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USNA Trident Project 
This talk reports on joint work with  
MIDN Andrew Bashelor and my  
colleague at USNA, Amy Ksir.  

Our work grew out of Bashelor’s Trident  
project, a full-year undergraduate research 
project focused on enumerative algebraic  
geometry. 



Plane Conics 
Circles, ellipses, parabolas and hyperbolas are familiar examples of plane conics.  
For us, a plane conic will be the points satisfying a degree 2 polynomial relation:  

Degenerate conic 
(2x+y-3)(3x-y+2)=0 

Double line  
(3x-y+2)2 = 0 



Steiner’s Problem 
How many conics are tangent to five  
given plane conics? 
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A Parameter Space for Conics 
Each conic is given by an equation, 

but not uniquely so. 

Lines in R6 form a 5-dimensional projective space, P5, so the parameter space 
for conics is P5.   

We use the notation [a:b:c:d:e:f] to denote the conic. This reminds us that  
the values of the coordinates are less important than their ratios to one another.  

If the point (a,b,c,d,e,f) represents the conic then so does (λa, λb, λc, λd, λe, λf). 
In fact, any point on the line spanned by the vector <a,b,c,d,e,f> represents the  
same conic. 



 a22
 + b(2)(3) + c32 + d2 + e3 + f = 0  

Solving Enumerative Problems 
Each condition in an enumerative problem imposes constraints on the  
conics that we need to count. These lead to subsets of our parameter space.  
We’ll count the number of points in the intersection of these subsets.  

This allows us to use both the geometry of conics in the plane and the  
geometry of P5 to solve enumerative problems.  

Example:   Hp: set of conics passing through the point p.  

For p(2,3), any conic passing though p must satisfy   

a linear condition. So the set of points Hp is a hyperplane in P5. 

Theorem: There is a unique conic passing through 5 points in general  
position (no four collinear).  
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a linear condition. So the set of points Hp is a hyperplane in P5. 

Theorem: There is a unique conic passing through 5 points in general  
position (no four collinear).  
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HL: Conics tangent to line L given by y = Mx + B. 

 ax2
 + bxy + cy2 + dx + ey + f = 0  



 ax2
 + bx(Mx+B) + c(Mx+B)2 + dx + e(Mx+B) + f = 0  

QUESTION: How many conics pass through 4 points and are tangent to a line in 
general position? 

Conics Tangent to Lines 

HL: Conics tangent to line L given by y = Mx + B. 

Discriminant                    Equation has double root                 Line is tangent to conic.  
b2 – 4ac = 0 

So HL is a hypersurface in P5 defined by a degree 2 equation.  



QUESTION: How many conics pass through 4 points and are tangent to a line in 
general position? 

ANSWER: Two.  

Passage to P2 

But we need to interpret tangency correctly 
and work in the projective plane P2. 
This is like the Euclidean plane, but 
we attach a point at infinity for  
each direction. 

If we we work over the complex numbers, we always get the expected number 
of points in intersections (counted with multiplicity).  



Bézout’s Theorem 
Bézout’s Theorem states that if we have n hypersurfaces (with no common  
component) of degrees d1, …, dn in Pn then their intersection consists of  
d1d2 …dn points, counted with appropriate multiplicities.  

This helps us answer questions like, “How many conics pass through 3  
points and are tangent to 2 lines?”  

How many conics pass through 2 points and are tangent to 3 lines? 
How many conics pass through 1 point and are tangent to 4 lines? 
How many conics are tangent to 5 lines? 

ANSWER: Four.  
The intersection of the corresponding hypersurfaces in P5 consists of  
(1)3(2)2 = 4 points by Bézout’s Theorem. These points correspond to  
the 4 conics.  

WARNING!! 

8 
16 
32 



Duality 

Point [a:b:c] 
Lines Ax+By+Cz=0 

Line aX+bY+cZ=0 
Points [A:B:C] 

There is a duality between points and lines in P2.  

                  Point: [a:b:c] ∈ P2         Line in P2: Ax+By+Cz=0.  

Lines are parameterized by tuples [A:B:C]            {Lines in P2}  ≅ P2.  

The set of lines passing through a point is a line in this dual P2.  
We have a duality map that exchanges points and lines in P2

 and the dual P2.    



Duality for Conics 
For each conic Q we have a dual conic, consisting of lines tangent to Q. 

For instance, if Q is the conic x2 – yz =0 then a line Ax+By+Cz=0 with A≠0 
meets Q where    

  A2 x2 – A2 yz = 0 and Ax = – (By+Cz) 
 i.e.         (By+Cz)2 – A2

 yz = 0  
  i.e.  B2 y2 + (2BC – A2) yz + C2 z2 = 0. 
The line is tangent when the discriminant A2(A2 – 4BC) vanishes, or when 
A2

 – 4BC = 0.      

Degenerate conics 
dualize to double lines, 
but double lines do not 
have a well defined dual. 

The conic ax2 + by2 + cxy + dxz + eyz + fz2 = 0 has dual conic given by 
(e2-4cf)A2+(4bf-2de)AB+(d2-4af)B2+(4cd-2be)AC+(4ae-2bd)BC+(b2-4ac)C2 = 0.      



Duality and Tangency 
Duality preserves incidence and tangency. If a line is tangent to a conic 
then after dualizing, the point lies on the dual conic. If a point lies on a  
conic then after dualizing, the corresponding line is tangent to the dual conic.  

duality 

Thus duality induces a symmetry between our problems with points and lines. 
A conic passes through n points and is tangent to 5-n lines iff its dual passes  
Through the 5-n dual points and is tangent to the n dual lines.  

So there are 4 conics through 2 points and tangent to 3 lines,  
                    2 conics through 1 point   and tangent to 4 lines,  
                                          and just 1 conic tangent to 5 lines.  



Steiner’s Problem 
Question: How many conics are tangent to five general conics? 

Steiner’s answer involved the hypersurface HQ of conics tangent to a fixed conic Q.       

HQ has degree 6: 

• Conic Q can be parameterized by a degree 2 map             x2 + y2 = z2  
                                                                                   x = (s2 – t2)/2   
                                                                                              y = st   

                 z = (s2 + t2)/2. 

• The 4 points of intersection of a general conic and Q have (s,t) coordinates  
given by a degree 4 polynomial.  

• The conics are tangent when we have multiple roots.  

• This happens when the discriminant of the polynomial is zero, a degree 6 
condition.  



Steiner’s Problem 
Question: How many conics are tangent to five general conics? 

Steiner’s answer involved the hypersurface HQ of conics tangent to a fixed conic Q. 

HQ has degree 6. 

Steiner reasoned that by Bézout’s Theorem, there must be 65 = 7776 conics  
tangent to five general conics.  

Unfortunately, every double line is tangent to every conic, so Bézout’s Theorem 
does not apply (the HQ’s share a common component, the collection of double lines).   



Blowing up the Veronese Surface 
Duality saved us when we ran into excess intersection before, so it makes  
sense to study the duality map in more detail:  

The duality map on conics is the map from P5 to P5 that sends the conic  
corresponding to [a:b:c:d:e:f] to the dual conic corresponding to  
[(e2-4cf): (4bf-2de): (d2-4af): (4cd-2be): (4ae-2bd): (b2-4ac)].  

This map is well-defined except for the double line conics, where all 6  
components vanish. These cut out a surface, called the Veronese surface, V.  

Algebraic geometers call such a partially-defined map a morphism. A  
morphism can be extended to an honest map by expanding the domain, using a  
technique called blowing up.   

The blow-up of the Veronese is the closure of the graph of the duality map in P5 x P5. 
The blow-up map π: BLVP5

  P5 is the projection onto the first P5 factor.  



The Exceptional Divisor 
The blow-up of the Veronese is the closure of the graph of the duality map in P5 x P5. 
The blow-up map π: BLVP5  P5 is the projection onto the first P5 factor.  

Off the Veronese, BLVP5 and P5 look the same (they are isomorphic), but 
 π-1(V) is much bigger than V. In fact, π-1(V) is a hypersurface in BLVP5, called the  
exceptional divisor E.  

Essentially, each point in V is replaced in BLVP5  
by its projective normal bundle.  

Blowing up causes hypersurfaces that intersected  
on the Veronese to become separated. 

Blowing up also tends to smooth sharp corners, so  
it is often used to desingularize algebraic varieties.  V 

E 



The Chow Ring 
We’d like to solve our enumerative problem by intersecting varieties on the  
blow-up. To do this we want an analogue of Bézout’s Theorem that holds on  
BLVP5. This is provided by the Chow ring, which is made up of rational  
equivalence classes of cycles. 

A k-cycle on a variety X is just a finite formal sum of irreducible  
subvarieties of X with integer coefficients.  

Both the zeros and poles of a rational function are cycles.  

has zeros on the cycle 2L1 + L2. 

We say that two k-cycles Y1 and Y2 are rationally  
equivalent if there is a k+1 cycle W containing both  
and a rational function f on W such that Y1  = zeros(f) 
and Y2 = poles(f).  

We should think of rationally equivalent cycles as being deformations of one another.  
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Arithmetic in the Chow Ring 

The Chow ring consists of rational equivalence classes of cycles in X.  

We add classes formally, but multiplication corresponds to transverse intersection: 
[Y1] • [Y2] = [Y1 ∩ Y2 ].  

For X = P5 the Chow ring consists of sums of [H] (a hyperplane class), [H]2, [H]3,  
[H]4 (a line) and [H]5 

 (a point).  

Bézout’s Theorem can be restated in terms of the Chow ring:  
[d1H][d2H]…[d5H] = d1d2 …d5 [H]5 = d1d2…d5 points. 

Our strategy has been to use Bézout’s Theorem to intersect hypersurfaces in P5.  
But for Steiner’s problem we need to work in BLVP5 in order to avoid excess 
intersection along the Veronese. We blow up to separate the HQ’s and then use  
the Chow ring to compute the number of points in their intersection.   



Pullbacks 
Most of the blow-up X = BLVP5 looks like P5

, the only new hypersurface class is the 
exceptional divisor E = π-1(V). 

We can pull back cycles in P5 to cycles in BLVP5. Each cycle Y pulls back to its  
strict transform plus some number of copies of E: 

The number n measures the number of times Y  
contains V = π(E). We can compute this using ideals: 
Y is defined by a single equation F=0 and n is the largest 
integer so that F ∈ I(V)n.  



Computations on the Blow-up 
After blowing up the total transform is 

To answer Steiner’s problem we must find  

But this requires knowing the ring structure of the Chow ring for the blow-up. 
Another way is to use the classes HP  and HL that we defined earlier: 

It follows that  



Summary & Conclusion 
We showed how to answer enumerative questions about conics using  
techniques from algebraic geometry: Bézout’s Theorem, duality,  
blowing-up, and the Chow ring.  

These techniques helped us avoid excess intersection and filter the  
double line conics from our answer.  

There are many other interesting enumerative questions that also lead 
to nice mathematics. A problem in Schubert Calculus asks:  

 “How many lines in P3 meet 4 general lines?” 

The five-points theorem can be generalized by asking  
“How many rational curves of degree d pass through 3d-1 general points?” 
These are the Gromov-Witten invariants and play a role in String theory.  
Kontsevich found a beautiful recurrence relation for these numbers.  





Explaining the Number 3264 
There is only 1 conic tangent to  
any L of these lines and through  
P of these points (L+P = 5).  

Nudging the points along the lines 
gives 102 conics. 

Scissoring the double conics at  
the points and deforming to each to  
a hyperbola doubles the number of  
conics satisfying each condition,  
multiplying the number of conics by 
25 = 32. 


