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Suppose a group G acts on a variety X.  

Question: Do the orbits of G form a variety?  
That is, can we make X/G into a variety?  

Answer: Sometimes. When G is finite then X/G is a  
variety, but if G is not finite we may need to exclude  
certain orbits to make the set of orbits into a variety.   

Quotient Varieties 



Example 

(x,y) 

(-x,-y) 

(0,0) 

G = Z2 acting on X = C2 

(x, y)  (-x, -y).  

The orbit space X/G  
is a variety. 

R = C[x,y] and G acts on R    
        (g•r)(x,y) = r(g-1•(x,y)).  

C[X/G] = RG = {r∈R : g•r = r   
                        for all g∈G} 

                     = C[x2, xy, y2]   

X//G = Spec(RG) is the  
categorical quotient.   



Example 

G = C*
 acting on X = C2 

t(x,y)  (tx, ty) 

The orbit {(0,0)} is in the  closure of  
all other orbits. 
Now X/G is not a variety.   

RG = C so X//G = pt.  

So X//G ≠ X/G. 

But X-{(0,0)}/G is a  
projective variety.  

In general P(semistable pts) 
is a projective variety that  
maps to P(RG).  



Summary of Examples 

The categorical quotient X//G has coordinate ring 
RG  and in good cases it represents the orbits of  
semistable points in X.  

This construction leads to many interesting  
quotient spaces:  
•   orbifolds – G = finite group 
•   projective space – G = C* 
•  Grassmanians G(k,n) – G = SLnC  
•  moduli spaces of points (e.g. Hilbert schemes)  



Gordan (1868) showed that C[X]SL2C is finitely  
generated. In 1890 Hilbert showed that RG is  
finitely generated when G is linearly reductive.  
Nagata showed that this can fail when G is not l.r. 

Properties of RG 

P. Gordan D. Hilbert M. Nagata 

It is generally difficult to compute RG explicitly. 



Gordan (1868) showed that C[X]SL2C is finitely  
generated. In 1890 Hilbert showed that RG is  
finitely generated when G is linearly reductive.  
Nagata showed that this can fail when G is not l.r. 

Properties of RG 

P. Gordan D. Hilbert M. Nagata 

It is generally difficult to compute RG explicitly. 

Just use the Reynolds  
        operator! 



The Reynolds operator 
An algebraic group G is linearly reductive if for 
every G-invariant subspace W of a G-vector space 
V, the complement of W is G-invariant too: 
                              V = W ⊕ WC. 



The Reynolds operator 
An algebraic group G is linearly reductive if for 
every G-invariant subspace W of a G-vector space 
V, the complement of W is G-invariant too: 
                              V = W ⊕ WC. 

RG  R is a graded map and for each degree  
we can decompose Rd =  (RG)d ⊕ Td. 
As a result, we can split the inclusion by  
projecting onto the RG factors.   



The Reynolds operator cont. 
When G is a finite group, the Reynolds operator  
is just an averaging operator  

If G is infinite, then can define the Reynolds  
operator by integrating over a compact subgroup. 

There are also explicit algebraic algorithms to  
compute the Reynolds operator in the case of  
SL2C (see Derksen and Kemper’s book).  



Hilbert’s wonderful proof 
Thm (Hilbert): If G is lin. reductive then RG is f.g. 

Proof:  



The Hochster-Roberts theorem 

Thm (Hochster and Roberts): If G is linearly 
reductive, then RG is Cohen-Macaulay.  

An elegant proof of the result uses reduction  
                               to prime characteristic and  
                               the theory of tight closure.  

Mel Hochster 



Computing invariants 
Several methods: 
(1) Gordan’s symbolic calculus (P. Olver) 
(2) Cayley’s omega process  
(3) Lie algebra methods (Sturmfels) 
(4) Derksen’s algorithm (Derksen and Kemper) 

Harm Derksen and  
Gregor Kemper. 



Derksen’s Algorithm 
(1) Hilbert ideal I = ideal of R gen by RG

>0  
(2) To find I, we first look at the map   

Compute the ideal β by elimination and set  
y’s to 0 to get gens for the Hilbert ideal IR. 
(3) The gens of I may not be invariants but 
we can apply the Reynolds operator to get  
invariants that generate I and RG. 

Gröbner 
bases! 



Easy example 

Let R=C[x,y,z] and G=Z2. 
Let G act on R by σ(x) = -x, σ(y)=z, σ(z) = y. 

by the interpolation matrix 

We represent G as V(t2-1) and the action  



Easy example continued 

t•x = tx 
t•y = (t+1)y/2 + (1-t)z/2 
t•z = (1-t)y/2  + (1+t)z/2 

The ideal defining the graph of                                is 
 β = (t2 – 1, y1 - t•x, y2 - t•y, y3 - t•z) ⊂ C[t,x,y,z,y1, y2, y3] 

We compute the elimination ideal β ∩ C[x,y,z, y1, y2, y3] 
and set y1 = y2 = y3 = 0 to get (y+z, z2, xz, x2). 

Applying the Reynolds operator R(f)=[f(x,y,z)+f(-x,z,y)]/2 
gives gens for RG: y+z, y2+z2, xz-xy, and x2.  



Extending the group action: G acts on an operator  
θ∈D(R) by          
                           (g•θ)(f) = g • (θ(g-1 • f)). 

Concretely, if g acts on x1,…,xn by the matrix A then  
g acts on ∂1,…, ∂n by the matrix (AT)-1.  

Group actions on the Weyl algebra 

Idea: replace R=C[x] with D(R)=C<x,∂x> and compute  
D(R)G = C<x,∂x>G.  

This action preserves the defining relations on the  
Weyl algebra:   



The associated graded ring GrD(R) 

D(R) is filtered: F0 ⊂ F1 ⊂ … ⊂ D(R)   Fi = ops of  
                                                                   order ≤ i 
GrD(R) =    Fi / Fi-1  and σ: D(R)  GrD(R) 
                                            θ∈Fi  θ mod Fi-1  

Write ξi for σ(∂i), so that GrD(R) = C[x1,…,xn,ξ1,…, ξn]  
G acts on ξi just as on ∂i. 



The associated graded ring GrD(R) 

D(R) is filtered: F0 ⊂ F1 ⊂ … ⊂ D(R)   Fi = ops of  
                                                                   order ≤ i 
GrD(R) =    Fi / Fi-1  and σ: D(R)  GrD(R) 
                                            θ∈Fi  θ mod Fi-1  

Will Traves 
Nobuki  
Takayama 



Thm: If a set of elements generate Gr(S) then any 
          lifts of these elements generate S. 

So lifting the generators of Gr[D(R)G] to D(R)G gives  
generators of D(R)G.   

Derksen’s algorithm applied to the Weyl algebra 

Lemma: [GrD(R)]G = Gr[D(R)G].  

So we can apply Derksen’s algorithm to compute  
generators for [GrD(R)]G = Gr[D(R)G]. 



Lifts generate 
D(R)G 

Apply Reynolds op: R(θ)=[θ+ θ(-x,z,y,-ξ1,ξ3,ξ2)]/2: 
y+z,         x2,           y2+z2,       xz-xy,  
ξ2+ξ3,       ξ1

2,          ξ2
2+ξ3

2,    ξ1ξ3- ξ1ξ2, 
yξ2+zξ3,   xξ3-xξ2,    zξ1-yξ1,    xξ1.  

Example 

R = C[x,y,z], G = Z2=V(t2-1),  t•x=-x, t•y=z, t•z=y. 
RG = C[y+z, y2 + z2, xz-xy, x2].  

G acts on GrD(R): t•ξ1= -ξ1, t•ξ2=ξ3, t•ξ3=ξ2. 
 β = (t2-1, y1-t•x, y2-t•y, y3-t•z, y4-t•ξ1 ,y5-t• ξ2, y6-t• ξ6) 

Eliminate and set yi’s to zero: 
(y+z,x2,xz,z2,    ξ2+ξ3,ξ1

2,ξ1ξ3,ξ3
2,    zξ3,xξ3,zξ1,xξ1). 



Apply Reynolds op: R(θ)=[θ+ θ(-x,z,y,-ξ1,ξ3,ξ2)]/2: 
y+z,         x2,           y2+z2,       xz-xy,  
ξ2+ξ3,       ξ1

2,          ξ2
2+ξ3

2,    ξ1ξ3- ξ1ξ2, 
yξ2+zξ3,   xξ3-xξ2,    zξ1-yξ1,    xξ1.  

Example 

R = C[x,y,z], G = Z2=V(t2-1),  t•x=-x, t•y=z, t•z=y. 
RG = C[y+z, y2 + z2, xz-xy, x2].  

G acts on GrD(R): t•ξ1= -ξ1, t•ξ2=ξ3, t•ξ3=ξ2. 
 β = (t2-1, y1-t•x, y2-t•y, y3-t•z, y4-t•ξ1 ,y5-t• ξ2, y6-t• ξ6) 

Eliminate and set yi’s to zero: 
(y+z,x2,xz,z2,    ξ2+ξ3,ξ1

2,ξ1ξ3,ξ3
2,    zξ3,xξ3,zξ1,xξ1). 

Robertz & 
Plesken 



These relations are invariant under the Fourier transform 
xi          ∂i because A∈O(3) so (AT)-1=A. 

Computing Relations in GrD(R)G and D(R)G 

We can compute relations among the generators 
in GrD(R)G by elimination and then lift to relations  
in D(R)G.  

Thm (_): The lifted relations, together with the  
commutator relations among the generators,  
generate the two-sided ideal of relations in D(R)G.  

In our example, there are 33 nontrivial commutator 
relations and 40 lifted relations among the generators. 



The ring D(RG) 
Grothendieck defined a ring of differential operators 
Dk(S) for each k-algebra S. However, DC(RG)≠D(R)G. 

If RG = C[t1,…,tm]/J then  

The two rings are related: π: X  X//G induces the  
inclusion RG  R and this induces a map  
 π*: D(R)G  D(RG).  

Thm (Kantor, Levasseur): When G is a finite group,  
 π* is injective.  



When π* fails to be surjective 

Example: G=Z2 acts on R=C[x] by x  -x. RG=C[x2] 
so D(RG) is a Weyl algebra, but D(R)G = C<x2, x∂, ∂2> 
so π* is not surjective. 

The group G is generated by pseudoreflections  
(g∈G a pseudoref iff ρ(g) has eigenvalues 1,1, …,1,η.) 

Thm (Sheppard-Todd-Chevalley): RG is a poly ring and  
D(RG) is a Weyl algebra if and only if G is generated by  
pseudoreflections.  



No pseudoreflections  π* surjective 

Thm (Kantor, Levasseur): When G is a finite group 
the map π* is surjective precisely when G contains 
no pseudoreflections. In such cases, D(R)G = D(RG). 

In our running example, G contains no pseudorefs and  
so D(RG) = D(R)G.  

When G contains some pseudoreflections, they  
generate a normal subgroup P    G. Then  

RG = (RP)G/P and D(RG) = π*(D(RP)G/P),  

where now RP is a poly ring, D(RP) is a Weyl algebra,  
and the map π* comes from the inclusion RG ⊂ RP. 



Example 



Each subspace represented by a choice of basis: 

SLnC acts on Cn in a natural way and acts on a  
the matrix M by change of basis: g•Mx = M[g•x].  

Grassmanians 

semistable points = full rank matrices 
and the quotient identifies those whose columns 
generate the same subspace of Cn.  



Fundamental Theorem of Invariant Theory: 
The ring RG is generated by the determinants of the  
2x2 minors of our matrix,  [jk] = xj1xk2 – xk1xj2, subject 
to the Plücker relation: [12][34] – [13][24] + [14][23] = 0 



The ring GrD(R)G 

The FTIT applies more generally, to             

This turns out to be precisely GrD(R)G. We have: 
         6 Plücker coordinates,  
         6 similar coordinates in the ξi’s and  
       16 mixed coordinates involving both xi’s and ξj’s.  
As well, Popov and Vinberg described the relations  
among these invariants.  

[jk] = xj1xk2 – xk1xj2  = det of jth and kth columns 



The ring GrD(R)G 

The FTIT applies more generally, to             

This turns out to be precisely GrD(R)G. We have: 
         6 Plücker coordinates,  
         6 similar coordinates in the ξi’s and  
       16 mixed coordinates involving both xi’s and ξj’s.  
As well, Popov and Vinberg described the relations  
among these invariants.  

|j k| = ξj1 ξk2 – ξk1 ξ j2  = det of jth and kth columns 



The ring GrD(R)G 

The FTIT applies more generally, to             

This turns out to be precisely GrD(R)G. We have: 
         6 Plücker coordinates,  
         6 similar coordinates in the ξi’s and  
       16 mixed coordinates involving both xi’s and ξj’s.  
As well, Popov and Vinberg described the relations  
among these invariants.  

<j k>  = xj1 ξk2 + xj1 ξk2  = dot product of jth and kth cols 



The ring GrD(R)G 

The FTIT applies more generally, to             

This turns out to be precisely GrD(R)G. We have: 
         6 Plücker coordinates,  
         6 similar coordinates in the ξi’s and  
       16 mixed coordinates involving both xi’s and ξj’s.  
As well, Popov and Vinberg described the relations  
among these invariants.  

Lifting these generators gives generators for D(R)G. 
Thm(_): The relations can also be lifted to D(R)G.  

What about the ring D(RG)?   



The ring D(RG) 

What about the ring D(RG)? Need to use the map π*.  

Schwarz showed that π* is surjective in this 
case and has kernel generated by D(R)g ∩D(R)G. 

Thm(_): The kernel of this map is a principal 2-sided 
               ideal and is generated by the Casimir  
operator, an operator generating the center of g.  

Gerry Schwarz 

C = θ(θ+2) – 4 Σ [jk] |jk| where 

θ = <11> + <22> + <33> + <44> 



Thank you. 
Danke schön. 


