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Outline 

1)   Invariant Theory and the Steenrod Algebra 
2)   Rings of Differential Operators 
3)   Higher Derivations 
4)   Jet Spaces and Applications 



Invariant Theory 
  Invariant theory of 19th and 20th centuries focused on 
characteristic zero and nonmodular cases. 

  Characteristic p>0 largely an afterthought – as  
in commutative algebra more generally.  

 But prime characteristic methods are increasingly important. 
  Applications of commutative algebra to combinatorics. 
  New tool: Frobenius map. 

  Algebraic theory of tight closure 
  mimics and extends results from analysis 

  Invariant theory: Steenrod Algebra. 



The Steenrod Algebra 

My thanks to Reg Wood for several nice lectures on the  
Steenrod algebra.  

Like Reg, I will consider the Steenrod algebra from an  
algebraic point of view (as in Larry Smith’s book).  

Fix some notation:  
k = GF(q) = Fq  q = ps   R=k[x1, …, xn] 
G: subgroup of GL(n,k) acting linearly on R. 



Steenrod Algebra from φ 
R = k[x1, …, xn]       (= k[x,y] or k[x,y,z]) 

φ: R         R[[t]] 
     xi         xi + xi

q t  

φ(xy) = (x+xq
 t)(y + yq

 t) = xy + (xyq + xqy) t + xqyq t2 

Qi : R       R     are the ith
 Steenrod operators obtained by applying 

                        φ and extracting the coefficient of ti
 

Q1(xy) = xyq + xqy 

A := Steenrod Algebra – the k-algebra generated by the Qi. 



Properties of the Operators 
Cartan Formula:  

Instability:       

Example:                    Q1(xy) = Q0(x)Q1(y) + Q1(x)Q0(y)  
                                               = xyq + xqy 

None of the operators are zero, though they are all nilpotent. 



The Qi Commute with G 

The Steenrod operators Qi commute with the group action  
(linear change of variables). 

Check this directly: The key fact is that the matrix  
representing the action of g ∈ G on {x1, …, xn} is the  
same matrix that represents the action of g on {x1

q, …, xn
q}   

(because aq = a in GF(q)).  

So the Steenrod operators induce maps Qi: RG  RG = k[An/G] 

g . Qi(r) = Qi(g . r) = Qi(r) 

The Qi raise degree and preserve invariants so they create new  
(higher degree) invariants from old.  



Qi and Frobenius  

The Qi also satisfy an interesting relation with regard to the  
Frobenius map:  

Equating coefficients of t gives the result.  



Rpe-linearity of the Qi 
The Qi also satisfy an interesting relation with regard to the  
Frobenius map:  

Now for pe > i we have:  



Steenrod Algebra: Structure 
  Complete set of invariants – the Adem relations – is known. 

  These are encoded by the Bullett-Macdonald identity. 

  Much is also known about the structure of RG as a module  
over the Steenrod Algebra  

  Invariant ideals in RG – e.g. radical of a stable ideal is stable 
  For example, when G = GL(n,k), there are only finitely 
many stable prime ideals in RG and these are generated by 
intervals in the Dixon invariants 

  The Steenrod algebra can also be interpreted as a subring of 
the ring of differential operators on RG.  



Rings of Differential Operators 



Problems in Characteristic p>0 
Julia Hartmann mentioned some of the problems with differential 
operators in prime characteristic: 

d1(xp) = p xp-1 = 0 

Even worse: d1
p = 0 

Introduce the divided powers operators: 

Then set D(k[x1, ..., xn]) = k[xi, di
m]m>0 



Differential Operators on RG 

We are in the case where G is reductive so think of RG
 as S/I. 

Remark 2: We could also define D(RG) in this way. 

Remark 1: With this definition, it is not clear that D(RG) enjoys 
any nice properties.  



Rpe-linearity of D(R) 
Theorem (K.E. Smith): In characteristic p > 0, the ring of  
differential operators on a ring R is just the algebra of maps  
R  R that are Rpe-linear for some power pe. 

Cor: The Steenrod algebra is a subalgebra of D(RG). 

In fact, we can write the Steenrod operators as 



Applications  

Rings of differential operators find application in a wide 
variety of mathematical fields: 

  Model quantum mechanics 

  Used to study symplectic manifolds 

  Local cohomology modules are finite over D(R) 

  Close – but mysterious – connections to tight closure 



D(RG) and D(R)G 

The group G acts on R and this action extends to operators: 

Note that if gd = d then d defines an operator on RG: 

Natural map: D(R)G  D(RG) 



Questions about D(RG) 

  When is D(RG) finitely generated, or left or right Noetherian? 

  When is D(RG) a simple ring? 

  When is RG a simple module over D(RG)? 

  What about the same questions for GrD(RG)? 

  When is the map D(R)G   D(RG) surjective? 



Answers: G finite 

Characteristic zero.  

Kantor and Levasseur: D(RG) is 

  finitely generated, 

  left and right Noetherian. 

  moreover: D(R)G  D(RG) is a surjection  
whenever G contains no pseudoreflections. 



Answers: Classical Groups 



Simplicity 
If D(S) is simple then the ring S is simple as a D(S)-module. 
Proof:  
  If I is a nonzero stable ideal in S then S/I is a D(S)-module.  
  AnnD(S)(S/I) is a two-sided ideal in D(S) that contains I. 
  So AnnD(S)(S/I) = D(S). 
  Thus S/I = 1(S/I) = 0 and I = S.  
  So S contains no proper D(S)-modules.     

General feeling: characteristic p  
is harder than char. 0 

Theorem (K.E. Smith and  
Van den Bergh): In prime  
characteristic D(RG) is always a  
simple ring.  



Higher Derivations 
The Steenrod operations are a example of a higher derivation, 
collections of operators that generalize the behavior of  
derivations on commutative rings.  

Let R = k[x1, ..., xn]/I  

Definition: A higher derivation from R to R is an infinite  
collection of k-algebra maps {D0 = idR, D1, D2, ...} from R to R 
that patch together using the product rule 



Examples of Higher Derivations 
(1)  The Steenrod operators {Q0, Q1, ... } determine a  

higher derivation from R=k[x1, ..., xn] to itself. 

(2)  In characteristic zero, any derivation d on R determines 
a higher derivation 

For instance, the derivation d/dx on k[x] induces a higher  
derivation on the polynomial ring.  



Exponential Maps 

Each higher derivation {D0, D1, D2, ... } from R to R gives  
rise to a map of k-algebras 

 φ: R         R[[t]] 
      r          D0(r) + D1(r) t + D2(r) t2 + .... 

The product rule guarantees that this map is a ring map.  

There is no instability result for higher derivations, but  
each Di is Rpe-linear for some power pe. So each higher  
derivation is a differential operator.  



The Higher Derivation Algebra 
The higher derivation algebra HDer(R) on a ring R 
is just the R-algebra generated by the components  
of all higher derivations on R.  

Larry Smith asked whether A = HDer.  



Case: RG a Polynomial Algebra 
Here HDer(RG) = D(RG) but RGA ≠ Hder(RG). 

Equality follows from direct calculation. In fact 
HDer(S) = D(S) whenever S is smooth over k.  

Inequality now follows because RG has A-stable 
ideals (for example, the augmentation ideal), but 
is D(RG)-simple.  



Nakai’s Conjecture  

Conjecture: S is smooth over k if and only if  
                    HDer(S) = D(S). 

Ishibashi proved Nakai’s conjecture for RG,  
G a finite group.  

When RG is singular, there is a nice theory of  
HDer(RG)-stable ideals, similar to that developed  
by Smith for A-stable ideals. But it remains open 
whether HDer(RG) = RGA in the singular case.    



Derivations are Representable 

S S 
D 

d 
ϕ: S-module 
    map 

S S 
D={D0,D1,...} 

d 
ϕ: k-algebra 
    map 

k 



Arcs 
Suppose S=k[x1,...,xn]/I and D={D0, D1, ...} is a  
higher derivation from S to k.  

Then we get a ring map ϕ: S  k[[t]] given by  
 ϕ(s) = D0(s) + D1(s)t + D2(s)t2 + .... 

This map is determined by the images ϕ(xi).  
These need to satisfy f(ϕ(x1),..., ϕ(xn))=0 for each 
f in the defining ideal I.   



An Adjointness Result 

Taking Spec’s: 

So Spec(HSS/k) parameterizes arcs on Spec(S).  



The Jet Space 
The Jet Space J(S) = Spec(HSS/k) parameterizes  
arcs on Spec(S).  

We have a map pr : J(S)  Spec(S) that sends  
each arc to the point it passes through.  

Each arc γ corresponds to a map ϕ: S=R/I  k[[t]]. 

The point (ϕ(x1) mod (t), ..., ϕ(xn) mod (t)) satisfies 
each equation in I, so it lies on Spec(S). This is the  
image of the arc γ under the map pr.  



Applications of Jet Spaces 

  Characterization of singularities 
  Multiplier Ideals 
  Nash Conjecture 

  Motivic Integration   



Nash’s Conjecture 

Nash conjectured a relation  
between the jet space of an  
algebraic variety X and its  
resolution of singularities.  



Minimal Resolution 

π 

X 

Y 

X: surface with isolated 
singularity at the origin 

Y: minimal model for X 
(blowup and normalize) 

X 

Z Y 



The Nash Map (1) 

X J(X) 

Y 

pr -1(0)⊆ 

Each arc centered over 0 gives a map  
Spec(k[[t]])  X. The closed point goes to 0,  
but the generic point lifts to Y. The VCP  
ensures that we can complete this map to a  
map of schemes.  

In fact, each arc gets sent  
into a unique  
exceptional 
divisor. 

π 

• 



The Nash Map (2) 
In fact, each component of the fiber of arcs  
through 0 gets sent to a unique exceptional  
divisor, giving rise to an injective map of sets 
{components of arc space through 0}   
        {exceptional divisors appearing in  
          minimal resolution of singularities} 

This map is known as the Nash map. Nash  
conjectured that this map is a bijection. 



Recent Work 
The Nash conjecture has motivated research 
in resolution of singularities (esp. in prime  
characteristic) for some time [Spivakovsky,  
Lejeune-Jalabert].  

The conjecture is true for toric varieties, 
surfaces and threefolds.  

However, Kollar and Ishii recently gave a  
counterexample.  



Motivic Integration 



The Motivic Ring 
The motivic ring M consists of Z-linear combinations  
of varieties plus some formal inverses. Sums  
correspond to disjoint unions and products 
correspond to direct products.  

Kontsevich views the map X  M as an integration  
on the arc space of X. He gets a change of variables  
formula that he uses to show that the integrals of X  
and Y (birational CY manifolds) are equal. Then  
their Hodge numbers are equal too. 



Applications: Motivic Integration 

  zeta functions 
  p-adic integration 
  string theory 
  mirror symmetry 
  multiplier ideals (tight closure): singularity theory 

  Ein, Lazarsfeld and Mustata 



Thank you once again.  

Enjoy your lunch! 


