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Thank You.
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Overview

• Invariant Theory of Graphs,

• Steenrod Algebra,

• Algebraic Geometry,

• Higher Derivations,

• Jet Spaces and Applications.
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Question: Can we �nd invariants to distinguish graphs up to

isomorphism?

Graphs(n): set of labeled graphs on n vertices.

Can we �nd a set of functions f1; : : : ; fk that distinguish isomor-

phism classes of Graphs(n)? By this we mean:

• all functions fi are constant on isomorphism classes

• if �1 and �2 are nonisomorphic graphs then there is a function

fi with fi(�1) 6= fi(�2).
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Graphs � ∈ Graphs(n) are determined by their edges.

De�ne: edge functions eij : Graphs(n)→ F2 for i < j.

Polynomial ring: R = F2[e12; : : : ; e(n−1)n]

G = Sn acts on Graphs(n) by permuting the vertex labels.

Induced action on the edge functions: �(eij) = e�(i)�(j):

Invariant functions, RG ⊆ R, are �nitely generated (Hilbert’s Ba-

sis Theorem) and separate isomorphism classes.

Invariant Theory 5



U.S. Naval Academy

Example 1 There are 8 labeled graphs on 3 vertices. However,

there are only four isomorphism types of such graphs (in this

simple case, they are determined by the number of edges in the

graph). The invariant functions

RG = F2[e12 + e13 + e23; e12e13 + e12e23 + e13e23; e12e13e23]

separate Graphs(3).
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Here our polynomial ring was de�ned over a �nite �eld F2.

19th century: Invariant Theory developed for �elds of character-

istic zero.

In prime characteristic we have the Frobenius map r → rp.

Frobenius map is closely linked to the Steenrod Algebra.

Algebraic Approach to Steenrod Algebra: L. Smith and R. Wood.

Invariant Theory 7
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The Steenrod Algebra

Notation: R = k[x1; : : : ; xn], k = Fq, q = pe > 0.

De�ne: � : R→ R[[t]] on each xi via

xi 7→ xi + x
q
i t

and extend � to a ring homomorphism. For example,

xixj 7→ (xixj) + (xqixj + xix
q
j)t+ (xqix

q
j)t

2:

De�ne operators Qi : R → R to be the k-linear maps de�ned
by applying � and then extracting the coe�cient of ti from the
resulting polynomial. For instance,

Q1(xixj) = x
q
ixj + xix

q
j :

The Steenrod Algebra 8
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The operators Qi satisfy a product rule that is an extension of

the rule we teach in Calculus:

Theorem 2 (Cartan’s Formula) Qk(fg) =
∑
i+j=kQi(f)Qj(g):

Ex. Q1(xixj) = Q1(xi)Q0(xj) +Q0(xi)Q1(xj) = x
q
ixj + xix

q
j :

Gl(n;Fq) acts on R by linear change of variables. This action

commutes with the Qi.

[Reason: action of g on {x1; : : : ; xn} represented by same matrix

as action on {xq1; : : : ; x
q
n}.]
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Theorem 3 The operators Qi commute with Gl(n;Fq) action.

If G is any group that acts linearly on R, then the Steenrod

operations Qi induce maps RG → RG: if r ∈ RG and g ∈ G, then

g ·Qi(r) = Qi(g · r) = Qi(r):

The Qi raise degree and preserve invariants. So they can be used

to create new (higher degree) invariants from known invariants.

The Steenrod Algebra 10
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Research on the Steenrod Algebra

• Generators and Relations (the Adem relations).

• Structure of RG as a module over the Steenrod Algebra.

• Interpretation of the Steenrod Algebra in terms of di�erential

operators.

The Steenrod Algebra 11



U.S. Naval Academy

Algebraic Geometry

Algebraic geometers think of rings in a geometric way (and some-

times use algebra to formalize notions in geometry).

To explain this, consider polynomial functions on Cn.

These can be added and multiplied, so they form a ring, R =

C[x1; : : : ; xn].

Algebraic Geoemtry 12
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Def: A variety is the common zero set of a collection of polyno-

mial equations, f1 = 0; : : : ; fk = 0.

• The union of the two axes in C2 is just the zero set of x1x2.

• The variety X = V(x2− x2
1; x2− 2) is just the intersection of a

parabola with a line { two points.

What are the functions on a variety V ?

Polynomials in (f1; : : : ; fk) restrict to zero on V so the ring of

functions on V is

C[V ] =
C[x1; : : : ; xn]

(f1; : : : ; fk)
:

Algebraic Geoemtry 13
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This association is really an antiequivalence of categories: poly-

nomial maps of varieties

� : X → Y

correspond to ring homomorphisms

C[Y ]→ C[X]

where f ∈ C[Y ] is sent to f ◦ �.

Rings also give rise to geometric objects: R 7→ Spec(R).

Maximal ideals in C[V ] correspond to points on V . [But Spec(R)

contains more points too!]

Algebraic Geoemtry 14
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The Ring C[[t]]

Question: What is the geometric interpretation of the ring C[[t]]?

There is only one maximal ideal (t) in this ring:

Spec(C[[t]]) = pt ????

The ring consists of formal power series centered at zero. Con-

vergence in a microlocal neighbourhood of zero.

We think of Spec(C[[t]]) as a point, together with a in�ntesimal

tangent vector, an in�ntesimal second-order tangent vector, etc.

The image of a map Spec(C[[t]]) → X is then just a formal arc

in X: a point in X plus a microlocal curve through the point.

Algebraic Geoemtry 15
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Higher Derivations

Let R = k[x1; : : : ; xn]=I be a �nitely generated ring.

De�nition: A higher derivation from R to itself is an in�nite

collection of maps of k-algebras {D0 = idR; D1; D2; : : : } from R

to R that patch together using the product rule:

Dk(fg) =
∑

i+j=k

Di(f)Dj(g):

Higher Derivations 16
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Examples

Example 4 The Steenrod operators {Q0; Q1; : : : } determine a

higher derivation from R = k[x1; : : : ; xn] to itself.

Example 5 In characteristic zero, any derivation d on R deter-

mines a higher derivation

Dk =
1

k!
dk:

For instance, the derivation d
dx on k[x] induces a higher derivation

on the polynomial ring.

Higher Derivations 17
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Higher derivations are supposed to extend our notion of deriva-

tions (maps satisfying the usual product rule D(fg) = fD(g) +D(f)g).

The derivations are represented by the module 
R=k of k-di�erentials

on R.

Each derivation D : R → R is determined by � : 
R=k → R such

that � ◦ d = D.

Higher Derivations 18



U.S. Naval Academy

There is a similar construction that produces a k-algebra HSR=k
representing the higher derivations.

There is a sequence of maps (d0; d1; : : : ) from R to HSR=k such

that each higher derivation {D0; D1; : : : } from R to R is de-

termined by a unique map � : HSR=k → R of k-algebras via

� ◦ di = Di.

Higher Derivations 19
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Higher Derivations to k

We can also consider higher derivations from R to k.

The whole theory goes through as before: higher derivations are
collections of k-algebra maps

Di : R→ k

with

Dk(fg) =
∑

i+j=k

Di(f)Dj(g):

These are once again determined uniquely by a k-algebra map
� : HSR=k → k.

So we see that the collection of higher derivations Derk(R; k) is
isomorphic to Homk−alg(HSR=k; k).

Higher Derivations to k 20
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On the other hand, each higher derivation {D0; D1; : : : } from R

to k determines a map of k-algebras � : R→ k[[t]] given by:

�(r) = D0(r) +D1(r)t+D2(r)t2 + · · ·

This ring homomorphism is determined by the images �(xi) of

the coordinate functions xi.

We require that f(�(x1); : : : ; �(xn)) = 0 for all polynomials f in

the de�ning ideal I.

So Derk(R; k) is isomorphic to Homk−alg(R; k[[t]]).

Higher Derivations to k 21
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Derk(R; k) is isomorphic to Homk−alg(HSR=k; k).

Derk(R; k) is isomorphic to Homk−alg(R; k[[t]]).

Thus: Homk−alg(R; k[[t]]) ∼= Homk−alg(HSR=k; k).

Taking Spec’s:

[Spec(k[[t]])→ Spec(R)] ∼= [Spec(k)→ SpecHSR=k] ∼= SpecHSR=k:

Jet space J(Spec(R)) := Spec(HSR=k) parameterizes arcs on

Spec(R).

Higher Derivations to k 22
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The Jet Space over X

Natural map � : J(Spec(R)) → Spec(R) sends each arc to the

closed point it passes through.

Each arc  gives rise to a map R→ k[[t]].

This assigns a power series ai+HOT (t) to each coordinate func-

tion xi.

Just looking at the constant terms of these power series gives a

point �() = (a1; : : : ; an) in kn that lies on X = Spec(R).

J(X)O := the set of arcs through O = �−1(O).

Higher Derivations to k 23
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Applications of Jet Spaces

• Nash’s Conjecture

• Motivic Integration

Applications of Jet Spaces 24



U.S. Naval Academy

Nash’s Conjecture

Jet Space of X ↔ resolution of singularities of X.

X: surface with an isolated singular point O.

�X: minimal resolution of singularities of X.

 : �X → X gives rise to essential exceptional divisors

�−1(O) = ∪Ei:

Nash: components of J(X)O ,→ {Ei}.

Nash conjectured that this is a bijection.

FALSE: Kollar and Ishii.
Nash’s Conjecture 25
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Motivic Integration

Batyrev’s Conjecture: two birationally equivalent Calabi-Yau man-

ifolds have the same Hodge numbers.

Hodge numbers: (hp;q = dimHp(
q; X)) are numerical invariants.

Map: X 7→
∑
i;j hp;qu

pvq ∈ Z[u; v]

Kontsevich: theory of motivic integration.

Map above factors through another map (motivic integration):

{varieties} →M.

Plan: Show birational C-Y map to same elt of M.

Motivic Integration 26
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Theory of Integration

• Space on which to integrate (J(X)).

• Integrable sets (cylinder sets).

• Value set for integration: motivic ring M.

• Change of variables formula: key to Batyrev’s conjecture.

Motivic Integration 27
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Other Applications of Motivic Integration

• zeta functions

• p-adic integration

• string theory

• mirror symmetry

• characterizations of singularities (Berkeley seminar)
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