

18



The theorem can be easily extended to show that for R-modules M and
N, every differential operator in D/ (M, N) is continuous for the I-adic
topologies on M and N. The proof is analogous to the case M = N = R

treated above.

If R is an algebra of finite type over an algebraically closed field &, then
the differential operators on R are precisely those endomorphisms that are
uniformly continuous for every I-adic topology on R, in the sense of the

following theorem.

Theorem 2.1.7. Let R be an algebra of finite type over an algebraically
closed field k. If 0 € Endy(R) satisfies

9(1n+1) C I

for alln € Z and ideals I (I" = R if n <0), then § € D"(R/k). Moreover,

it suffices to check the condition on all mazximal ideals.

Proof. The proof uses induction on n. Note that the result is clear for

n < —1, since
O(m™ ') = §(R) C m for all maximal ideals m,

implies that

O(R) € N{m : m a maximal ideal},

and the right hand side of this last equation is the zero ideal by the Null-
stellensatz. So 8 =0 € D"(R/k).

n+1)

Now suppose that if 8(m C m for all maximal ideals m, then 8 €

D™(R/k). Let 6 be an endomorphism of R such that 8(m"*2) C m for all

maximal ideals m. Write R as the quotient of a polynomial ring k[x1, ... , z,]
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and let a be an element of R. Because every maximal ideal of R has the
form (x1 —c1,- - , 2, —¢,) (¢ € k), we can write a = b+ g where b € k and
g € m. Now

[0,a] = 0,6+ g] = [0, 6] + [0, 9] = [0, 9],

so [0, R] = [0, m]. The following computation uses the inductive hypothesis
to show that [0,a] € D"(R/k) (so & € D"TY(R/k)):

[0,a] xm" Tt = [0, g]*m"t!

n+1) n+1)

= Ox(gm —gB(m

C m.

2.1.4 A concrete approach

In this section, let X be an affine algebraic variety defined over a field & of
characteristic zero. Let R be the coordinate ring of X: X = Spec(R). We
write X = V(I) C kY and R = H2teonl

Just as we define the ring of functions on X by restricting functions on
the ambient space to X, we would also like to realize differential operators
on X by restricting differential operators on the ambient space to X.

It is easy to see that the ring of differential operators on k% is generated
as a k[zy, ..., zn]-algebra by the tangents 8%1- (McConnell and Robson [33,
15.1.5] contains a proof). Then the ring of differential operators on k&~ (or

on the coordinate ring of k%) is

0 0
D(EN)=D = e, —
(k ) (k[xl’ ,ZEN]) k[xla sy TN, afL'l, ’a(IIN

!

The ring of differential operators on k% is called the Weyl algebra and is
denoted W.
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We want to restrict these operators (the elements of the Weyl algebra)
to X (or more precisely, to act on R); however, not all of them act in a well-
defined way. Only the operators in the idealizer I(I) = {0 € W : 0(I) C I}
act on R. Among these operators, we want to identify those operators whose
image is in I with the zero operator on R. It is easy to see that these are just
the operators in IW. This motivates the following description of differential

operators on subvarieties of affine space.

Theorem 2.1.8. The ring of differential operators on X = Spec(w),

’ ew: o) CI}
W '

Proof. McConnell and Robson [33, 15.5.13] show that

D (k[wl,l ,xn]> _ {0ew: HI(V[I/W) - IW}'

We show that §(IW) C IW if and only if §(I) C I. Suppose that O(IW) C
IW. Then oI CIW so

O(I)=(Ool)x1 CIW x1=1.

Conversely, suppose that 6(I) C I. Let v be an element of IW and write
foy = >, Pa0* Here, 0* = L oL ... LN If each P, € I, then

— L — 4 ay -
ay! 8:1:11 an! B:UNN

0o~y e IW and we are done. Aiming for a contradiction, assume that some

P, ¢ 1. Let b be an n-tuple of minimal total degree such that Py, ¢ I. Then
(0 ov)*zP = Py (mod I).

Since O(I) C I and the image of vy is in I, it follows that the image of 8 o 7y

is contained in I. So P, € I, producing a contradiction. O
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2.1.5 Differential operators in prime characteristic

A bit more care must be taken with the Weyl algebra in prime characteristic

since operators of the form 8% can be nilpotent as elements of the ring D(R).

For example, consider the ring R = k[z] where k is a field of characteristic

p > 0. Then

P

—z" =0  foralln,

oxP
so 25 = 0. However, as in Lemma 2.1.4, P,f[x]/k = %. So P,f[m]/k is a
free k[z]-module with basis 1,dz, (dz)?,... , (dz)?. The projection onto the

factor indexed by (dz)P sends (dz)™ to 0y, (Kronecker delta) and induces
a differential operator on k[z] of order p that sends zP to 1. This forces us

to enlarge our description of D(k[z]) to include an operator which we can

107

formally write as o1 DaF

Similar considerations force us to add other operators to our description
of the Weyl algebra D(k[z1,...,x,]) in prime characteristic. By Lemma

2.1.4 the module of differentials of order < n is a free module with generators
1 9™

given by the monomials of degree < n indzy,... ,dzy. The operators ;5

are given by composing the universal differential operator d : R — Pp Ik with
the projection of Py, onto the free summand R - (dz;)™ indexed by (dz;)".
When 1%887’% acts on z7' it returns (L‘?_p multiplied by an integer coefficient

(since the coefficient coming from % is divisible by p!, we divide to get the

coefficient of ;7 coming from i%). In particular,
: 7

n
i—a ™ =4, m "
=4 n-m
n! oz’ I\n )7

Then the Weyl algebra should be:

W =DkN) = k[zy,... ,zN,.



When the characteristic of k is zero, this agrees with our earlier definition of

the Weyl algebra. The divided power operators L 0" are the natural gen-

n! o™
erators of the Weyl algebra in all cases (not just when the characteristic of k
is p) as they are the duals (projections) of the generators (dz)% - - - (dzy )™
of the modules of differentials. In prime characteristic, if n is not a power of
the characteristic p, then the operator _; 83 = can be written as a product of

divided powers whose orders are powers of p. So we only need the operators

I% P to generate the Weyl algebra. If b € N*, write 9 for the operator
€ P 1 o
by! Ox b bN! am?VN :

If X is an affine subvariety of £V, then Theorem 2.1.8 holds in prime
characteristic with this new interpretation of the Weyl algebra. In fact, the
proof of Theorem 2.1.8 does not depend on the characteristic. It easy to
show that k[z1,...,zx] is a simple module over the Weyl algebra. In fact,

more is true: the Weyl algebra is a simple ring.

Theorem 2.1.9. The polynomial ring R = kl[z1,... ,zn] (k a field) is a
simple module over the Weyl algebra D(R) and the Weyl algebra is a simple

ring.

Proof. Fix a graded monomial ordering. Given a polynomial f, let kz? be
the term of f of maximal multi-degree. Then %Ba x f =1, s0 R is a simple

D-module. To show that the Weyl algebra is simple, note that

19" 10 19
[m ozn ) ] = e T Tuiaem
_ 1 ) o1t 1 on
— n! ["Eamn +n8 n—1 n! dx™
_ 1 87@—1
- (n=D)!9zn-T
1 on A5 1 ot : _
It follows that {mw,x]} = 0 j =T 9o T Given a nonzero element 6 =

3" P02 of the Weyl algebra, let P,0° be the term of § whose multi-degree
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is maximal. Write z° = z;, --- x;,. Then

Py = Y P.[02 2P]
= ["'[[G’xil]axiz]'“ ’xit]
= Oz — ...+ 2P0
So the two-sided ideal generated by 6 contains the polynomial P,. Since R
is a simple module over the Weyl algebra, the right ideal generated by P,

contains 1. It follows that the two—sided ideal generated by 6 is the entire

Weyl algebra and the Weyl algebra is a simple ring. O
The operators i% have some very nice properties. This is a direct

result of the behavior of binomial coefficients modulo p. (see [11]).

Lemma 2.1.10. If a = Zf:o a;p’ and b = Zf:o bip' (0 < a;,b; < p) are

two nonnegative integers expressed in base p expansions, then

()= G)G) () moan
Here, () =0 when ¢ < d.

Proof. In the ring %[x], we have

(1+2)* = (142)% (1+2)%7 - - (14+2)%7" = (1+2)% (14+2P)% - (14+27")*™.

Consider the coefficient of z? = Hf:o xP'% occurring on each side of this

identity. On the left hand side the coefficient is (‘Z) and on the right hand

side it is (‘gg) (‘gll) e (Z:) Hence, these integers are equal modulo p. O

On R = k[z] (k a field of prime characteristic p), % is RP-linear since it
is a derivation which kills p-th powers. Also, Lemma 2.1.10 can be used to

107 .o pp? .
show that ;47 is R” -linear:
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g (@) = (e (ndp? = p A e

n+ )n+pp

= (coefﬁment of p in p-adic expansion of n + p?) = n+p?—p
(coefficient of p in p-adic expansion of n) z n+p’—p
(

(o)

107
= o (L2 ("),
This suggests a structure theorem for rings of differential operators in

prime characteristic.

Theorem 2.1.11. If X = Spec(R) is an affine algebraic variety defined

over a field k of prime characteristic p such that [k% : k] < o0, then
D(R/Z) = U.Endpgpe (R).
In particular, the result holds when k is a perfect field and then

D(R/E) = U.End gy (R).

Proof. See Yekutieli [56] or Smith [47]. O

2.2 Hasse-Schmidt derivations

The subalgebra der(R/k) of D(R/k) generated by the k-derivations of R is
an important algebraic object. One of the reasons for this is Grothendieck’s
result [12, 16.11] that the ring of differential operators on a smooth variety
defined over a field of characteristic zero is generated by derivations. In

prime characteristic, the derivations do not even suffice to generate D(R/k)
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for the polynomial ring R = k[z1,... ,zn]. As we saw in the last section,
we need to include divided powers on the derivations in order to gener-
ate the Weyl algebra. In general, the derivation algebra is not particularly
well-behaved in prime characteristic; however, there is an analogue of the
derivation algebra, the Hasse-Schmidt algebra, whose behavior is character-
istic independent. In chapter 3, we extend Grothendieck’s result by show-
ing that the ring of differential operators on a smooth variety defined over
any field is equal to its Hasse-Schmidt algebra. This section introduces
the Hasse-Schmidt derivations and the Hasse-Schmidt algebra and develops
many of their elementary properties.

A (k-linear) Hasse-Schmidt derivation of order m on R is a finite collec-
tion of m + 1 k-linear endomorphisms A, = {6;}7~, such that §y = idr and
for ¢ and b in R,

on(ab) = ) di(a)d;(b) (n <m).
i+j=n
An infinite order Hasse-Schmidt derivation on R is a collection A = {6;}72
of k-linear endomorphisms of R such that §y = idg and for a and b in R,
on(ab) = ) di(a)d;(0).
i+j=n

When the order of a Hasse-Schmidt derivation is not stated explicitly, we
assume that it is an infinite order Hasse-Schmidt derivation. In the liter-
ature [6, 39], Hasse-Schmidt derivations are sometimes called higher order
operators.

Given a Hasse-Schmidt derivation A = {4;}™, of order m > m/ (m <
00), we define a new Hasse-Schmidt derivation Sy, ,,/ (A) = {d; };-":,0 of order
m' by truncation:

di=0; (0<j<m).
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The maps ¢; in a Hasse-Schmidt derivation A = {§;} are called the com-
ponents of A. The components of a Hasse-Schmidt derivation are differential

operators.

Lemma 2.2.1. Let A = {0,} be a k-linear Hasse-Schmidt derivation on R.

The n'" component 6, of A is a differential operator of order < n.

Proof. We proceed by induction on n. The case n = 0 is clear. Suppose
that §; € D*(R/k) for 0 <i <n — 1. For @ and b in R,
[On,a]l b = dp(ab) — ad,(b)

= i1 0i(a)dn—i(b)

= (X, 0i(a)dn—;) * .
By the induction hypothesis, the operator [0,,a] = Y., d;(a)d,_; is in
D"~Y(R/k) for each a € R. Thus, J§, C D""Y(R/k) and so J"1§, = 0.
This shows that d, € D"(R/k) and completes the induction. O

The reader should use induction on n to check that 6, (1) =0 if n > 0.

The Hasse-Schmidt algebra HS(R/k) is the R-subalgebra of Endj(R)
generated by all the components of all infinite order k-linear Hasse-Schmidt
derivations on R. By Lemma 2.2.1, the Hasse-Schmidt algebra HS(R/k) is

a subalgebra of the ring of differential operators, D(R/k).

Example 2.2.2. On R = k[z1,... ,zn], the collection of operators A; =

{0in}neo given by

idp, n=0
5i,n = 1 on

is a Hasse-Schmidt derivation independent of the characteristic of k. To

check this, it suffices to show that

Sim(ab) = > 6 0(a)di;(b)

l+j=n
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for monomials a and b. Furthermore, since the maps d; ,, are k[z1,... , 2, ...

linear (here, we remove the variable z;), it suffices to show that

= Y Gie@diaf).

l+j=n
To this end, we compute:
ctd _ 1 o™ c+d
5Z n( ) - ! oxl * Ty

— (c+d) xq-l—d—n

n 13

= (Zé-i-j =n ) gra-m
o et el
= ZZ«H =n zl( )5 (ZE )

It follows that

1 0" 1 o
k[xh » LN, "l 8:1)717’7 "ol 817%7 ] = HS(R/k)
However,
10" 1 o"
HS(R/k) = D(R/k) k[a:lv y TN, -~ a$?7 "l 8[13?\77 ]7

7xN]'

so the Hasse-Schmidt algebra on a polynomial ring is just the Weyl algebra,

1 o 1 o

S(R/) [1717 y LN, 771!8[13717’, 7n!3$7]<,7

"l

Example 2.2.3. There are examples of derivations that do not appear as

the first component of a Hasse-Schmidt derivation. Let R = %

where

k is a field of characteristic 2. Following a fairly standard practice, we

represent elements of R (which are equivalence classes) by an element of

the class itself. Then -2 5, induces a derivation on R because it kills zy — 2

However,
1 92

g F @y =2 =1,
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SO o 8‘9 5 is not a differential operator on R. This suggests that 5~ is not the
first component of a Hasse-Schmidt derivation on R. Before verlfymg this,

we note that if {d,} is a Hasse-Schmidt derivation with d; = £, then
do(2?) = zdy(2) + d1(2)d1 (2) + da(2)z = (d(2))? = 1.

Now we produce a contradiction by showing that ds does not define an

operator on R. We compute,

do(zy — 2°) = da(zy) — da(2?)
= da()y +di(2)di(y) + zda(y) — (di(2))?
= dy(z)y +zda(y) — 1

—1 (mod (z,y,2z)).

)
)

Thus, do(zy — 22) ¢ (vy — 2%) and dy does not act on R. It follows that
no Hasse-Schmidt derivation, {d,} has d; = 8 . A simpler example will be

given in Example 4.2.7 once we develop the notion of HS-stability.

In contrast to the characteristic p situation, every derivation appears
as the first component of some Hasse-Schmidt derivation in characteristic
zero. In fact, in characteristic zero the Hasse-Schmidt algebra equals the
derivation algebra, HS(R/k) = der(R/k). In this sense, the Hasse-Schmidt
algebra is an analogue of the derivation algebra that is better behaved in

prime characteristic.

Theorem 2.2.4 (Ribenboim [39]). If R is a k-algebra over a field k of
characteristic zero, then der(R/k) = HS(R/k) and for each derivation d €
Der(R/k), there is a Hasse-Schmidt derivation A = {6;} such that §; = d.

Hasse-Schmidt derivations on R induce ring endomorphisms of the power

series algebra R[[t]]. Given a k-algebra R and a Hasse-Schmidt derivation

29



A ={6,} C HS(R/k), we form ring maps
¢'® : R[[t]] — RI[t]]
and

i R R[]
m - (tm-i-l) (tm-i-l)

as follows. First, extend the action of ¢, to R[[t]] and (ﬂ[ﬂﬂ) by linearity:
6n(at’) = 6, (a)t’. Then set

etA:(50+(51t+(52t2+---

and
el = 6o 4 01t + 0ot 4+ - + Spt™.

Now we check that e’® and ean are ring maps. They are additive by
definition. To check that e® is multiplicative, it suffices to verify that
et®(ab) = et (a)e!® (b) for a and b in R:
eA(ab) = YT, "0, (ab)
= 2o t" 2inj=n 0i(a)3;(0)
= ZZ":o Zi+j:n ti(si(a)tjaj (b)
(2320 tdi(@)][32720 9 (a)]

= e (a)e!®(b).

This also shows that e!2 is multiplicative since e'® = e!> (mod t™1).
We use this observation to show that in prime characteristic p, the action

of Hasse-Schmidt derivations on p®-th powers satisfies an interesting relation.

Lemma 2.2.5. If the characteristic of R is p and A = {0,} is a Hasse-
Schmidt derivation, then for g € R,

. 0 if p© does not divide n,
(62 (g))P" if p© divides n.
p
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Proof. This is an immediate consequence of the following computation in

R[[t]] (equate coefficients of ).

g 4 (01" + (52(g)P)" + -+ = (g +0i(g)t + da(g)t? +--- )
= [l
= ¢®(g)---¢®(g)  (p° copies)

= e (g")
= " +61(g" )t + Sa(gP )2 + - -

O

Note that e’®(t) = t. This fact helps to characterize those endomor-
phisms ¢ of R[[t]] that arise as maps of the form e®. In fact, we can identify

Hasse-Schmidt derivations with certain ring endomorphisms of R[[¢]].

Theorem 2.2.6. Let (ﬁ[ﬂ]) Hom, R([t[;]] =~ R and R[[t]] % = R be the
]

quotient maps. If ¢, is a ring endomorphism of (ff,ﬁﬂl) such that ¢y (t) =1

and [y, © ¢ induces the identity map on R, then ¢, = et for some Hasse-
Schmidt derivation A of order m. Similarly, if ¢ is a ring endomorphism
of R[[t]] such that ¢(t) =t and p o ¢ induces the identity map on R, then

¢ = e® for some Hasse-Schmidt derivation A.

Proof. Suppose ¢y, is a ring endomorphism of (ﬁj[j]ﬂ) such that ¢, (t) =t

and (tm © ¢m)|r = idr. For a € R, write
dm(a) =do(a) +di(a)t + ...+ dp(a)t™.

This defines additive maps d; : R — R. The map dy is the identity map:

do(a) = (pm © dm)|r(a) = a. Because ¢y, is a ring map:

di(ab)t’ = ¢y (ab) = pm(@)pm(b) = (Y dj(a)dr(B)F,
i=0 =0 j+k=i
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for a,b € R. So di(ab) = >, ,_;d;(a)dy(b) and the maps Ay, = {d;} form

a Hasse-Schmidt derivation of order < m. Because ¢,, and eﬁf are ring

endomorphisms of (ﬁ[ﬂ]) that agree on R and ¢, they agree everywhere:

bm = 6%-
A similar argument establishes the second claim. Alternatively, the endo-

morphism ¢ of R[[t]] induces endomorphisms ¢, of (ﬁ[ﬂ]) . These give rise to

Hasse-Schmidt derivations A, and these glue together: S, .,,(Anr) = Ay,
for m’ > m. In the limit, we obtain a Hasse-Schmidt derivation A = {d;}?2,
of R such that e’® agrees with ¢ on every polynomial. Since both maps

preserve t-adic order, ¢ = e!®. O

The Hasse-Schmidt derivations form a group under the convolution prod-
uct. If A = {6;} and, = {v;} are Hasse-Schmidt derivations then this prod-
uct is defined to be the Hasse-Schmidt derivation corresponding to e!® o el

We compute,

eBoel = (DX t6) (X52t)
= ZZ"ZO t (Zi-i—j:k d; o 7]')

— l(AsT)

Thus, the product of A = {§;} and , = {v;} is the Hasse-Schmidt derivation
, * A = {n} where

me= Y 0oy
i+j=k
The identity element is the trivial Hasse-Schmidt derivation, £ = {¢;},

where
idp 1=0
€ =
0 otherwise.

The identity £ corresponds to the map e!* = idgyy- We refer to [13] for the
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proof that the Hasse-Schmidt derivations form a group under this product

(the non-trivial fact is that inverses exist).

Lemma 2.2.7. If A is a Hasse-Schmidt derivation on R with inverse A/,
then the endomorphisms €™ and e of R[[t] are mutually inverse ring

automorphisms of R[[t]].

Proof. This is obvious since:

EA o A HARA)

’ ’
I AlRA) _ AT o A

=ef = iRy = et =e" oe
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Chapter 3

Differential Operators on

Etale Extensions

The aim of this chapter is to show that if R is smooth over a field k, then
D(R/k) = HS(R/k) and R is a product of D-simple domains. Inspired by
Grothendieck’s treatment of differential operators in EGA [12], we prove
these results in a characteristic independent manner by considering the be-
havior of differential operators on étale extensions. Our approach to differ-
ential operators and étale maps mimics that of Masson [30].

We also show that Hasse-Schmidt derivations extend over formally étale

extensions and settle a question due to Brown and Kuan.

3.1 FEtale extensions

This section collects some definitions and standard results about étale and
smooth extensions that will be used later. Motivated by pragmatic consid-

erations, our account is extremely terse. For more details we refer the reader
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to Grothendieck’s very detailed account in EGA [12, chapters 17 and 18; in
French] or Milne [36, in English].

Definition 3.1.1. Let A 5 B be a homomorphism of commutative rings.
The map f is formally smooth if the following condition holds. For all

commutative diagrams

B Y/

A

C

v

where C' is a commutative ring, J C C is a nilpotent ideal and u, v are ring
homomorphisms, there is a ring homomorphism «' : B — C lifting u; that

is, v’ completes the diagram

B Y/

The map f is formally étale if and only if there is one and only one such /.

Remark 3.1.2. If A, B and C are all algebras over a commutative ring k
and the maps f, u and v are all k-algebra homomorphisms, then the lifting

u’ of u is also a k-algebra homomorphism.

Definition 3.1.3. The ring map A 4, B is smooth (respectively, étale) if B
is an A-algebra of finite type and f is formally smooth (respectively, formally

étale).
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Remark 3.1.4. The reader is warned that there are several different con-
ventions in use in the literature regarding the terms smooth and formally
smooth. Matsumura [31] speaks about formally smooth maps with reference
to topologies on the rings. Our definition of formally smooth is equivalent to
Matsumura’s definition of smoothness: a formally smooth map with respect
to the discrete topologies. Our notion of smooth is sometimes refered to as

smooth of finite type.

Lemma 3.1.5. If A i> B is formally smooth (respectively, formally étale)
and S and T are multiplicatively closed subsets of A and B such that f(S) C
T, then the corresponding ring map S~YA — T—'B is also formally smooth
(respectively, formally étale). In particular, if S is a multiplicatively closed

subset of A, then the map A — S™'A is formally étale.

Proof. Suppose that A i> B is formally étale. Let C be a T~!B-algebra and
J C B be a nilpotent ideal. Suppose that we have the following diagram of

maps:

T-'B clJ

S1A

This induces the following diagram:

B T-'B c/J
f
A S-14 C



Since A i> B is formally étale, there is a unique ring homomorphism B - C'
fitting into the diagram above. Since the map B — C'/J factors through
T~ !B, the image of T" under this map lies in the set of invertible elements
of C/J. Since J is a nilpotent ideal, every lifting of one of these elements is
an invertible element of C'. It follows that « induces a ring homomorphism
T'B % ¢ making the first diagram commute. Because the map u is
unique, so is the map u'. So the extension S~'A — T~ !B is also formally

étale. The other assertions are proven in a similar way. O
Lemma 3.1.6. Formally smooth morphisms are flat.

Proof. See Milne [36, Proposition 3.24]. O
Lemma 3.1.7. If A — B is étale, then Qp, = 0.

Proof. See Milne [36, Proposition 3.5]. O

Lemma 3.1.8. If A — B is smooth and A is reqular, then B is also regular.

Proof. See Milne [36, Proposition 3.17]. O

Smooth morphisms over a field factor locally through a formally étale

morphism.

Theorem 3.1.9 (Grothendieck [12, 17.15.9]). Let R be a smooth alge-
bra of finite type over a field k and let m be a mazimal ideal of R. Then
there exists a regular system of parameters xi,... ,z, for Ry, such that the

map k — R, factors as

k= k[xi,... 2] = Rp,
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where klz1,...,z,] — Ry, is formally étale. Note that the elements
Z1,...,%, are algebraically independent so that k[zy,...,zy] is a polyno-

mial ring.

3.2 Differential operators on étale extensions

Rings of differential operators are particularly well-behaved for étale exten-

sions.

Proposition 3.2.1. Let A — B be an étale extension of rings. Then

D(B/A) = B.

Proof. Since. A — B is étale, Qp,, = 0. Then Dery(B) =
HomA(Q}B/A,B) = 0 and D'(B/A) = B ® Dera(B) = B. Now we show
that D"(B/A) = D" '(B/A). Let J be the kernel of the multiplication map
B®4 B — B and recall that D"(B/A) = {6 € Enda(B) : J""'0 = 0}. Let
6 € D*(B/A). Then J"~'0 € D'(B/A) = B, so J"0 = J(J"~'6) = 0. Then
6 € D" Y(B/A). So D"(B/A) = D" '(B/A), and by recursion, we get
D™(B/A) = B. Since this holds for all n, D(B/A) = U,D,(B/A) =B. O

This suggests that the rings D(A/k) and D(B/k) may be related. Pur-

suing this idea, we first study the relation between P} Ik and P Ik

Lemma 3.2.2. If A i> B is a formally étale extension of k-algebras, then

there is a unique differential operator de D%(B,B ®a P}) of order < n
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making the following diagram commudte.

B
/ AN 1dp®pA

N
— - B P7%
4 Fodn ® LA

Here the map py : Py — A is the map P} — ? = A,

Proof. Because the map f is formally étale, it is also flat (Lemma 3.1.6).
So the kernel K of idp ® p4 is just B ® # Then K is nilpotent and
K™t = 0. Since f is formally étale, there is a unique ring homomorphism
d making the diagram commute.

It remains to show that d is a differential operator of order < n. Since d

is a ring homomorphism,

[d,b] sy = (dxb)(dxy) —bd*vy=(dxb—b®1)d*~,
for all b,y € R. Thus, [d,b] = (d*b—b® 1)d for all b € R. By induction,
we have

[+ [[d, bol, b1] -]y bu) = (d % bg — bo @ 1) -+ (d % by, — by, @ 1)d.

By the commutativity of the top triangle in the diagram, dxb—b®1 € K for
all b € B. Thus, [---[[d,bo],b1] - -], bn] € K" = (0) for all by, ... b, € B
and d is a differential operator from B to the B-module B ® 4 P} of order

<n. ]

Theorem 3.2.3. When AL B isa formally étale extension of k-algebras,
the pair (J,B ®a P3) satisfies the same universal mapping property as

(d%, PR). In particular, the B-modules B ® 4 P} and P} are canonically
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isomorphic via a B-module map ¢p making the following diagram commute.

Pg
Proof. Tt is sufficient to show that there is a B-module homomorphism B® 4
Py ¢z Pz such that ¢p o d = d%. To see that this is sufficient, let B 2
B be a differential operator of order < n. There is a unique B-module
homomorphism Pp 2 B such that vp o d% = D. Composing with ¢p, we
get a map B ®4 P} WDi(fB B such that yp o ¢p o d=D.

B Pg

n
YD B ®a PA

éB
Now we show that the map yp o ¢p is the unique B-module homomor-
phism B ®4 P} L B such that 9o d = D. To this end, suppose that 1 is

such a homomorphism:

d

B®a Py

B
Because P} is generated as an A-module by the image of d'y, B ® 4 P} is

10d’ ~
generated as a B-module by the image of A ®—¢ B®y P}. Sincedo f =
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1®d, B®a P} is generated by the image of d. Since both the B-module
homomorphisms ¢ and yp o ¢ agree on the image of J, they must agree on
all of B®4 P}: ¢ =ypo¢p. Thus, (CZ, B ®a P}) satisfies the same universal
mapping property as (d%, Pj;). Using the universal mapping properties, we
see that if the homomorphism ¢p exists, then it is an isomorphism.

The composition d o f : A ENy? dé Py is a differential operator in
D4 /x(A, B ®4 P}). So by the universal property of (d7, P}), there is a
unique A-module homomorphism P7} % Pg such that ¢4 od’y = dj o f.
Because Hom and ® are adjoint functors, there is a unique B-module ho-

momorphism B ® 4 P} ¢z P} such that ¢po (1 ®id) = ¢a.

P 1wid_p o P
B
Py

We claim that ¢pod = d%. Consider the following diagrams.

B B B B

f b 1B and b . 1B
¢pod dp

A—— > Pg A—— P

dyof dyof

In these diagrams, up : Py — B is the map Pp — I;—é = B.

The second diagram is clearly commutative. Because A i> B is formally
étale, the lifting of B 1. BtoB— Py is unique. If the first diagram is

commutative, this guarantees that ¢ od = dy.
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Now we check that the first diagram is commutative. We start with the

lower triangle. For a € A we have

(¢podof)(a) = ¢p(d(f(a) = ¢p(10d4(a) = a(dh(a)) = dh(f(a) = (dhof)(a).

For the upper triangle, note that

(npo¢p)(l@di(a)) = np(dp(f(a) = fla) = (idp ® pa)(1 © d’(a)),

so upo¢p and idp ® p14 agree on tensors of the form 1 ® d’(a) € B®4 P}.
Because both the maps pup o ¢p and idp ® pa are B-module maps and
B® P} is generated as a B-module by tensors of the form 1®d%(a) (a € A),

upodp = idp®ua. Now it is easy to see that the top triangle also commutes:
ppo(ppod) = (idg ® pa)od=idp.
The map ¢p satisfies ¢ o d= d. U

Now we can show that under very mild hypotheses on an étale extension
A — B of k-algebras, D(B/k) = D(A/k) ®4 B. Recall that an R-module

M is finitely presented if there is an exact sequence
Fi—=>Fy— M-—=0

where Fy and F) are free R-modules. It is immediate that any finitely
generated module over a Noetherian ring is finitely presented. In particular,
if A is an algebra of finite type over a field &, then P} Jk is a finitely presented
A-module for all n. If B = S~'A, then Pg/k = PZ/k ® 4 B because Theorem
3.2.3 can be applied to the formally étale localization map. So Pj Jk is finitely
presented over B. Finitely presented modules have some particularly nice
homological properties. For example, we have the following well-known

theorem.
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Lemma 3.2.4. Let R — B be a flat map of rings and let N be a finitely
presented R-module. Then for any R-module M, there is a natural isomor-
phism

Homp(N,M)®r B — Homp(N ®r B,M ®pr B)

given by g ® b — gy, where gy(n @ b') = g(n) @ bb'.
Proof. Since N is finitely presented, there is an exact sequence
Fy - Fy— N —0,

where the Fy and F are finitely generated free R-modules. Apply the two
functors Homp(__,M)®r B and Homp(__ ®r B, M ®g B) and use the fact

that B is flat to obtain the sequences

HomR(N,M) ®RB(—>H0mR(F0,M) Qr B HomR(Fl,M) ®r B

| | |

HomB(N Qr B,M Qg B)(—> HomB(FO ®B,M®RB) —>H0mB(F1 ® B,M ®pr B)

Because the two arrows on the right are isomorphisms, so is the arrow on

the left. n

Theorem 3.2.5. If A is an algebra essentially of finite type over a field
k and A — B is a formally étale extension of k-algebras, then D™(B/k)
is canonically isomorphic to D"(A/k) ® a4 B. Furthermore, D(B/k) =
D(A/k) ®a B.

Proof. By Theorem 3.2.3,

D"(B/k) = Homp(Pg, B) = Homp(P} ), ®4 B, B).
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Also, we can apply Theorem 3.2.4 since P} Ik is finitely presented (as A is

essentially of finite type over a field). This gives,
Homp(P}, ®4 B, B) = Homa(P} ), A) ®4 B = D"(A/k) ®4 B.

Thus, D"(B/k) = D"(A/k) ®4 B. This implies the last assertion because

direct limits commute with tensor products. O

We end this section by examining the behavior of Hasse-Schmidt deriva-

tions over formally étale extensions.

Theorem 3.2.6. Let A 5 B be a formally étale extension of k-algebras
and suppose that A = {6,} C HS(A/k) is a Hasse-Schmidt derivation on
A. Then there exists a unique Hasse-Schmidt derivation , = {y,} on B
such that f o dy, =ypo f.

Proof. Fix a non-negative integer m. Let A = (:,‘,E[i]l]) be the natural inclu-

sion, t(a) = a, and note that A 1, B extends to a map % EN %. Let
BI[t]]

G 2, B be the quotient by ¢B[[t]]. Then we have the map foe2 o, and

the following diagram.

id
B— 8 B
\\
\\ eF
f \:n g
“a
B[]
A s,

Here, the ring map el exists because B is formally smooth over A.

. F . . . . F .
Forcing e,, to commute with multiplication by ¢, we extend e,, to a ring

map el : (ﬂ[ﬂ]) — (ﬂ[ﬁ). Furthermore,




and (goel))|p = idg. By Theorem 2.2.6, el gives rise to a Hasse-Schmidt
derivation , ,, = {5}~ of order m that extends Soo ;(A). Because A ENY:
is formally étale, the maps el are unique. This forces Smm (s m) =, my for
m’ < m. The Hasse-Schmidt derivations , ,, give rise to a limiting Hasse-
Schmidt derivation, , = {7,}%°,, that extends A. Because the liftings e},

are unique, so is , . ]

This extends a result observed by both Brown [5] and Ribenboim [40]:

Hasse-Schmidt derivations extend to localizations.

Corollary 3.2.7. If A = {6,} is a Hasse-Schmidt derivation on A over k
and T is a multiplicative subset of A, then there is a unique Hasse-Schmidt

derivation on T~ A extending A.

Proof. This follows immediately from Theorem 3.2.6 because the localiza-

tion map A — T~ 'A is formally étale. O

Brown and Kuan [7, page 405] raise the question of whether every Hasse-
Schmidt derivation on a localization 7' A is extended from A. This is not

the case, as the following example shows.

Example 3.2.8. Hasse-Schmidt derivations on k|z, v, é] correspond to ring
endomorphisms of k[z, y, %][[t]] that send ¢ to ¢ and project to the identity on
klz,y, é] Such an endomorphism 6 is completely determined by the image

of x and y. Let

9(]7) = z+d; (:L‘)t -+ d2($)t2 4+ .. and
Oy) = y+di(y)t+ dQ(y)tQ R

Because x and y are algebraically independent in k[z,y, i], we are free to

choose any values for d;(z),d;(y) in k[z,y, é] Set d;j(y) = 0 and dy,(z) =
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y~™". The map @ is just e’® where A = {d,,} is a Hasse-Schmidt derivation
on k[z,y, é] Such a Hasse-Schmidt derivation is the extension of a Hasse-
Schmidt derivation , = {v,} on k[z,y] if there exists a g € k[x,y] such that
, = gA = {g"d,}. Since the powers of y required to rationalize d, grow

exponentially, no such element g exists.

3.3 Differential operators on smooth extensions

The results concerning differential operators on étale extensions can be ap-
plied to yield information regarding differential operators on smooth ex-
tensions in arbitrary characteristic. In characteristic zero, this material is
well-known, though our approach differs from the standard treatment (see

[33])-

Theorem 3.3.1. Let R be a smooth algebra of finite type over a field k.
Then the ring of differential operators equals the Hasse-Schmidt algebra
D(R/k) = HS(R/k).

Proof. Let m be a maximal ideal of R. By Theorem 3.1.9, there exists a

regular system of parameters zi,... ,x, € R,, giving rise to the following

diagram.

A =k[z1,... ]

k R,
where the injection F' is formally étale and the ring A is a polynomial ring

with coefficients in k. From Theorem 3.2.5,
D(Rp/k) = D(A/k) @4 Bin. (%)
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In example 2.2.2 we saw that
D(A/k) = HS(A/k).

By Theorem 3.2.6, we can lift each Hasse-Schmidt derivation on A to a
Hasse-Schmidt derivation on R,,. Because the Hasse-Schmidt derivations on
A generate D(A/k), their liftings over F' generate the R,,—algebra D(R,,)
(using (*)). So the algebra generated by the Hasse-Schmidt derivations on A
lifts to a subalgebra H of D(R,,) that equals D(R,,). Since H C HS(R,,) C
D(Ry,), HS(Rm) = D(Ry,) for all maximal ideals m of R. Using Corollary
3.2.7 and the same argument, each Hasse-Schmidt derivation on R extends

to a Hasse-Schmidt derivation on R, and
HS(R) ®r Ry, = HS(R,) = D(Rp).

Now consider the R-module HS"(R/k) = D"(R/k)NHS(R/k). Because

Pp s finitely presented, D™(R/k) = HomR(Plg/k, R) is a finitely generated

R-module. Now ;;(R/k)

TS (RJk) is locally zero:

D™R/k)
HS"(R/k)

D"(R/k)®r Ry D"(Ru/k)

HS ™ (RIK) ©p Ry HS (B JB)

Qr Ry =

So D™(R/k) = HS"™(R/k). Because this holds for all n and D(R/k) =
lim D"(R/k), the ring of differential operators D(R/k) equals its subalgebra
HS(R/E). O

Corollary 3.3.2. If R is a smooth k-algebra of finite type, where k is a field

of characteristic zero, then D(R/k) is generated by derivations.

Proof. In characteristic zero, HS(R/k) = der(R/k). The result now follows
from Theorem 3.3.1. O
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Remark 3.3.3. From the proof of the theorem, we see that the theorem
and its corollary also hold for k-algebras R that are the localization of a

smooth k-algebra of finite type.

Now we can show that if R is a smooth algebra over a field, then R is a

finite product of D-simple domains.

Corollary 3.3.4. If R is a smooth algebra over a field k, then R is a finite

product of D-simple domains.

Proof. Since R is smooth over a field, R is regular (Lemma 3.1.8). Then
R is a product of domains. If a product of rings is smooth, then each
factor is smooth, so R is a product of smooth domains. Now without loss
of generality, we may suppose that R is a smooth domain.

Now we reduce to the local case. Suppose that R,, is D(R,,/k)-simple
for all maximal ideals m of R. If I C R is a D(R/k)-stable proper ideal,
then there is a maximal ideal m containing I. Because R,, is a domain,
IR, is a nonzero D(R,,/k)-stable proper ideal, a contradiction.

So suppose that (R,m) is a localization of a smooth k-algebra. Let
z1,...,2q be a regular system of parameters for m. Suppose that I is an
ideal of R and that r» € I is nonzero. Then there is some integer N such

that » € m" \ m*1. Using multi-index notation,write

[r — Z cst®] € mN T,
[s|=N

where the c¢g are units (or zero) and one of the cg is nonzero, say ce. By

Theorem 3.3.1, there is a differential operator D, such that D has order < N

D(%) = (Z) 25,
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The operator D is the extension of the operator

1 94 1 o
el 02! en! Oz

e

on the intermediate algebra A = k[x] = k[z1,... ,z,] appearing in Theorem
3.3.1. Let t = cg'r € I. Then D(t) = 14+D(m"*1). Since D has order < N,
D(mN*1) C m and so D(t) is a unit in the local ring R. Thus I = R. [
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Chapter 4

Stable Ideals

The D-module structure of the ring R is a very powerful tool in understand-
ing the algebraic structure of both the ring R and its ring of differential
operators D(R). For instance, Smith used the fact that a variant of the
test ideal of R is D-stable to characterize certain strongly F-regular rings in
terms of D-simplicity [47] (these terms are defined in the last section of this
chapter).

A detailed study of the D-module structure of R also has important
implications for Nakai’s conjecture. The Nakai hypothesis, D(R) = HS(R),
puts significant constraints on the D-module structure of R and this leads
to restrictions on R itself. This theme is explored in chapter 6, where it is
the main tool in showing that Nakai’s conjecture holds for varieties whose
normalization is smooth.

To begin, we treat a number of elementary results concerning the struc-
ture of R as a module over the rings der(R), HS(R), and D(R). The next
section deals with the relationship between stability and primary decom-

position. In Theorem 4.2.4, we show that the associated primes of a HS-
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stable ideal are H S-stable and that each HS-stable ideal admits a primary
decomposition into H S-stable ideals. This extends an important result of
Seidenberg concerning der-stable ideals. In the third section, we prove that
Hasse-Schmidt derivations on a ring R extend to its integral closure R’ and
that the conductor ideal of R’ into R is HS(R)-stable. These results will
reappear in our treatment of Nakai’s conjecture. The proofs use the notion
of quasi-integral closure, which is briefly reviewed. The last section sur-
veys Smith’s characterization of strongly F-regular rings in terms of their

D-module structure.

4.1 Elementary results

This section treats a few elementary results about stable ideals. Since
the Hasse-Schmidt algebra HS(R) is an analogue of the derivation alge-
bra der(R), we expect that operations preserving der(R)-stability will also
preserve HS(R)-stability. In general, the persistence of D(R)-stability is a

much more delicate issue.

Theorem 4.1.1. Sums and intersections of HS-stable ideals are HS-stable.
Similarly, sums and intersections of D-stable ideals are D-stable and sums

and intersections of der-stable ideals are der-stable.

Proof. These statements hold for modules over any ring. Stable ideals
are just submodules of R over the appropriate ring (D(R/k), HS(R/k)
or der(R/k)). O

Theorem 4.1.2. Products of HS-stable ideals are HS-stable. Similarly,

products of der-stable ideals are der-stable.
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Proof. Suppose I and J are HS(R/k)-stable ideals and A = {0;}72, is a

Hasse-Schmidt derivation on R. Let 2 € I and j € J. Then
n
On(ig) = 81(i)0n1(j) € IJ. (+)
=0

So products of HS(R/k)-stable ideals are HS(R/k)-stable. The statement
about der(R/k)-stable ideals follows from (x) with n = 1. O

Both products and powers of D-stable ideals can fail to be D-stable.

Example 4.1.3. The ideal P = 2R C R = 24 is D(R/k)-stable. This

follows from Theorem 4.2.1 since xR is a minimal primary component of
the D-stable ideal (0) = zyR. Now we claim that the operator vy = x%aa—;
induces a differential operator on R. It is enough to check that v stabilizes
the monomial ideal (zy). If a and b be non-negative integers, then

1+a
,y(wl-l-ayl-i-b) — ( ) >way1+b e (:ch),

since either zy divides z%y'*® or (1;“) = 0. Now it is easy to see that the

ideal P? is not D-stable because

yxx? =z ¢ P2

4.2 Stability and primary decomposition

Theorem 4.2.1. The minimal primary components of HS-ideals are HS-

ideals. Similarly for D(R) and der(R).

Proof. Let A(R/k) be any of the R-algebras D(R/k), HS(R/k) or der(R/k).
Let I C R be an A(R/k)-stable ideal. The primary component of I corre-
sponding to the minimal prime P of I is IRp N R. Note that IRp is stable
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under the action of A(R/k) ® g Rp. Take 8 € A(R/k) and b € IRp N R.
Then 0 xb € R. The operator # ® 1 is in A(R/k) ® g Rp and

)+ (bel)=(0+xb)®1cl®rRp=IRp.
So@xbeIRpNRand IRp N R is A(R/k)-stable. O

The aim of this section is to show that every associated prime of a HS-
ideal is H S-stable. Not every primary component of a H S-ideal need be
H S-stable (as we will show in Example 4.2.9), but every HS-ideal admits
a primary decomposition into HS-stable ideals. In order to establish these
results, we will need some elementary facts about the extension of (primary)
ideals of R to R[[t]].

From now on, unless explicitly stated otherwise, we will always assume
that the commutative rings we discuss are Noetherian. This guarantees that
primary decompositions exist. Since any ideal I of R is finitely generated,

the extension of I to R[[t]] admits a simple description:

o
I[[t]] :== I(R[[t]]) = {Z ant™ : ap € I}.
n=0
From this, it easily follows that

(I :r DI = (L[] :rygey JIIEID),
and
(I D[] = I1]] N T[]
Now let A = {6;} C HS(R/k) be a Hasse-Schmidt derivation and let T

be an ideal of R stable under the action of each component §; of A. For

aecl,

e (a) = (Z ti5i> *aq = Zti(éi xa) € I[[t]. (%)
i=0

1=0
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Because et®

commutes with multiplication by ¢, () implies that e!2 (I][t]]) C
I[[t]]. Conversely, suppose that e'®(I[[t]]) C I[[t]]. Then (*) shows that for
a € I, §; xa € I. Tt follows that §;(I) C I for all components ;. We

summarize these observations in the following lemma.

Lemma 4.2.2. Let A = {4;} C HS(R/k) be a Hasse-Schmidt derivation.
An ideal I C R is stable under the action of each d; if and only if I[[t]] is

e!® stable.
For later use, we note that primality extends from R to R][[t]].

Lemma 4.2.3. IfI is P-primary in R, then I[[t]] is P[[t]]-primary in R[[t]].

Proof. Tt is easy to check that the radical of I[[t]] is P[[t]] and that P[[¢]] is
a prime ideal of R][[¢]]. It remains to show that P[[t]] is the only associated
prime of I[[t]]. Because P is an associated prime of I, there exists € R, such
that P = (I :g z). Then P[t]] = (I[[t]] :g[ 2), so P[[t] is an associated
prime of I[[t]]. Suppose that Q C R|[[t]] is another associated prime of I[[¢]].
Because the radical of I[[t]] is P[[t]], P[[t]] C Q. Aiming for a contradiction,
suppose that P[[t]] # @ and take an element a = a;t’ + a; (1t + -+
of @\ P[[t]] with a; ¢ P. Because @ is associated to I[[t]], there exists
y = y;t) +yj it + -+ in R[[t]] \ I[[t]] such that

Q = (I[[t]] ke v)-

Without loss of generality, y; & I. The equation ay € I[[t]] forces a;y; € T
and this contradicts our assumptions on a;, y; and the hypothesis that I is
P-primary. It follows that P[[t]] is the only associated prime of I[[t]] and so
I[[t]] is P[[t]]-primary. O
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Now we are ready to prove the results about H S-ideals alluded to earlier.
The following theorem generalizes results of Seidenberg [44] about der-stable

ideals. A partial proof of parts of the theorem also appeared in [5].

Theorem 4.2.4. The associated primes of HS(R)-stable ideals are HS(R)-
stable and every HS(R)-stable ideal admits a primary decomposition with
HS(R)-stable components.

Proof. The proof follows Seidenberg’s original line of argument. Let I be a

HS(R)-stable ideal and let A be a Hasse-Schmidt derivation. Write
I'=qn---Ng,
where each ¢; is p;-primary. Then

It} = qult 0 - N ogs[[2]],

and each ¢;[[t]] is p;[[t]]-primary by Lemma 4.2.3. Applying the automor-
phism e’® we have e2I[[t]] = e®qi[[t]] N --- N e!Pqs[[t]]. Also, e'qi[[t]]
is e'®p;[[t]]-primary. Because I is HS(R)-stable, Lemma, 4.2.2 forces I[[t]]
to be stable under the action of e!® and so e'® permutes the p;[[t]]. Say
e!®pi[[t]] = pj[[t]]. Then for a € p;, e®(a) = a + d1(a)t + --- € p;[[t]], so
a € p;. It follows that p; C p;. If A’ is the inverse to A (in the group of
Hasse-Schmidt derivations), then by Lemma 2.2.7, e!®" is the inverse auto-
morphism to e'®. Now p;[[t]] = etA,pj[[t]], so pj C p;. Therefore, p; = p;
and each prime p; is stable under the action of the components of A. As A
was an arbitrary Hasse-Schmidt derivation, each p; is HS(R)-stable.

To show that the HS(R)-stable ideal I admits a primary decomposition
with HS(R)-stable components, suppose that p;’ C ¢; and fix the integers
r;. Then

I[t] = qullZ]} N - Nogs (2],
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and (p;[[t]D™ = (pi)"'[[t]] € ql[t]]. Consider all representations I[[t]] =
Q1N---NQs with Q; a p;[[t]]-primary ideal and (p;[[¢]])" C @Q;. Write the

intersection of all these representations as
It =q N Ngs

Then g is pil[f]-primary, (pil[])"* C G, and if I[[f]] = ¢} N -+~ N} is a

representation of I[[t]] of the kind mentioned above, then ¢; C ¢;. Applying

the automorphism e'® we see that ¢ C e/2(g;). Similarly, §; C e'®'G. So
¢ = e"®(q;) and ¢ is stable under the action of e!®.

Now we show that ¢; = ¢}[[t]] for a p;-primary ideal ¢}. Let ¢, = ¢; N R.
Then ¢} is p;-primary, p;* C ¢, and ¢}[[t]] C g;. From I[[t]] N R = I, we see
that I[[t]] = ¢|[[t]] N --- N ¢.[[t]], and from the minimal property of the §; we
see that ¢; C ¢}[[t]]. Hence g; = ¢}[[t]]. Now g;[[t]] is stable under the action

of e'®, so ¢ is HS(R)-stable. O

Theorem 4.2.4 leads to an easy proof that the radical of a HS-ideal is
H S-stable.

Corollary 4.2.5. The radical of a HS-stable ideal is HS-stable.

Proof. The radical of an ideal is the intersection of its minimal primes. By
Theorem 4.2.4, the minimal primes of a H S-stable ideal are themselves H S-

stable and by Theorem 4.1.1 their intersection is also HS-stable. U

Since the Hasse-Schmidt algebra agrees with the derivation algebra in a
ring of characteristic zero, we immediately recover Seidenberg’s results on

derivations.

Corollary 4.2.6 (Seidenberg [44]). If R is a ring of characteristic zero,
then the associated primes of der(R)-stable ideals are der(R)-stable and

o6



every der(R)-stable ideal admits a primary decomposition with der(R)-stable

components. Moreover, the radical of a der-stable ideal is der-stable.

Example 4.2.7. In prime characteristic, the minimal primes and the rad-
ical of a der(R)-stable ideal need not be der(R)-stable. For example, let
R = ]%ELI)] Then 2 € Der(R) and (0)R = 2PR is Der(R)-stable but

(0)R = xR is not Der(R)-stable. This provides another example of a

derivation % that is not the first component of a Hasse-Schmidt derivation

(cf. Example 2.2.3).

The minimal primes and the radical of a D-stable ideal may each fail to

be D-stable.

Example 4.2.8. We study a nonreduced scheme supported on a single

point. Consider R = %, where k is a field. Then we claim that
2 T

D(R/k) = Endi(R). Note that if 6 is any k-endomorphism, then for any

70y« ,ToN € (T1,...,2ZN), we can expand

[. . [[0,’)"0],’)"1], e ,’I“QN]

into a sum of terms of the form +r;, ---r;0r;,  ---7r;,ny. These terms are
zero since any power of any z; is zero in R. So Endi(R) = D(R/k). Since
R is a finite dimensional k-vector space, Endy(R) is a matrix ring and it is
simple (see Lam [28, Theorem 3.3]). Thus, D(R/k) is a simple ring.

Now we claim that R is a simple D(R/k)-module. If I C R is a proper
D-stable ideal, then Annpg)(R/I) is a proper two-sided ideal of D(R).
Since D(R) is a simple ring, Annpp)(R/I) = 0. But I(R/I) =0,s0 1 =0
and R is a simple D(R/k)-module.

In this example (0) is a D-ideal, but its only associated prime \/@ =

(Z1,...,Zn) is not a D-ideal (as R is D-simple).
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The next example shows that not every embedded primary component

of a HS-stable ideal is H S-stable.

Example 4.2.9. Consider the ring R = (I;[f;ﬂy;) Then (0) is a D-stable

ideal with primary decomposition (0) = (y)RN (z)R. Here, (z) is a minimal
component and (y) is an embedded component (with radical (z,y)). It is
easy to check that 0 = 20,0, — 0, € D(R): (20,0, — 8,) x ¥ = 0; for
%’ € (22, zy), (20,0, — ) * x%y® = (ab — b)x%’ ! and 2% ! is zero
unless ¢ = b = 1, in which case, ab — b = 0. On the other hand, y is in
an embedded primary component ¢ = (y) of (0) and 0 xy = —1 &€ ¢q. So
embedded primary components (and embedded associated primes) need not

be D-stable. This example is independent of the characteristic of k.

Still considering the same ring, R = (’;Q‘”fy]), we treat HS-stability. Set
op = x"%a‘%. Then we claim that A = {6;}7°, is a Hasse-Schmidt deriva-
tion on k[z,y| that restricts to a Hasse-Schmidt derivation on R. First we
check that I = (22, zy) is stable under §,. It is enough to check that &,

sends the generators of I into I. Now &, (2?) = 0 and

Ty if n=0,
on(zy) = x2 ifn=1,
0 otherwise.

Now we check that A defines a Hasse-Schmidt derivation on k[z,y]. Since

each §; preserves total degree, it is sufficient to check that §,(a8) =
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> i 0t()d,—¢(B) for monomials o and S

On(zty’ - ay?) = op(zvFey’t)

(b+d) xa+c+n b+d—n
n

)
_ [Z?:o (%) (nit)] gotetnybtd—n
_ Z?:o (g)$a+tyb—t (nlit)xc-l-n—tyd—n-i-t
= 2o 0u(zy")dn—e(zy).
An equally easy proof that A induces a Hasse-Schmidt derivation on R
results from the observation that d, = 0 for n > 2.
The ideal (0)R = (22, zy)R is HS(R/k)-stable and admits a primary
decomposition

(#*, zy)R = (z) N (2%, y),

where (22, y) is an embedded primary component. Now

51(y) = ﬂ”a% cy=a ¢ (@ y),

so not every embedded component of a H S-stable ideal is H S-stable. Also,
since §; is clearly a derivation, the embedded component (z2,%) is not
der(R/k)-stable.

Theorem 4.2.4 guarantees that I admits a primary decomposition into

H S-stable ideals. For instance,
I =zRNy*R.

Here, R is a minimal primary component of I and hence xR is H S-stable.
The ideal 4R = (22, zy,y*)R = (z,y)?R is clearly primary to the homoge-
neous maximal ideal m = (z,y). Since m is an associated prime of I, m is
HS-stable and by Lemma 4.1.2, y?R = m? is HS-stable. The components
of this primary decomposition are also der-stable. Because every power of

m is HS-stable, every Hasse-Schmidt derivation on R must preserve degree.
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The ideal quotient behaves well with respect to H S-stability and der-

stability but not with respect to D-stability.

Theorem 4.2.10. If I and J are HS-stable ideals, then (I : J) is a HS-
stable ideal. Similarly, if I and J are der-stable ideals, then (I : J) is a
der-stable ideal.

Proof. Let A = {6;} be a HS-derivation. Take a € (I : J) and j € J. We
prove the statement

dn(a) € (I:J)

by induction on n. The case n = 0 is obvious since dy is the identity map.
To establish the case n = N, we may assume d,,(a) € (I : J) for m < N.

Apply dn to the product ay:

on(aj) = 2N 05(a)dn-s(j)
= on(a)j+dn-1(a)d1(j) +--- 4+ 01(a)dn1(j) + adn(j)

el

()

/

Since aj € I and I is HS-stable, dx(aj) € I. Then (x) forces on(a)j € I.
As j was an arbitrary element of J, ony(a)J C I and dn(a) € (I : J). So
(I : J) is HS-stable. The assertion about der-stable ideals has a similar

proof. O

The ideal quotient of two D-stable ideals need not be D-stable.

Example 4.2.11. Let R = % The minimal component of (0) is (z)

and so (z) is D-stable. However, ((0) : (z)) = (z,y) and we showed in
Example 4.2.9 that (z,y) is not D-stable.
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4.3 The conductor is HS(R)-stable

Seidenberg showed that derivations on a characteristic zero Noetherian do-
main, R, extend to the integral closure, R’, of R in its field of quotients, K.
In this section, we extend this result to reduced rings of arbitrary charac-
teristic. More precisely, we show that components of Hasse-Schmidt deriva-
tions extend to the integral closure R’ of R in the total ring of quotients
L = S7'R, where S is the multiplicative set of all nonzero-divisors of R and
R is a reduced Noetherian algebra of finite type defined over a ring k. This
is then used to prove that the conductor C of R’ into R, is stable under the

action of the components of the Hasse-Schmidt derivations of R.

4.3.1 Quasi-integral closure

We begin with some preliminary remarks on quasi-integral closure. An
element a € L is said to be quasi-integral over R if there exists some nonzero-
divisor b € R such that ba™ € R for n = 0,1,.... Recall that a is integral
over R if a satisfies a monic equation with coefficients in R. In Noetherian

rings, the two concepts are equivalent.

Proposition 4.3.1. If R is Noetherian then a € L is quasi-integral over R

if and only if a is integral over R.

Proof. Suppose that a is integral over R. Then there is some relation of the
form

a"+ra” a2 4, =0,

where each r; € R. Write a = % and let b = s" !. Then ba* € R for

kE = 0,1,... ,n — 1. The relation above says that a" (and higher powers
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of a) can be written as an R-linear combination of {1,a,... ,a" '}, so it
follows that ba® € R for all k.

Conversely, assume that a is quasi-integral over R. Then
(b, ba,ba’,...)

is an ideal in the Noetherian ring R, and so it is finitely generated. Then

there is some n for which .
n—

ba™ = g r;ba’,
i=0

where each r; € R. Since b is not a zero-divisor, this gives the equation:

n—1
a" = g ria’,
i=0
and so a is integral over R. O

We will use the notion of quasi-integral closure rather than the notion of
integral closure. Since all our rings are assumed to be Noetherian, these are
equivalent; however, the definition of quasi-integral closure is better behaved

under the action of Hasse-Schmidt derivations.

4.3.2 Hasse-Schmidt derivations extend

Theorem 4.3.2. Let R be a reduced Noetherian k-algebra and let R’ be its
integral closure in the total quotient ring L of R. If A = {d,} is a Hasse-

Schmidt derivation on R, then A extends to a Hasse-Schmidt derivation on

R'.

Proof. Each d,, extends to a map of the total quotient ring to itself. One can

check this directly or just use Corollary 3.2.7. As in chapter 2, this enables
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us to define the map E = e'® : L[[t]] — L[[t]]. This is the unique k[t]-linear

ring homomorphism such that

for each ¢ € L. Note that since A is a Hasse-Schmidt derivation on R,
E(R[[t]) € R[[]].

Let a € R'. Then by Theorem 4.3.1 a is quasi-integral over R, so there
exists a nonzero-divisor b € R such that ba™ € R for all n. Because F is a
ring homomorphism, E(b)E(a)"™ = E(ba™) € R|[[t]] for all n. Now,

n
B0 - o = Y (07 () (B0 B P € Rl
5—0 —_—
ER([t]] ER|[t]]

The coefficient of the lowest order term in # in this expression is b?(dy(a))”
and the expression says that this is in R. Since b is a nonzero-divisor in R,
so is b%. Thus, dy(a) is quasi-integral over R. Then d;(a) is integral over R:
di(a) € R'.

Now we finish the proof using induction. Suppose that bQidi(a)” € R for

all n and for 7 < k. Then

b T E(b)(E(a) — Y42) dy(a)" =
Z (—1)™ p(i)[ba’]|[p2d1 (a)] - - - [12° " di(a)*—][E(b) E(a)™] € R[[t]],

do+-+ip=n

n!

TIREE The coefficient of the lowest order

where n(i) = n(ip,i1,... ,ix) =
term in ¢ in this expression is ka(dk(a))” and the expression says that this
is in R. This induction forces d;(a) to be quasi-integral (and hence integral)
over R for all ¢. Thus, each component of A extends to R’ and A extends

to a Hasse-Schmidt derivation on R'. O
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The conductor of R’ into R is defined to be
C={c€eR: cR CR}.

Note that C'is an ideal of both R and its integral closure R'. We deduce that
the conductor is HS(R/k)-stable from the fact that Hasse-Schmidt deriva-

tions extend to the integral closure.

Corollary 4.3.3. The conductor of a reduced Noetherian k-algebra R 1is
HS(R/k)-stable.

Proof. Suppose that ¢ € C and s € R'. Let {d;} be a Hasse-Schmidt

derivation on R. Then
di(cs) = cdi(s) + di(c)di—1(s) + -+~ + di(c)s € R.

Because d;(s) is in R', induction on 7 shows that d;(c) € C. O

4.4 D-stability and strong F-regularity

In the next chapter, our results on D-stability will be applied to show that
varieties with smooth normalization satisfy Nakai’s conjecture. This section
surveys another topic associated with D-stability: Smith’s characterization
of strongly F-regular rings [47].

When R is a ring of prime characteristic p, the Frobenius map, r + 7P,
is a ring endomorphism. This implies that the image of the Frobenius map,
RP, is a subring of R. Furthermore, this process can be iterated: R is an
algebra over the image of the e iterate of the Frobenius map, RP" C R.

Recall that the ring R is said to be F-finite if R is a finite module over
RP (F stands for Frobenius). The ring R is said to be F-split if the map
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RP — R splits as a map of RP-modules. The ring R is strongly F-regular
if for all ¢ not in any minimal prime of R, there is some power p® of the

characteristic such that the RP"-linear map

e

R — R

1 = cC

splits as a map of RP*-modules. It is worth noting that by Theorem 2.1.11,
the splitting R — RP", followed by the inclusion RP° — R is a differential
operator on R.

Strong F-regularity is primarily important because of its connection with
the theory of tight closure; however, the method of reduction to character-
istic p (see Hochster’s appendix in [21]), together with the notion of strong
F-regularity, can be used to obtain information about singularities of char-
acteristic zero varieties. If R is a finitely generated algebra over a field K of
characteristic zero, then there is a finitely generated Z-algebra A such that
R=R,®4 K, where R = @ and R4 = Iﬂ%x[]x]' Then Spec R4 fibers over
Spec Z via the natural map Z — R4. R is said to be of strongly F-regular
type if the fibers over an open dense set of closed points of Spec Z are strongly
F-regular (the fibers have coordinate rings RA®z Z,, of prime characteris-
tic). Recent work of Smith, Hara and Watanabe identify certain singularities
arising in birational geometry with Frobenius-type conditions (see Smith’s
survey of these results in [49]). For instance, log—terminal singularities are
those singularities with Q-Gorenstein coordinate ring of strongly F-regular
type. A normal local ring R is Q-Gorenstein if the canonical module wp
defines a torsion element in the ideal class group.

Smith has shown that strongly F-regular rings R are characterized in

terms of the structure of R as a module over its ring of differential operators
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and its Frobenius power RP. In [47] Smith first shows that an asymptotic
variant of the test ideal, an invariant of R associated with tight closure, is
a D(R)-stable ideal when R is F-finite. This, together with some results on
tight closure, establish the following characterization of strongly F-regular

rings:

Theorem 4.4.1 (Smith [47]). If R is an F-finite ring of prime character-
istic, then R is strongly F-regular if and only if R is both D(R)-simple and
F-split.

Smith and Van den Bergh [51] have used this result and these methods

to study the simplicity of D(R) where R is a ring of invariants.
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Chapter 5

Differential Operators on

Stanley-Reisner Rings

It is often very difficult to give an explicit description of the ring of differen-
tial operators on a variety; however, this is feasible for unions of coordinate
subspaces of affine space. The coordinate rings of such varieties are called
Stanley-Reisner rings. These rings are a fundamental algebraic object that
arise in many contexts: they can be associated to graphs [45] and, more
generally, to simplicial complexes [14]. The monomial grading on a Stanley-
Reisner ring can be used to translate algebraic questions into combinatorial
ones. As well, the grading on a Stanley-Reisner ring R induces a powerful
grading on its ring of differential operators D(R). This allows a complete
characterization of the ring of differential operators on a Stanley-Reisner
ring of arbitrary characteristic, generalizing work of Brumatti and Simis [8]
concerning derivations on Stanley-Reisner rings. The characterization can
be phrased in terms of local cohomology and the generators of the R-module

D(R) can be described in terms of the simplicial complex associated to R.
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The last section treats the D-module structure of Stanley-Reisner rings. We
completely characterize the D-module structure of a Stanley-Reisner ring R

defined over a field in terms of the minimal primes of R.

5.1 Preliminaries

We begin with a few definitions and preliminary results. A monomial ideal

J is an ideal of a polynomial ring k[x] = k[z1,... ,znN] (where k is a commu-

tative domain) that is generated by monomials in z1,... ,zy. If J is such
k[x]

an ideal, we call the quotient ring TX a monomial ring. As we have already

remarked, reduced rings of this type are called Stanley-Reisner rings. If
7 k[x] — @ is the natural projection, then we consistently abuse nota-
tion by writing y for 7(y). For instance, we say that a monomial term is the
product of a nonzero element of £ with a monomial in k[x].

Monomial ideals are prime if and only if they are generated by some
subset of the variables. Monomial ideals are radical if and only if they are

generated by squarefree monomials. Obtaining the minimal primes in a

monomial ring is facilitated by the following well-known result.

Proposition 5.1.1. The minimal primes over a monomial ideal I = ({z*})

are all of the form p = (x;,,... ,z;,) where

(1) Every minimal generator z* of I is divisible by some w;;
(2) Vz;; 3 a minimal generator z# such that z;;|z# and no other z;,
divides z*.
Note that condition (2) is equivalent to saying that the set {z; ,... ,z;, }
is minimal with respect to condition (1).
If R = ®R; is a graded k-algebra, then a differential operator 6 €
D(R/k) is said to have degree d if O(R;) C R;iq for all 7. The
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polynomial ring k[zi,...,zy] is graded by NV and the Weyl algebra

kElz1,... , TN, , %gp—}, ... ] is graded by Z". We write " for the operator
%gp—?. For a € NV, the symbol 02 is to be interpreted as the composition

of these operators: 0 = 07" --- 9.

5.2 Description of D(R)

Set R = M, where J is a monomial ideal of k[z1,... ,zn] = k[x].
To determine D(R/k) it suffices to determine the idealizer of J. The next
result shows that when R is reduced (a Stanley-Reisner ring), it suffices to
determine which terms zP92 are in the idealizer of .J. This is the technical
heart of the description of the ring of differential operators on a Stanley-
Reisner ring. Later, we will give another derivation of the description using
the theory of D-stability developed in chapter 4. The computations in the
proof of the lemma are interesting in their own right; they depend on the

different types of behavior of binomial coefficients in characteristics zero and

p.

Theorem 5.2.1. Let J be a radical monomial ideal of the ring k[z1, ... ,zN],
where k is a commutative domain. Then an element 6 = >_, ka pzP0?
(ka,p € k) is in the idealizer 1(J) of J if and only if each term of 0 is in
I(J).

Proof. Let § = )6y be an element of the Weyl algebra, where 6 is a
differential operator of degree v € Z". Since .J is a homogeneous ideal in
the NV-graded ring k[z1,... ,zx], € I(J) if and only if each graded piece
of 6 is in I(J); that is, if and only if each 6y € I(J). So, without loss of

generality, we can assume that all the terms in 0 = Za,b ka,bxbaa are of
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degree v. Then 0 = Y, o v kaz®TV0?. Aiming for a contradiction, we
can assume that no term of 6 is in I(J).

Pick one term kcztVo® of 0 = > _okaz®TV0?. As this term is

acsS
not in I[(J), there is a monomial z7 € J such that k.z®tVo© x 2 =
ke (Zi) e (Zx )2V & J. As J is radical, J is the intersection of its min-
imal primes. So kezTVOC % 2 is not in some minimal prime P of J. In
particular, 2"V ¢ P. Relabel if necessary to get P = (z1,... ,2q).

Let m = (0,...,0,mg41,...,my) € NV and note that z™ ¢

(1,... ,xq) = P. As 2" € J, "™ € J. Since 6 € 1(J),

0™ =3k, <771> (nd> (77'”1 + de) (nN + mN) gVt e Jc P
a1 aq

2 d+1 an

Together with z7TV+™M = g1tVg™ & P this implies that

Sk (1) (B) (B Y (Y oy
- ai Qq Qd+1 aN

forallm; >0 (i > d+1).
We make some remarks that simplify the sum (5.1). To start, observe

that for each term kaz2tV0? in 6 = 3 o kaz®™V0?, we have a; > n; for

aEsS
1 < d. To see this first note that a; +v; > 0 for all ¢ and so a; > —wv; for all 3.
Then, since kcz¢TVO¢ x 2" & P = (x1,... ,34), we have 2"V & (x1,... ,14)
and so n; + v; = 0 for ¢+ < d. Together with our previous result, this gives
a; > —v; =1; for i < d.

Also, ¢; = n; for each ¢ < d since if ¢; > n; then (Tc’z) = 0 and so
kez®TVO© x 2 = 0 € P (a contradiction).

Now, many of the terms in sum 5.1 are zero, resulting in:

3 e (77d+1 + md+1> (77N + mN) o, )

a a
acS:a1=n1,...,a4=0Nq d+1 N
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for all m; > 0 (i > d+1). Note that this sum is nonempty since k. appears.
Now our proof diverges into two cases, depending on the characteristic

of k.

If the characteristic of k is 0: Let F' = frac(k) be the fraction field of k.

Equation (f) continues to hold in F. The key point is that equation (7)
holds for all (0,...,0,mgi1,... ,my) € NV, so we can think of (f) as a
polynomial in the indeterminates mgy1,... ,my with coefficients in F'. Here
we are using the fact, over a characteristic zero field, (fi) is a polynomial in
the variable z of degree d. Since the polynomial (}) is zero on all natural
numbers, it is the zero polynomial.

The polynomial (71 77+1)... (TN+MN) g an element in the multi-

ad4-1 an
graded ring F[mg41,... ,my]| which has a unique nonzero term of multi-
degree (agyi,-..,an) (its leading term). It follows that the polynomials
("Héjﬁd“) ("N;“Nm]" ) are linearly independent over F. Interpreting (1)

as an equality of polynomials, linear independence implies k. = 0. This
contradicts kcz°tVo® ¢ 1(.J).

If the characteristic of k£ is p > 0: Define a relation on the indexing set S of

the sum 6 = >, ¢ kaz®tV0? as follows. We say a = (ay,...,ay) = b =
(b1,...,bn) if (ags1,--- ;an) < (bgs1,--- ,bn) in the lex order induced by
the following ordering on the integers: n = Zﬁzo nipt < m = ZE:O m;p*
(0 < njym; < p for all i) if (ng,nq,...,n) < (mo,m1,... ,my) in the lex
ordering induced by the usual ordering on the integers 0,1,... ,p — 1.

Let T be the set of indices a which agree with n in their first d components
and such that k,2®TV0? x " & J (that is, ka (Zi) e (ZJI\V’) # 0). This is not
an empty set since ¢ € T'. Note that < restricts to a total ordering on 7.

Let ¢’ be minimal in 7.

Note that ko appears in the sum (). We will show that for a particular
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choice of the m;, the sum (}) has only one summand, k., and so ko = 0.
This will be a contradiction to kez® VO « 27 & J.
Ifae S\T but a; =mn1,...,aq =14, then
kax®tVO? x 2" = kg (77d+1 + md“) e (77N - mN) 2V e T
ad+1 an
Together with z"+V ¢ J, this implies k, ("1 T™a+1) ... ("W F™N) = (. This

ad+41 an

implies that the indexing set in equation (f) simplifies further:

S ka (ﬁd+1 + md+1> (77N + mN) o, (5.2)

acT Gd+1 an
forallm; >0 (i > d+1).
Recall that ¢’ is minimal in 7" under <. Then for large e, m; = ¢, —n;+p°
is nonnegative and equation (5.2) holds, so that

Zka<cld+1+pe> (09”1’6) = 0. (5.3)

a a
acT d+1 N

sps : ! ro_ t /g
Writing base p expansions of ¢, and a;, we have ¢, = Y. cijpj and

a; = Zf:o aijp’ (0 < ayj, c;-j < p). So equation 5.3 becomes

t

A H(Cii“’j) ﬁ(CINJ> ~0. (5.4)

acT joo \dd+1j jmo \ON.j
Here we have used the expansion of binomial coefficients in characteristic p
(Lemma 2.1.10) and the fact that ((1)) =1.
The sum in equation (5.4) has only one nonzero term, indexed by ¢’. This

follows from the minimality of ¢/. To see this, observe that for each a € T,

arcsoifaj<c;foralli=d+1,...,Nandj=0,...,tthena=c
The only instance in which the product (H§:0 (ziﬁz)) . (H§:0 (glxi)) does
not vanish is when a;; = ¢; ; foralli =d+1,... ,Nand all j =0,... ,#

that is, when a; = ¢ for all i > d + 1. This condition is only satisfied by
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c’. It follows that ke is the only term in sum (5.4). This gives ko = 0, a

contradiction. O

Example 5.2.2. Theorem 5.2.1 is not true when the ring R is not reduced.

For example, let R = ( k[z,y]

@ ap-Tg) where p is the characteristic of £ if k£ has

positive characteristic and is an integer > 2 if £ has characteristic 0. Then
((p—1)09 —20102) € D(R). To see this, first note that ((p —1)0s — x0102) *
2N = 0. Now let :Jc“yb € Jwitha>p—1andb>1. Then

((p—1)02 — £0105) * xayb =((p—1)b— ab)acayb*1

and z%’~! € J unless @ = p—1 and b = 1, in which case, (p — 1)b—ab = 0.
So ((p —1)0s — x0102) € D(R). However, (p — 1)02 and —z0,0; are not in
D(R) since they send 2P~y € J to £(p — 1)zP~! & J.

We are now in a position to determine the ring of differential operators

: : — k[x]
on a Stanley-Reisner ring, R = =1

Theorem 5.2.3. Given a Stanley-Reisner ring R = #, an element of the

Weyl algebra zP02 is in D(R/k) if and only if for each minimal prime P of
R, we have either z° € P or 2 ¢ P. That is,
e () P,
zaeP;
where the P; are the minimal primes of R. In particular, D(R/k) is gener-
ated as a k-algebra by {xP0® : 2P € P or 2 ¢ P for each minimal prime
P of R}, and the nonzero operators of this form determine a free basis for

D(R/k) as a k-module.

Proof. The last statement follows immediately from the first claim and The-

orem 5.2.1. It remains to prove the initial claim.
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Suppose that P9 € D(R). Let P be a minimal prime of .J. Relabeling,
if necessary, P = (z1,... ,2q). If 22 € P then x4y, ---zx € J. As 2P0?
fixes J, 2P0% x 222441 - 2Ny = 2Pxyi1 N EJ CP. Asxyiy---axn € P
and as P is prime, zP € P.

Now suppose that 2”92 is such that for each minimal prime P of J,
zP € P or 2® ¢ P. We show that 2?02 € I(J) (so #P9? restricts to
a differential operator on R). Suppose that z¢ € J. For each minimal
prime P of J, ¢ € P. If 2 ¢ P then 0?z° € P (if 0*2° ¢ P then
22(022°) = nz® € P for some n € Z and this forces z* € P, a contradiction).
Also, if z? € P, then 2P02xz¢ € P. Since these results hold for each minimal
prime of the radical ideal .J, P92 x 2¢ € J. Hence 2P0 € 1(J) and zP9?

restricts to a differential operator on R. ]

Remark 5.2.4. Theorem 5.2.3 can be applied in practical examples be-
cause Proposition 5.1.1 enables us to compute the minimal primes of R.
Theorem 5.2.3 also holds when J is not a monomial ideal but becomes a
monomial ideal after tensoring with frac(k); for example, the theorem ap-

plies to R = %. We omit the details.

There is an alternate statement of the theorem using double annihilators.

Corollary 5.2.5. Given a reduced monomial ring R = =, zP o2 is in

D(R) if and only if z® € (J : (J : 7). That is,

J:(J:z?
D(R) = @ M@a (colons here are being computed in k[x]).

a
Proof. As J is radical, J is the intersection of its minimal primes, J =

PiN---NPNPqN---NPs. Suppose that 2* € P; (1 <i<t)and z® € P;
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(j > ). Then

S S
(J:(J:a®) =T ([ Pr:a®) =T [(P:2%)
i=1 =1
t t S
=(J:(EP:a®)=(:(\P)=(\P:[P)
i=1 i=1 j=1 i=1
s t s t s
=E:Nr= N @E:P)= [ B
j=1 i=1 j=t+1 i=1 j=t+1
Now the result follows from Theorem 5.2.3. O

Corollary 5.2.5 partially extends a result due to Brumatti and Simis [8,

Theorem 2.2.1].

Theorem 5.2.6. Let J C k[x] be an ideal generated by monomials whose

exponents are relatively prime to the characteristic of k. If R = KX then

J
Dery(R) = @Ij% where I = M

Proof. First we show that Derg(R) isasum ) Ijaix]-’ where the I; are mono-
mial ideals of R; then we show that this sum is direct. Let 6 = Za, ; ca,jxaa%j
be a derivation with each c,; € k. Without loss of generality, no term
ca,jxa% satisfies zj|z®. If 2™ is an arbitrary monomial of J, then all the
nonzero terms ca,jxaa%j ™ are in J, because J is a monomial ideal. This
implies that each term ca,jxaa%j induces a derivation on R. This forces each
I; to be a monomial ideal.

Now we show that the sum lea%j is direct. Let 6 = Zgj% be a
derivation on k[x| that induces the zero derivation on R. Then for each
index j,

0
gj :Zgjy*xj =0xz; € J,
;7
so each term gj% of 8 also induces the zero operator.
J
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The above considerations did not use the hypothesis on the exponents

of the generators of J. Using this hypothesis, the reader can easily check
_ (J:(J:zy))

that I; = ~—5->. O
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5.3 Alternative descriptions of D(R)

5.3.1 D(R) in terms of the simplicial complex

The description of the ring of differential operators on a Stanley-Reisner ring
can be stated in the language of simplicial complexes. A good reference for
this material is Bruns and Herzog [9]. To each Stanley-Reisner ring, we can
associate a simplicial complex. Recall that a simplicial complex consists of

a collection A of finite subsets of a given set V, such that

(1) for each element v € V, the singleton set {v} is in A, and
(2) if F C G € A then F € A.

The elements of V' are called vertices and the elements of A are called faces.
Faces which are maximal with respect to inclusion are called facets. A
subcomplex A’ of A is a subset A’ C A such that FC G e A’ = F e Al
If R = @ is a Stanley-Reisner ring, let V be the set of variables in
k[x] that are nonzero in R. Identify the nonzero squarefree monomial z? €

b

R with the set o(zP) of variables dividing . Now define the simplicial

complex A on the set V to be the smallest simplicial complex satisfying
o(zP) e A —= P ¢

For example, the monomial zyz corresponds to the face o(zyz) = {z,y, 2} €

A.

Example 5.3.1. The ring R = kloy,2.w.u.0] corresponds to the

(zw,xu,x0,yW,YyU,y0,2U,20)

simplicial complex

A= {D{z} {y} {2} {w} {u}, {o}} U

{z,y} Az, 24 {y, 2} {7 wh {w, up {w, v}, {u, 0}, {z, y, 2}, {u, 0, whH,

which, in turn, is represented by the diagram in Figure 5.1.
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k:[I7y’Z’w7u’v]
TW, LUV, YW, YUYV ,2U,20) *

Figure 5.1: Simplicial complex associated to R = 0

Here, a line joins two vertices  and y if o(zy) € A and the region with
vertices x, y, and z is shaded to indicate that the face o(zyz) € A. Note
that the facets are the sets {z,y,z}, {z,w} and {u,v,w}. The minimal
primes of R are: (u,v,w), (z,y,u,v) and (z,y, 2).

Example 5.3.2. The simplicial complex can also have non-trivial homol-
ogy. For instance, consider R = % The associated simplicial com-

plex appears in Figure 5.2.

Figure 5.2: Simplicial complex associated to R = %

Here the region with vertices y, z and w is not shaded. This indicates

that o(yz), o(zw) and o(yw) are in A but o(yzw) is not in A.
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The facets of this complex are {z,y}, {y,z}, {y,w} and {z,w}. The
minimal primes of R are: (z,w), (z,w), (z,z) and (x,y).

These two examples suggest that the minimal primes of a Stanley-Reisner
ring R are related to the facets of the associated simplicial complex. This
gives a more useful way to identify the minimal primes of a Stanley-Reisner
ring than Proposition 5.1.1. The following theorem is well-known (see [9,

Theorem 5.1.4] for a proof).

Theorem 5.3.3. The minimal primes of a Stanley-Reisner ring R stand in
one-to-one correspondence with the facets of the associated simplicial com-
plex. The wvariables labeling vertices not occurring in o facet generate a

minimal prime of R.

In this spirit, every radical monomial ideal I of a Stanley-Reisner ring
R corresponds to a subcomplex A(I) of the associated complex A: o(zP)
is a face of A(I) if and only if 2P ¢ I. Theorem 5.3.3 says that if P is a
minimal prime of R, then A(P) is a facet of the complex A associated to
R. In Example 5.3.2 the subcomplex o defined by the ideal I = (z, zw) is

shown in Figure 5.3.

Figure 5.3: Subcomplex determined by the ideal I = (z, zw).
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Since the possible coefficients zP of a monomial operator z°02 € D(R)
are determined by the minimal primes of R, we can describe the possible

coefficients in terms of the facets of the associated simplicial complex.

Theorem 5.3.4. If R is a Stanley-Reisner ring, then z°0* € D(R) if and
only if 2P is in the ideal corresponding to the union of the facets not con-

taining all the variables dividing 2.

Proof. This is essentially a restatement of Theorem 5.2.3 in the language of
simplicial complexes. We know that 2”02 € D(R) if and only if
zP € m pP;.
z2€P;
To be pedantic, this is to say that zP is in each Pj containing z*. This is
equivalent to saying that o(zP) is not contained in each facet A(P;) that

does not contain all the variables dividing 2. So
o(zP) ¢ U {, :, is a facet not containing all variables dividing z®} .

This is precisely what it means to say that P is in the ideal corresponding

to the union of the facets not containing all the variables dividing z#.  [J

Example 5.3.5. In the ring treated in Example 5.3.2, R = M, the

T2, 0w yew)
monomial operator z?0,0, is in D(R) if and only if
xP € ideal defined by U {facets not containing both x and y}

<= 2P € ideal corresponding to subcomplex with facets {y,z}, {z,w} and {y,w}

— 2P e ().
Similarly, 22950 (c,d > 0) is in D(R) if and only if

2P € ideal defined by U {facets not containing both z and w}
<= 2P €ideal corresponding to A

— zPe|(0).
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So D(R) contains no nonzero operators of the form 2?0502 with ¢, d > 0.

5.3.2 D(R) and the local cohomology of R

As we saw in chapter 2, D(R) is just the zeroth local cohomology of the
R ®; R-module End(R) with support in the kernel of the multiplication
map R ®, R — R. For a Stanley-Reisner ring R, the ring of differential
operators D(R) can also be described in terms of the local cohomology of

R.

Let R = P1FIWC-[-)-CF]1PS be a Stanley-Reisner ring with minimal primes

Py,... P, For z® € R, set
(%) =n{P,: 4* ¢ P,
The local cohomology of R with support in , (z®) has a particularly nice
form:
Hp(,e)(R) =N{P;: a® € Pj}. ()
To see this, suppose that z® € Py N--- NP, \ (P41 U--- U Ps), so that
, (#*)=P1N---NP;. Now ify € P N---N Py, then

y, @®) C (PN NP)(PyrN---NP) CPN--- NP =(0),

S0y € ng(xa)(R)' Now consider y € ng(xa)(R)' By prime avoidance, there
exists a t € (P N---NPg)\ (PLU---UP,). Because y € ng(;pa)(R)’
yt=0€e PPN---NP, whencey e PLN---NPF,.

Now the ring of differential operators on a Stanley-Reisner ring R can

be described in terms of the local cohomology of R.

Theorem 5.3.6. If R = % is a Stanley-Reisner ring, then the ring

of differential operators on R is
D(R) = ®aHp(a)(R) 0.
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Proof. Our remarks above show that
HYpoy(R) =N{P;: 2 € P}, (¥)

By Theorem 5.2.3, 2”9 € D(R) if and only if 2P € N{P; : 2* € P;}.
Together, these two observations show that z02 € D(R) if and only if
zP € ng(;pa)(R)' The sum is clearly direct: if = )" v(a)0* € D(R) equals
zero then let y(a)0® be the nonzero term of smallest total degree in the 0;

and compute:

v(a) =0 xz* =0.

This gives a contradiction and forces all the terms in the representation of

0 to be zero. O

5.4 D-module structure of Stanley-Reisner rings

Having characterized the ring of differential operators on a reduced mono-
mial ring R, we now investigate the D-module structure of R. As we have
already seen, monomial rings provide a good source of examples when study-
ing the D-module structure of a general commutative ring.

When R = @ is a reduced k-algebra and k is a field, then there is
a particularly nice description of the D-submodules of R in terms of the
minimal primes of R (see Theorem 5.4.5). However, when k is an arbitrary
domain, things are more complicated. This is essentially because elements
of D(R/k) are k-linear endomorphisms of R so any ideal of R extended from
an ideal of k£ is a D(R/k)-submodule of R.

Example 5.4.1. To begin, we determine which radical monomial ideals of

R = % are D-stable. The zero ideal is the intersection of its minimal
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primes,

(zy,yz) = (,2) N (y)-
By Theorem 5.2.3, the ring of differential operators, D(R/k) is the R-algebra
generated by {z0] 05", 207 05", y0% }nm>0- The lattice of radical monomial
ideals of R consists of the following ideals: (zy,yz), (y), (zy,yz,22), (z,yz),

(Z’ xy)’ (x’ Z)7 (Z’ y)7 (x’ y)7 (x7 y7 Z)' Ofthese’ Only (wy7 yz)’ (y)’ (x7 Z)’ (x7 y’ Z)
are D(R)-submodules of R.

Are there any more D-stable ideals I when we relax the requirement
that the ideal I is a radical monomial ideal? The answer turns out to be a

qualified no.

Lemma 5.4.2. In a Stanley-Reisner ring R over an arbitrary domain k,
every D(R)-submodule of R, I, is an ideal generated by monomial terms
that is equal to a radical monomial ideal after tensoring with frac(k). In
particular, when k is a field, every D(R)-submodule of R is a radical mono-

maal ideal.

Proof. If f is in some D-stable ideal, I, and cz® is a term of f of maximal
total degree, then z29* € D(R) (by Theorem 5.2.3) and 202 x f = cx® € I.
It follows that every term of f is in I and hence I is generated by monomial
terms. Again, Theorem 5.2.3 implies that ;0] € D(R). If ha® € I (h € k),
then let d € NV be given by d; = 0 if a; = 0 and d; = 1, if a; # 0 (that is,
d; = 1 —d4,0). Then 2402 € D(R) and so had = 7902 x ha® € I. If k is a
field then 29 € I and I is radical. O

Remark 5.4.3. The isolated singularity R = % formed by taking
the affine cone over a plane cubic is at the center of some interesting mathe-

matics. In [4] Bernstein, Gelfand and Gelfand describe D(R). In particular,
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they show that there are no differential operators in D(R) of negative de-
gree. It follows that m, and all powers of m, are D-stable. Lemma 5.4.2
shows that this behavior does not hold in Stanley-Reisner rings: powers of
D-stable ideals are almost never D-stable (this only occurs for ideals of R
which are extended from k). Also, this example shows that Lemma 5.4.2
does not extend to arbitrary algebras over a field.

At present, there is no nice description of D(R) when C is replaced by
a field of characteristic p. It is known that the description of D(R) found
in [4] does not extend to the characteristic p case (there are strictly more
differential operators in the characteristic p case: see Smith [47, page 385]
for a precise statement of this fact); however, it is not known whether there
are any negative degree differential operators in the characteristic p case.
The existence of such an operator would have implications for the theory
of tight closure. For a detailed study of the theory of tight closure in this

example, see McDermott [34].

Example 5.4.4. We investigate the D-module structure of R more closely.
Let R = %, k a field. The zero ideal is the intersection of its minimal
primes,

(zz,yw,yz) = (x,y) N (y,2) N (w, 2).
The R-algebra D(R) is generated by {z07,y0703", 20505, w0} }nm>o0-
There are 34 radical monomial ideals in R and among these, 14 are D-

stable (see Table 5.1). The 14 D-stable ideals are all ideals which can be

obtained by taking sums and intersections of the minimal primes of R.
This suggests the following result.

Theorem 5.4.5. When k is a field, the D-submodules of a reduced mono-
k[x]

mial ring R = =7 are precisely the intersections of sums of minimal primes
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Reference Representation
Number | Ideal D(R)-stable? || of Ideal
1] (0) = (zz,yw,yz) Yes PNn@NL
2 | (z,yw,yz) No
3| (z,v) Yes P
4| (z,y,zw) No
5| (z,y,2) Yes P+Q
6 | (z,y,w) No
7| (x,y,z,w) Yes P+Q+L
8 | (z,z,yw) No
9| (z,2z,w) No
10 | (z,w,yz) No
11| (y,z=2) Yes PNQ
12 | (y,2) Yes Q
13 | (y,2,w) Yes Q+L
14 | (y, 2z, zw) Yes (P+Q)N(Q+ L)
15 | (y,w,zz2) No
16 | (y,zw,zz) Yes PN(Q+L)
17 | (y, zw, zw, xz) No
18 | (y, zw, x2) No
19 | (z,yw) Yes QNL
20 | (z,w) Yes L
21 | (z,w,zy) No
22 | (z,zy, yw) No
23 | (z, 2y, zw, yw) No
24 | (z, 3w, yw) Yes (P+Q)NL
25 | (w,zz,yz) No
26 | (w,zy,x2,y2) No
27 | (zy, xz, yw, yz) No
28 | (zy, zw, xz,yw,yz) No
29 | (zy, 2w, zw, 2, yw,yz) | No
30 | (zy, 2w, z2, yw, yz) No
31 | (zw,zz,yw,yz) Yes PNL
32 | (zw, zw, x2, yw,yz) No
33 | (zw, zz, yw, yz) No
34 |1 Yes 1

Table 5.1: D(R)-stability of Radical Ideals of R = AZz0l
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of R.

Proof. As (0) C R is D-stable, and R is reduced, Theorem 4.2.1 shows that
all minimal primes of R are D-stable. Clearly, sums and intersections of
D-stable ideals are D-stable. So intersections of sums of minimal primes are
D-stable.

Conversely, let I be a D-stable ideal of R. Then [ is a radical monomial
ideal by Lemma 5.4.2. Write I as the intersection of its minimal primes.
Each minimal prime is D-stable (by Theorem 4.2.1) so it suffices to establish
the result for I a prime ideal.

Consider the D-stable prime ideal I as an ideal of k[x] and note that
I D> J=P nNn...NP,. Relabeling if necessary, we may assume that I D Py,
ooy ID P, I D Py, ..., 12 P.. Note that I must contain at least one
minimal prime of J since I contains J and is prime itself; so we have ¢t > 1.

We claim that I = P, 4+ --- 4+ P;. By hypothesis, I D P; + --- + P,.
Assume that I # P, +--- + P;; we aim to produce an operator 2”92 in I(.J)
and not in T(7). Then zP9? restricts to an element of D(R) which does not
stabilize I. This will be a contradiction as I is D(R)-stable.

As I p P; (i > t+ 1), there is a monomial in P; which is not in I. The
product of such monomials is a monomial P which is in each P; (i >t + 1)
and not in I. As I # P, + ---+ P;, and [ is a monomial ideal, there is a
monomial z? € [ with z* € Py,... ,2* € P,.

Using the criterion of Theorem 5.2.3, one checks that zP02 € 1(J). As
I is prime, Theorem 5.2.3 also shows that P92 € I(I) if and only if 2z & T
or zP € I. As neither of these conditions are satisfied, zP92 ¢ I(I). This

shows that I could not have been D-stable, so I = P, +---+ P, after all. [
Remark 5.4.6. In fact, the collection of D-ideals equals the lattice of ideals
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generated by the minimal primes of R under the operations of addition and
intersection. However, this does not improve the theorem: any ideal in this

lattice is the intersection of sums of minimal primes of R.

Remark 5.4.7. As expected, Theorem 5.4.5 must be modified when k is
not a field. For example, (0) C R = (24—[;)] is clearly D-stable, but (0) is not the
intersection of sums of minimal primes of R. Still, this becomes true after
tensoring with Q =frac(Z). In general, when k is a commutative domain, the
D(R)-submodules of R become the intersection of sums of minimal primes

of R ®y, frac(k) after tensoring with frac(k).

The D-module structure of a Stanley-Reisner ring can be used to give an
alternative proof of Theorem 5.2.3. In fact all that is necessary is Theorem
4.2.1, concerning the stability of minimal components of stable ideals. This
second proof is similar to Tripp’s argument [55], which also involves an

idealizer computation.

Theorem 5.2.3. If R = M is a Stanley-Reisner ring, then an ele-
ment of the Weyl algebra 0 = Ea,,@‘ ca,gwaaﬂ (0 = %%) defines a differ-
ential operator on R if and only if for each minimal prime P of J, and each
nonzero term ca,gaca(’)ﬁ of 0, either z® ¢ P or * € P. Such terms z®0°

generate the R-algebra D(R).

Proof. Write J as an intersection of primes, J = P; N --- N Ps, where each
prime P; is generated by a subset of the variables. Consider a general pri-
mary component P = (x1,... ,2¢) of J. Let 6 be an element of the idealizer
of J representing a differential operator on R. Because differential opera-
tors on R stabilize the minimal primary components of the zero ideal of R

(Theorem 4.2.1), 8 € I(P)+ JW =1I(P). Now 0 is in [(P) = [(z1,... ,x¢) if
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and only if
0 € klzi,... ,cn)(O 1, 00 2100 - O oo O - O Yy ... myEN-

This is clearly equivalent to saying that 0 = Za,ﬂ ca,gmaaﬂ where either
28 & P or 2% € P. Because  stabilizes each minimal prime, this must hold
for all the minimal primes P; of R.
Conversely, if an element 6 of the Weyl algebra is in each idealizer I(F;),
then
Oel(P)Nn---NI(P;) CL(PLN---NPs) =1(J)

and so @ represents a differential operator, # € D(R). Now the result follows

from the characterization of I(z,... ,x;) described above. O
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Chapter 6

Nakai’s Conjecture

Nakai’s conjecture relates the algebraic structure of the ring of differen-
tial operators on a C-algebra R to the presence of singularities in Spec(R).
Ishibashi [23] proposed an analogue of Nakai’s conjecture in prime character-
istic. Nakai’s conjecture would imply the Zariski-Lipman conjecture relating
smoothness to the module of derivations. These conjectures are introduced
in the first section. The description of D-stable ideals in Stanley-Reisner
rings provided by Theorem 5.4.5 gives an easy proof that Nakai’s conjecture
holds for Stanley-Reisner rings of arbitrary characteristic. In the second
section, Corollary 4.3.3 on the HS-stability of the conductor ideal is used to
establish Nakai’s conjecture (in arbitrary characteristic) for varieties whose
normalization is smooth. The last section uses this theorem to extend a
theorem due to Brown: certain hypotheses on the D-module structure of R

are sufficient to imply that R is normal.
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6.1 Introducing Nakai’s conjecture

Nakai, inspired by Grothendieck’s observation that the ring of differential op-
erators on a smooth complex variety is generated by derivations, conjectured
the converse: the ring of differential operators on a complex variety is gen-
erated by derivations if and only if the variety is nonsingular. Nakai appears
not to have stated the conjecture in the literature but it is often quoted in
connection with his paper [38]. The first statement of the conjecture appears
in [37]. Ishibashi [23] restated the conjecture in a characteristic-free manner
by using the Hasse-Schmidt derivations: an affine variety Spec(R) defined
over an algebraically closed field k is nonsingular if and only if the ring of
differential operators D(R/k) equals the Hasse-Schmidt algebra, HS(R/k).

We observed in Theorem 3.3.1 that Grothendieck’s result does not re-
quire that the field £ be algebraically closed. As well, since the ring of
differential operators on R over k is a relative object, it makes more sense to
relate the structure of D(R/k) to the smoothness of the extension k — R.

This leads to the following more general statement of the conjecture.

Nakai’s Conjecture: Let X = Spec(R) be a variety defined over a field k;
then X is smooth over k if and only if D(R/k) = HS(R/k).

The Zariski-Lipman conjecture (treated in Lipman [29]) pre-dates
Nakai’s conjecture; it also relates the algebraic structure of a differential

object to the presence of singularities.

The Zariski-Lipman Conjecture: A complex variety X = Spec(R) is
smooth at a closed point z (corresponding to a maximal ideal m C R) if

and only if the module of derivations Der(R,,/C) is a free R,,-module.

Becker and Rego [1] (see also Hochster [15]) proved that Nakai’s conjec-
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ture implies the Zariski-Lipman conjecture.

Theorem 6.1.1. Let X = Spec(R) be a complex variety satisfying Nakai’s
conjecture. Then Der(R/C) is a locally free R—module if and only if X is

smooth.

Proof. When X is smooth, Qp/c is a locally free R-module and so Qg /c =
Qr/c ®r Rp is a free Rp-module for all primes P of R. Then Der(R/C)®r
Rp = Der(Rp/C) = Hompg, (g, c, Rp) is a free Rp-module for all primes
P of R.

Conversely, suppose that Der(R/C) is a locally free R-module. Lipman
[29] has shown that when Der(Rp/C) is free, then Rp is normal, so R is

normal and is a product of normal domains: R = Ry X --- X R;. Because
Der((Ry x -+ x R;)/C) =2 Der(R;/C) x --- x Der(R;/C)

and

D((Ry x-+-x Ry)/C) 2 D(R1/C) x --- x D(R;/C),

it suffices to show that if Der(R;/C) is locally free then D(R;/C) =
der(R;/C). In this case, D(R/C) = der(R/C), and R is smooth by Nakai’s
conjecture. So we may assume that R is a normal domain.

Let Dy,...,D, be a set of free R-module generators for Der(R/C).
Because R is normal, every prime ideal P of height 1 is regular (that is, Rp

is regular), and

R= () Rp.

htP=1

We show that the monomials { D" - - Dj" }ja|<p, of degree < n in the deriva-
tions Dy,... , D, induce a free basis of the Rp-module der,(Rp/C). Since

there are ("1") monomials and they generate der,(Rp/C), it will suffice to
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show that der,(Rp/C) has rank ("7") (in which case these operators are
linearly independent and form a basis).

Because Rp is regular, we can find a maximal ideal m containing P such
that R, is regular. Moreover, by adjoining to R the inverse of a suitable
minor of the Jacobian matrix, we see that R,, and Rp are localizations of a
smooth k-algebra of finite type. Now by Theorem 3.1.9, we can find a regular
system of parameters xi,...,x, for R,,, such that k[z1,...,z,;] — Ry, is
formally étale. Then the operators d; = % induce derivations on R, that
generate Der(Ry,/C). In fact, the operators {d* = d{" ---d}" }|a<, induce

generators of der(R,,/C). These operators are linearly independent since if

Z rad® =0,

then
0= Zrada * 72 = alr,

and all the coefficients in the relation are zero. It follows that der,(R,,/C)

"*7).  Tensoring with Rp, we see that

is a free R,,-module of rank ( ,

dern(Rp/C) = dery (R, /C) ®r,, Rp is a free Rp-module of the same rank.

As well, by Corollary 3.3.2 and Remark 3.3.3, D, (Rp/C) = der,(Rp/C).
Now we show that D(R/C) = der(R/C). Let D be a differential operator

of order < n on R. Then

D € Ny p=1 Dn(Rp) = (N p=1 dern(Rp)
= ﬂht P:1(®|a|§n RpD?®)
®a|§n(ﬂht pP=1 Rp)D®
= @|a|§n RD? = der,(R).

It follows that der(R) = D(R) and so R is smooth (by hypothesis). O
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An easy argument involving D-stable ideals recovers and extends
Schreiner’s result [41] that Stanley-Reisner rings satisfy Nakai’s conjecture

in characteristic zero.

Theorem 6.1.2. When R is a Stanley-Reisner ring defined over a field k,
D(R/k) = HS(R/k) if and only if R is a polynomial ring.

Proof. When R is a polynomial ring, Theorem 3.3.1 forces D(R/k) =
HS(R/E). For the other implication, suppose that D(R/k) = HS(R/k)
and P is a minimal prime of R. By Theorem 4.2.4, P is HS-stable, and
by Theorem 4.1.2, P? is HS-stable. Because D(R/k) = HS(R/k), P? is
D-stable. Lemma 5.4.2 forces P? = 0 and since R is reduced, P = 0. So R is
a domain. Because a Stanley-Reisner ring which is a domain is a polynomial

ring, this completes the proof. U

6.2 Nakai’s conjecture for varieties with smooth

normalization

In this section we prove Nakai’s conjecture for varieties whose normalization

is smooth. To begin, we treat the case of a cusp.

Example 6.2.1. The differential operators on the cusp singularity y?> = 2>

are not generated by derivations. Consider the coordinate ring:

Clz,y]
(y> — 2?)
Its normalization R’ is the polynomial ring C[¢t], which is smooth over C.

The conductor of R’ into R is C = (¢2,t3)R. Note that C? = (t*,#°)R.

R= =~ C[t?, 1%).

It is easy to check that the derivations on R, Der(R), are generated by

t% and tQ%. Since these do not lower t-adic order, both C' and C? are
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der(R)-stable.

Consider, the differential operator v = % on R' = C[t]. The operator vy
sends t* € C? to a unit. Now multiply by the element ¢? (in the conductor
C) to get t%y, a differential operator on R. The operator 2>y does not
stabilize C2: t* is sent to 24#2.

Since C? is der(R)-stable, but not D(R)-stable, D(R) is not generated

by derivations.

Most of the ideas used in this example reappear in the general situation.
Before treating the general case, we need one technical lemma concerning

conductor ideals on reduced rings.

Lemma 6.2.2. If R is a reduced ring and R’ is the integral closure of R in
its total ring of quotients, then the conductor C of R' into R is not contained

in any minimal prime of R.

Proof. The conductor C' equals AnnR(%). If ¢ C P with P a minimal
prime of R then, since Supp(%) = V(Ann(%)), Pe Supp(%). Localizing

the exact sequence of R-modules

/
0—>R—>R’—>%—>0

at the minimal prime P gives an exact sequence

/

R
0—>RP—>RIP—)(E)P—)0.

But since P is a minimal prime of a reduced ring, Rp is a field and the

normalization map Rp — R/ is an isomorphism. This forces (% )p =0, a

contradiction. So C is not contained in any minimal prime of R. O

Theorem 6.2.3. Let R be a reduced k-algebra and let R’ be its integral
closure in its total ring of quotients. If R’ is a product of D-simple rings

and HS(R/k) = D(R/k), then R is normal.
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Proof. Note that R’ is isomorphic to Ry X --- X Ry, where R; is the nor-
malization of % with the {P;} ranging over the minimal primes of R. By
Corollary 4.3.3, C is HS(R/k)-stable and by Theorem 4.1.2, C? is also
HS(R/k)-stable. Thus, C? is D(R/k)-stable.

Assume that C? # C. Since C is not contained in any of the minimal
primes P; of R, there are elements ¢; € C'\ P; with some ¢; ¢ C?. To see
this, take z € C'\ C? and note that = # 0 = = € NP, = z is not in some P;.
Set ¢; =  and pick the other ¢; € C'\ P;. Let ¢ = (c1,...,¢) € R/, after
identifying R’ with the product in the first paragraph. Then ¢ € C'\ C? and
¢ is nonzero in each component. By the D-simplicity of each of the R;, there
is an operator 6 = (6,...,0;) € D(R;) x --- x D(Ry), such that 6(c?) = 1.
If each 0; € D(R;) is an operator of order < n; then 6 = (0y,... ,60;) maps
R’ to itself and 0 is a differential operator of order < n = max(n;). Thus,
6 € D(R') and ¢ € D(R). Now (cf)(c?) = ¢ ¢ C?, contradicting the fact
that C? is D(R/k)-stable. This forces C? = C.

In fact, C = R. Indeed, if C is contained in a maximal ideal m, then
Cm = C’fn Cc mC,, C Cy,, so mC,, = C,,. Now Nakayama’s lemma forces

Cyp, = 0. But then C must consist of zero divisors. Using prime avoidance,

C is contained in the union of the associated primes
= (' is contained in some associated prime
= (' is contained in some minimal prime

(as R is reduced).
This contradicts Lemma 6.2.2. So C' = R and R is normal. U
Theorem 6.2.4. Let R be a reduced algebra over a field k. If HS(R/k) =

D(R/k) and the normalization R' of R is smooth over k, then R is smooth

over k.
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Proof. Since the normalization R’ of R is product of smooth domains, R’
is a product of D-simple rings (by Corollary 3.3.4). The result now follows
from Theorem 6.2.3. O

Together with Theorem 3.3.1, Theorem 6.2.4 shows that Nakai’s con-
jecture holds for reduced varieties smoothed by normalization; for example,
Nakai’s conjecture holds for curves. This rederives and extends a result of
Mount and Villamayor in characteristic zero [37]. Ishibashi [23] announced

this result in prime characteristic but his proof contains an unfixable error.

Corollary 6.2.5. Let R be a reduced algebra over a field k. If R is 1-
dimensional and HS(R/k) = D(R/k) then R is smooth over k. In particu-
lar, if R is a domain of characteristic 0 and der(R/k) = D(R/k) then R is

reqular.

Theorem 6.2.4 can also be used to give another proof that Nakai’s con-
jecture holds for Stanley-Reisner rings. More generally, the theorem im-
plies that Nakai’s conjecture holds for varieties all of whose components are

smooth.

Corollary 6.2.6. Let R be a reduced algebra over a field k. If HS(R/k) =
D(R/k) and if % s smooth over k for each minimal prime P of R, then R

is smooth over k. In particular, if X =Spec(R) is a hyperplane arrangement

and HS(R/k) = D(R/k) then X is smooth over k.

Both Corollary 6.2.5 and Corollary 6.2.6 follow immediately from Theo-
rem 6.2.4: just observe that the normalization of X = Spec(R) is isomorphic
to the disjoint union of the normalization of the components of X, each of

which is smooth over k.
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Theorem 6.2.4 says that the ring of differential operators on a singular
complex variety whose normalization is smooth is not generated by deriva-
tions. Thus, D(R/C) is complicated even for very mild singularities (those
that can be resolved by normalization). We expect that D(R/C) will be-
come more complicated as the singularities become more difficult to resolve.

This provides further evidence for Nakai’s conjecture.

6.3 Extension of Brown’s result

When R is smooth over a perfect field &, then R is D-simple (Corollary 3.3.4)
but not conversely. For instance, if k is a perfect field of prime characteristic,
a strongly F-regular k-algebra of finite type that is not regular provides a

counterexample (using the fact that strongly F-regular rings are D-simple

k[T1,... 0]
(@ +-+a7)

k is a perfect field of characteristic p > 2. Since R is Gorenstein, strong

— Theorem 4.4.1). An example of such a ring is R = , where
F-regularity is equivalent to weak F-regularity (see Hochster and Huneke
[17, Theorem 5.5]). From the proof of Theorem 4.6 in [18], R is weakly
F-regular if a homogeneous system of parameters is tightly closed. Using
a result due to Smith [48, Theorem 2.7], the tight closure of the system of
parameters (zo, ... ,z,) does not contain x;. It follows that (za,... ,z,)* =
(z2,... ,2,) and R is a strongly F-regular ring which is not regular (and
hence, not smooth over k).

Even though D-simplicity is insufficient to imply that R is smooth, the D-
module structure of R ought to have some bearing on the algebraic structure
of R. Brown showed that in the presence of the Nakai hypothesis, D(R/k) =

der(R/k), certain D-module conditions imply that R is normal.
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Theorem 6.3.1 (Brown [6]). Let R be a finitely generated integral do-
main over a field k of characteristic zero such that D(R/k) = der(R/k). If
every D-stable prime ideal of R has height less than or equal to 1, then R is

normal.
This theorem admits an extension to prime characteristic.

Theorem 6.3.2. Let R be a finitely generated reduced algebra over a field
k and suppose that:

(1) D(R/k) = HS(R/k) and

(2) every D-stable prime ideal of R has height less than or equal to 1.

Then R is normal.

Proof. Let C be the conductor of the normalization R’ of R into R. By
Corollary 4.3.3, C' is HS(R)-stable. Then, by Lemma 6.2.2, C' is not con-
tained in any minimal prime of R and, by Theorem 4.2.4, the minimal primes
of C' are HS(R)-stable. Using (1), any minimal prime P of C is D-stable
and, using (2), P has height 1.

The Hasse-Schmidt algebra HS(Rp) is contained in D(Rp) and contains
the algebra H generated by the components of extensions of Hasse-Schmidt
derivations on R to Rp. Since D(Rp) = D(R) ®r Rp = HS(R) ®r Rp,
D(Rp) = H and so D(Rp) = HS(Rp). The ring Rp is 1 dimensional, so
its normalization is smooth. By Corollary 6.2.5, Rp is smooth over k. Since
k is a field, Rp is regular and Rp = R. Then Cp = Rp for any minimal
prime P of C. But this is a contradiction since it implies that there exists
an element x € R\ P such that xC' ¢ P. Thus ¢ has no minimal primes:

C = R and R is normal. O

In the same paper (Brown [6]), Brown shows that the hypotheses in The-

orem 6.3.1 actually imply that R is regular. His proof uses Zariski’s lemma
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on derivations (if a derivation on a local ring fails to stabilize the maximal
ideal, then the associated variety is analytically a product). Unfortunately,
the current prime characteristic analogues of Zariski’s lemma (see Brown
and Kuan [7] and Ishibashi [22]) are not powerful enough to extend this

result to the prime characteristic case.
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Chapter 7

Tight Closure

For what follows, we restrict to the case where k is a field of characteristic
p. We will define the necessary tight closure terminology but we refer the
reader to Hochster and Huneke [16] for details (also, a nice exposition of
both the characteristic p and the characteristic zero theory can be found in
the notes from the CBMS conference [21]).

When R is a ring of characteristic p > 0, R can be viewed as an algebra
over its ring of p®-th powers, RP". Recall that the ring R is F-finite if R is
a finitely generated module over RP. When R is F-finite, the description of
D(R/Z) in terms of the Frobenius powers of R,

D(R/Z) = U.Endpy (R)

suggests that tight closure is connected with the theory of differential oper-

ators in characteristic p.
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7.1 D(R) and tight closure for Stanley-Reisner

rings

If the map RP — R splits then R is said to be F-split. If for each RP-module
M, RPQM — R® M is injective, we say that R is F-pure. Note that F-split
implies F-purity. In general, purity is equivalent to splitting for finite maps
(see Matsumura [32, Theorem 7.14]), so F-split implies F-pure when R is
F-finite.

Using differential operators, we obtain an easy proof of a result due to
Hochster and Roberts [20, Proposition 5.38] that Stanley-Reisner rings in
prime characteristic are F-pure. In fact, we do more: we give an explicit

splitting of RP — R.

Theorem 7.1.1. If R = @ is a Stanley-Reisner ring of prime character-

istic, then the inclusion map RP — R is split by the differential operator

a(p_lr“ ap_l)l‘(p_la"' ,p—l) .

Proof. Theorem 5.2.3 implies that

(p—1,...,p—1

) N
a(p_la"'ap_l)x(p_la"wp_l) — g H <p Zk >x7];:kai:k

(i1,...,in)=0 k=1

is a differential operator on R. This operator clearly sends 1 to 1. Also, its

image is contained in RP:

8(;0—1,...,p—l)x(p—l,...,p—l) ¥ 7? = ap+p—1 . any +p—1 22
p—1 p—1

0 if 2*¢RP

®* if x*€ RP
the last equality coming from Lemma 2.1.10. This computation also shows
that this operator is RP-linear. Thus, this is an RP‘-module splitting of

RP — R. As R is F-split, it is also F-pure. O
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When I = (ay,... ,a:) is an ideal in a Noetherian ring R of characteristic
p > 0, define IP"] to be the ideal (a’fe, e ,afe). The ideal ") is independent
of the choice of generators of I: Il = ({r”" : r € I}). Let R® denote the
set of elements of R that are not in any minimal prime of R. To each ideal

I we will associate a (possibly) larger ideal I*, the tight closure of I.

Definition 7.1.2. An element x € R is in I* if and only if there exists an
element ¢, not in any minimal prime of R, such that cz?* € I for all
e > 0. When it is necessary to indicate the ring R, we use the notation IF,

for the tight closure of I in R.

If R is reduced, the condition for all e > 0 can be replaced with for
all e. When every ideal I of R is tightly closed, I* = I, we say that R is
weakly F-regular. When R and all its localizations are weakly F-regular,
then R is said to be F-regular. The notation here is unfortunate but is
currently necessary because we do not know when tight closure commutes
with localization. Regular rings are F-regular (see [16]).

Tight closure admits a particularly nice description in Stanley-Reisner

rings.

Lemma 7.1.3. The tight closure of an ideal I of a localization of a Stanley-

Reisner ring R = % is Iy =;(I + B).

Proof. Tight closure can be tested modulo minimal primes [21, Theorem
1.3.c]. Thus, I} = N,((I + P,)*%: NR). But £ = S*I(@) is a localization
PZ 3 3
of a polynomial ring and, as such, is F-regular. Thus (I+P;)% = (I+P)&.
P; v

The result follows. O

As a result, tight closure commutes with localization in Stanley-Reisner

rings. It is worth pointing this out in light of the difficulty encountered in
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proving this in general. For different perspectives on this result, see Smith
and Swanson [50] and Katzman [27]. This result has been extended to a
more general class of rings (including the coordinate ring of any variety
defined by binomial equations) by Smith [46].

Corollary 7.1.4. Tight closure commutes with localization in a Stanley-

k[x]
PiNn..NP.°

Reisner ring, R =

Proof. Let S be a multiplicatively closed set in R. Without loss of generality,
Py,...,P; (t <r) are the minimal primes of S™'R. Let I be an ideal of R.
Then Lemma 7.1.3 gives (IS™'R)* = Ni_,(IS"'R+ P;,S™'R) = N._,[(I +
P)STIR| =, [([+P)S 'R = [, I+PIS'R=I3S'R. O

The test ideal of R is the ideal {c € R: c¢I* C I for all ideals I of R}. A
test element of R is an element of the test ideal which is not in any minimal
prime of R. Of course, the importance of test elements is that they allow
one to identify a particular ¢ for use in all tight closure tests. For details
on the existence and applications of test elements, see Hochster and Huneke
[16, 17].

A weak test element is an element of R not in any minimal prime of R
such that

o(1)Pl C 1"l

for all ideals I and all p® greater than some fixed integer @@ (depending only
on ¢ and not on the ideal I). If R is F-split, then weak test elements are

also test elements:
(P 1P = ()P C [Pl = e C T

The weak test ideal is the ideal generated by all weak test elements. Because

Stanley-Reisner rings are F-split (Lemma 7.1.1), the test ideal of a Stanley-
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Reisner ring R equals the weak test ideal of R. Our next goal is to describe

this test ideal.

Lemma 7.1.5. If tight closure in R commutes with localization by an ele-

ment ¢ in the test ideal, then R, is F-regular.

Proof. As tight closure commutes with localization at ¢, we have (IR.)* =
I*R.. If § € I"R. then for some s, ¢z € I*. As c is in the test ideal,
¢tz € I and hence z € IR.. The other inclusion being trivial, we have

(IR.)* = IR,. 0

Corollary 7.1.6. If ¢ is in the test ideal of a Stanley-Reisner ring R =

Plrl:,[,),(r]jpry then R. is F-regular.
Proof. This is immediate from Corollary 7.1.4 and Lemma 7.1.5. O

Now we use Theorem 5.4.2 to describe the test ideal of a Stanley-Reisner
ring, giving a new proof of the following result due to Cowden [10, Theorem

3.6).

Theorem 7.1.7. For a Stanley-Reisner ring R = @ with minimal primes

Pi,... P, the test ideal of Ris 3.\ PiN---NP;N---NP,.

Proof. Take z € I*. By Lemma 7.1.3, z € [ + P; for all minimal primes F;
of J.Ifce PLNn---NPN---NP, thencz € [ +¢cP, =1I. So Yo Pin---n
P,N---N P, is contained in the test ideal.

To prove the converse, first note that the test ideal of R is a D-ideal (see
[47, Theorem 2.2]). Thus the test ideal is a radical monomial ideal (Lemma
5.4.2). It suffices to show that each monomial generator of the test ideal is
in Zgzl Pin---N fjl N---NP,. Let ¢ be such a monomial. Without loss of

generality, c ¢ Uf_, P, and c € Ni—; 1 P;- We may assume that ¢ =z -+ 4.
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Now R, = Plﬂ[~)~c~]ﬂpt = EHHQ@E][%, e ,é] is F-regular (Corollary 7.1.6).

The ring T' = % is a direct summand of R, (it is the k-linear span

of homogeneous elements which have degree 0 in the (inverted) variables,
Z1,...,xq). As a direct summand of an F-regular ring, T is also F-regular

([16, Proposition 4.12]). Then T is a normal ring ([16, Corollary 5.11]).

Thus, T is a product of graded normal domains, 7' = R; X --- X R,. It follows

k[xlr“ ,CEN]

PiN..NP; has a

that T has at least s homogeneous maximal ideals. But T' =
unique homogeneous maximal ideal. So T" is a domain. From this it follows

that ¢t = 1; that is,ce P,N...NP,. O
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