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Commutative Algebra Algebraic Geometry  

    
Combinatorics of Networks 
 
Networks arise in daily life, in scientific models and 
even in our recreational pursuits. 
 
• August 10, 1996: A fault in two power lines in 
Oregon led to blackouts in 11 US states  
 
• May 04, 2000: Love Bug Virus spreads over the 
internet, causing billions of dollars in damage  
 
• Recreational Examples: Six Degrees of Separation 
 • Kevin Bacon and Marlon Brando (Die Zeit) 
 • Paul Erdős 
 • Monika Lewinsky (NY Times, 21 Feb. 1998) 
 
• Mathematical Genealogy Project:  
http://hcoonce.math.mankato.msus.edu/ 
 
• Scientific applications: topology of food webs, 
electrical power grids, metabolic networks, the 
WWW, the internet backbone, telephone call 
networks, etc. (S. Strogatz, Nature, March 2001) 
 
Tools from Commutative Algebra allow us to 
estimate the reliability of networks like the internet 
backbone or a small intranet. 



Graph:  
Number of vertices of :      
Number of edges of :  
We allow multiple edges between vertices and loops.  
 
We say that  is connected when any two vertices 
are connected by a path.  
 
Let represent the probability that any given edge 
fails (is removed). We are interested in the reliability 
function,  

 
 

 
  
  
In general, it is too difficult to compute the reliability 
function exactly. This leads to our central problem: 

 
Bound the reliability function in terms of information 
that can be easily computed from the graph (say, in 
polynomial time). 



 
 

Plan of Attack: 
 

•  is a polynomial in  
 
• Using connections between simplicial 

complexes and commutative algebra, 
associate a ring  to the graph  
 

• The Hilbert polynomial of  measures the 
structure of  and is related to the reliability 
polynomial, . 
 

• The ring  is Cohen-Macaulay and this puts 
constraints on its Hilbert polynomial 
 

• These constraints lead to tight bounds on the 
reliability function.  

 
 
Provan and Ball. Bounds on the reliability 
polynomial for shellable independence systems. 
SIAM J. Alg. Disc. Meth. Volume 3, No. 2, 1982.  
 
 
 
 
 

 



 is a polynomial in  
 

 
To illustrate, consider Petersen’s Graph: 
 

 
 

 
 
 

We need to remove at least 3 edges to disconnect   
(cut number k=3) 
 
Removing any 7 edges disconnects   
(dimension d=6) 
 
Removing as many edges as possible while 
preserving connectivity leads to a spanning tree.  
 
spanning: connected subgraph that involves all 
vertices of  
 
tree: no cycles (paths that are loops) 

 
All spanning trees have  edges.  



The probability of any given connected spanning 
graph occurring in which i edges have failed is  

  
 

Let  be the number of ways to remove i edges 
from  while preserving connectivity. Then  is 
the number of spanning graphs with edges. 
 

 
 

Easy to compute  (binomial coefficients) 
 
To compute , use the Matrix-Tree Theorem 
(Kirchoff):      A: adjacency matrix of  
    D: degree matrix (diagonal) 
|det(cofactor(A-D))| = number of spanning trees  

 

 

 

Not too difficult to compute    
(Here: ) 



A Simplicial Complex 
 

 
 
 This is a simplicial complex because:  
 (1)          (2)  is closed under inclusion 
 

Note that  is the number of sets of size i in  

 
The Kruskal-Katona Theorem bounds the face 
numbers  of our simplicial complex.  
 
Our complex has a special structure that admits 
an algebraic description. 
 

Let be the ideal in  generated by 
monomials whose support does not lie in  
 

Ex: :  its support  
 

Stanley-Reisner ring:    
 
After “killing”  the only monomials that remain 
have support in the simplicial complex . 



The ring  is a graded ring. That is, it 
decomposes into pieces, each of which corresponds 
to homogeneous polynomials of a certain degree: 
 

 
 
(This grading exists because the ideal we are 
killing is generated by homogeneous polynomials – 
in fact, by monomials)  
 
The Hilbert Series  is the generating 
function of the dimensions of the graded pieces: 
 

 
 

Ex: Let  Then  
 

so    

 
Here   and , the complete complex on 
d vertices.  The dimension of the complex is d and 
the dimension of the ring is the order of the pole at 
t=1 in the Hilbert Series (also d). In general,  

 
 

Theorem (Hilbert-Serre):  



 What does the Hilbert Series look like for ? 

Theorem:            

 
Proof: We induce a “fine grading” on  by 
assigning degree  to . The 
monomials clearly generate  as a k-vector space, 
but only those with support in  are nonzero. 
 

 

 
This last equation needs some justification:  
 

First note that  

so that  
 

 
Now set all   in (*) to get  

 



Theorem:            

 
 

Theorem:           
 

 

 

 
So the reliability polynomial of  is determined 
by the Hilbert polynomial of . 
 
The coefficients of the Hilbert polynomial 

 are related to the face 
numbers:  

           

 
For instance, in our running example,  

 
 



The simplicial complex  is pure: every maximal set in 
has the same size,  

 
 

 
 

 pure   
 
 

 
 
       not pure 
 
 

 
      strongly pure

 

In fact, much more is true: every induced subsimplicial 
complex of  is pure. (In combinatorics we would say 
that is a matroid). This corresponds to a strong 
equidimensionality result on , sufficient to ensure 
that  is Cohen-Macaulay.  
 
Now Macaulay’s Theorem puts severe constraints on 
the coefficients of the Hilbert polynomial of  
 
Macaulay’s Theorem:  for all  
 
Ex: (Petersen’s Graph)  
 

 

Similarly:              



Constructing Bounds on the Hilbert Polynomial 

Since  and  we can interpret assigning 

values to the coefficients  as placing  balls into  
boxes. 
 

 
Since  the polynomial  
is largest when the first free coefficients are as big as 
possible and is smallest when the last free coefficients 
are as big as possible. 
 

In our example, an upper bound is obtained by putting 
as many balls as possible (subject to Macaulay’s 
Theorem) into the lowest numbered boxes, until we run 
out of balls. This leads to the upper bound: 

 
 

Applying Macaulay’s Theorem to the lower bound is 
more difficult: in order to put any ball in the box d, we 
must put some in box d-1, etc.  There is a formula for 
these numbers, leading to the lower bound: 

 



 
Results for Petersen’s  Graph 

 

 

 
Upper bound on the reliability polynomial: 

 
 
Lower bound on the reliability polynomial: 

 
 
 
When the edge failure probability is 0.1, there is about a 
98% probability that the graph remains connected. 
 
When the edge failure probability is 0.05, there is about 
a 99.8% probability that the graph remains connected.  



The simplicial complex  is pure: every maximal set in 
has the same size,  

 
 

 
 

 pure   
 
 

 
 
       not pure 
 
 

 
      strongly pure

 

In fact, much more is true: every induced subsimplicial 
complex of  is pure. (In combinatorics we would say 
that is a matroid).  
 
Proof: Suppose that we build a subsimplicial complex of 

 on all vertices save those in the set S. The faces in 
the subcomplex are collections of edges disjoint from S 
whose removal preserves the connectivity of  . Since 
we are only interested in connectivity, we can identify 
those vertices in  connected by edges in S (and 
remove all edges in S from the resulting graph ). 
Then the subcomplex  is just ,  and the result follows 
from the fact that that maximal faces in the subcomplex 
correspond to spanning trees in all of which have the 
same size (number of vertices – 1).  


