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Group Actions 
When a group G acts on a set X we can 
consider the orbit space X/G.  

We’ll focus on the case where we have a  
linear representation of G: X ≅ kn.  

Example: If G = <σ: σ2 = e > acts on the line  
X = R by σ(x) = -x then X/G is a half-line.  



Examples of G-actions 
Example: G = C* acts on X = C2 \{(0,0)} by  
dilation              t(x,y) = (tx, ty). 

The orbits are the punctured lines through  
the origin and X/G is just the projective space  
P1

C. 



Unhappy G-actions 
Modify the last example a little: let G = C*  
act on X = C2

 via dilation t(x,y) = (tx, ty).  

The orbits are: • the origin itself 
 •  punctured lines through the origin  

X/G is not an algebraic variety! 



Therapy for unhappy G-actions 
•  Surgery: Remove the offending orbits  
  from the original space 

•  work only with the semistable orbits 
•  used in G.I.T. to construct moduli spaces 

•  Less invasive: work with an algebraic version 
of the orbit space, the categorical quotient X//G. 



Invariants 
Invariants are used to define X//G. 
The action of G on X induces an action of G on  
functions f: X  C via (gf)(x) = f(g-1x). 

The function f is invariant if gf = f for all g∈G. 

It is a relative invariant if      gf = χ(g)f  
for some character χ: G  C*.  



The ring of invariants 

The (relative) invariants form a subring  
RG of R = C[X].  

The categorical quotient X//G is just Spec(RG). 



Example: categorical quotient 
If G = <σ: σ2 = e > acts on the plane C2 by  
                       σ(x,y) = (-x,-y)  
then the orbit space C2

 / G is a surface 

C[x,y]G = C[x2, xy, y2] (polys of even degree) 

Here all orbits are semistable and  
C2 / G = C2 // G = Spec C[x2, xy, y2]  

In general, X // G = X / G when all the orbits 
of G have the same dimension.   



Example: binary forms 
The space Sd(C2) of degree d forms is  

If g ∈ G=Gl2C acts on C2 then g acts on C[x,y]  

via the matrix g  



Binary forms continued 
When we plug into the form 

our coefficients change. So we get an induced  
action on the coefficients (this is the rep. Sym2(Cd+1)) 

Let R=C[a0,a1,…,ad] and let RG
 be the ring of relative 

invariants 

RG = { f ∈ R: for some w and all g∈G, gf = (det g)w
 f } 



Binary forms continued 
There is a correspondence between Gl2C invariants  
of weight w and homogeneous Sl2C invariants of  
degree 2w/d. Sl2C invariants of binary forms  
encode information about the geometry of points  
on the projective line. 

Example: C[a0,a1,a2]Sl2C= C[a0a2 – a1
2] 

Example: C[a0,a1,a2,a3,a4]Sl2C= C[S,T] 
S = a0a4 – 4a1a3 + 3a2

2  and  
T = a0a2a4 – a0a3

2 + 2a1a2a3 – a1
2a4 – a3

2 



Elliptic Curves 
This last example has to do with elliptic curves.  

Every elliptic curve is a double cover of P1, 
branched at 4 points.  

j(E) = j-invariant of E  
       = S3/(S3

 – 27T2)  



Finite Generation 
All the rings of invariants we’ve seen so far 
have been finitely generated. Gordan proved  
that C[X]Sl2C is finitely generated (1868) but  
his methods don’t extend to other groups.  

King of the invariants 
Ring of the invariants 

RG 
Paul Gordan 



Hilbert’s Finiteness Theorem 

In 1890 Hilbert shocked the  
mathematical community by  
announcing that rings of  
invariants for linearly  
reductive groups are  
always finitely generated.  

David Hilbert 

Just use the  
Reynolds operator! 



The Reynolds operator 
An algebraic group G is linearly reductive if for 
every G-invariant subspace W of a G-vector space 
V, the complement of W is G-invariant too: 
V = W ⊕ WC. 



The Reynolds operator 
An algebraic group G is linearly reductive if for 
every G-invariant subspace W of a G-vector space 
V, the complement of W is G-invariant too: 
V = W ⊕ WC. 

RG  R is a graded map and for each degree  
we can decompose Rd =  (RG)d ⊕ Td. 
As a result, we can split the inclusion by  
projecting onto the RG factors.   



The Reynolds operator cont. 
When G is a finite group, the Reynolds operator  
is just an averaging operator  

If G is infinite, then can define the Reynolds  
operator by integrating over a compact subgroup. 

There are also explicit algebraic algorithms to  
compute the Reynolds operator in the case of  
Sl2C (see Derksen and Kemper’s book).  



Hilbert’s wonderful proof 
Thm (Hilbert): If G is lin. reductive then RG is f.g. 

Proof:  



The Hochster-Roberts theorem 

Thm (Hochster and Roberts): If G is linearly 
reductive, then RG is Cohen-Macaulay.  

An elegant proof of the result uses reduction  
to prime characteristic and  
the theory of tight closure.  

Mel Hochster 



Computing invariants 
Several methods: 
(1) Gordan’s symbolic calculus (P. Olver) 
(2) Cayley’s omega process  
(3) Grobner basis methods (Sturmfels) 
(4) Derksen’s algorithm (Derksen and Kemper) 

Harm Derksen Gregor Kemper 



Derksen’s Algorithm 
(1) It is enough to find generators of the Hilbert 
ideal I = RG

>0. 
(2) These may not generate RG but their images 
under the Reynolds operator will.  
(3) To find I, we first look at the map   

Compute the ideal b by elimination and set y’s  
to zero to get generators for the Hilbert ideal.  
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New invariants from old 

Larry Smith 

Question (2001): Is the HS-algebra 
the same as the Steenrod algebra? 

Steenrod algebra ⊂ Weyl algebra 
in prime characteristic  

S.A. acts on both C[X] and C[X]G and so it can  
be used to produce new invariants from old.  

Turns out: SA ≠ HS (INGO 2003).  
But the question got me thinking about diff. ops.  
and rings of invariants.  



Symmetry algebra for HA(β) 
Together with M. Saito: Studied the 
symmetry algebra for any hypergeo. system HA(β): 

The solutions to these systems are connected  
to a toric variety and if θ∈SA then θ(f) is a  
solution to a new hypergeo. system HA(β’). 



Differential conditions 
Question: Can we use differential operators  
to produce new invariants from known invariants? 

Relation between differential equations and  
invariants (due to Cayley; see Hilbert, 1897). 

Arthur Cayley 

We’ll develop these conditions 
for the Sl2C invariants of the  
binary forms but the basic idea 
is that the invariants form a  
module over the Weyl algebra. 



Torus Invariants 
Have a torus T2

 sitting in Gl2C as the diagonal 
and the invariants f under T2

 must satisfy 
                       f(λx,τy)=(λτ)wf(x,y). 



Torus Invariants 
Have a torus T2

 sitting in Gl2C as the diagonal 
and the invariants f under T2

 must satisfy 
                       f(λx,τy)=(λτ)wf(x,y). 



The other two generators 

Along with the torus, Gl2C is generated by two 
other kinds of matrices 



The DE for binary forms 

 if and only if f(a0,a1,…,ad) is a relative  
 invariant of weight w and degree 2w/d. 

homogeneity 

isobaric 



Questions on invariant DEs 

Question: When is this system holonomic? 
In these cases, find a formula (or bounds) for  
the holonomic rank of this system.  
(Hint: Molien series gives a lower bound)  



Symmetry algebra 

Given a left ideal J in the Weyl algebra D(R),  
the symmetry algebra of J is 

Consider the left ideal J in D(R) generated by 
the Cayley’s system of differential equations. 
What does its symmetry algebra look like? 



Symmetry for Cayley’s system 

€ 

S D(R)
J

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≅

θ ∈D(R) :θ • RG ⊂ RG{ }
θ ∈D(R) :  θ • RG = 0{ }

⊂ D(RG )



New invariants from old 
Recall our question: can we use operators to  
produce new invariants from old?  

The naïve answer is Yes! Just use operators  
in  D(RG). But this is often badly behaved.  

So we’ll try to use its subring S(D(R)/J) instead. 

Questions: How do we compute S(D(R)/J) and  
what algebraic properties does it have?  

When is RG a simple module over S(D(R)/J)? 



Invariant operators 
If G acts on R then it also acts on the Weyl  
algebra D(R): if g•x = Ax then g•∂ = (A-1)T ∂. 

The action preserves the order filtration so  
it descends to the associated graded ring: 
                     [grD(R)]G = gr(D(R)G). 

Since grD(R) is a polynomial ring, its ring of  
invariants is f.g. (and so is D(R)G).  

Unfortunately, this is not the ring D(RG).  



Distinction: D(R)G versus D(RG) 
The map RG  R induces a map π*: D(R)G  D(RG). 

We just get π*θ by restriction. Or we can view  
the map as:  

R R 

RG RG 

i R���

θ 

π*θ 

Theorem: Im(π*) ⊂ S(D(R)/J) ⊂ D(RG). 



Failure of surjectivity 
We’ve got a map π*: D(R)G  D(RG). 

Have Im(π*) ⊂ S(D(R)/J) ⊂ D(RG). 

Musson and Van den Bergh showed that the  
map π* may not be surjective (G = torus). 

Ian Musson 

M. Van den Bergh 



Surjective when it counts 
Schwarz showed that the map π* is surjective  
in many cases of interest. In fact, he showed  
that the Levasseur-Stafford Alternative holds  
for Sl2C representations: 

Gerry Schwarz 

Either (1) RG  is regular or  
           (2) the map π* is surjective  
                at the graded level 



Computing D(RG) 
In most cases the ring RG is not regular and  
we have  
                  im π* = S(D(R)/J) = D(RG).   

In these cases, we have the analogue of my 
result with M. Saito for the HA(β).   

We can compute generating sets for these  
rings by applying π* to lifts of a generating  
set for [grD(R)]G. In particular, for all Sl2C  
representations, D(RG) is finitely generated.   



Simple Results 
For G lin. red, RG is a simple module over D(RG).  

D(RG) itself is often a simple ring. For instance, 
this is known for tori (Van den Bergh) and for  
many classical groups (Levasseur and Stafford). 

Thm (Smith,VdB): D(RG) is simple  
for all lin. red. G in prime  
characteristic!  

It remains open whether D(RG) is  
always simple.  
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