
Some Graph Theory: Let G be a graph with no loops or multiple edges. A 
subset of vertices V is said to be a clique if each vertex in V is joined to all 
other vertices in V.  
The clique sequence  
(c0, c1, …, cα) of G  
is a vector of positive  
integers, where cn denotes the number of cliques on n vertices in G. Erdös et. 
al. [AMSE] showed that there are no constraints on the relative sizes of the 
clique numbers: for any permutation σ of {0, 1, …, α} there is a graph with 
cσ(0) ≥ cσ(1) ≥ … ≥ cσ(α).  

A graph is said to be well-covered if all its maximal cliques have the same 
size. The clique numbers for well-covered graphs were originally thought to 
be unimodal [BDN]; however, T.S. Michael and I showed that this is far 
from the case [MT]. In fact, the clique sequence must increase up to its  
half-way point. After that, our Roller Coaster Conjecture asserts that there 
are no constraints on the relative sizes of the last half of the clique numbers.  
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The Roller Coaster Conjecture was originally introduced to describe the 
possible clique sequences of well-covered graphs. After hearing Tony 
Geramita speak about Artin level algebras in January in San Diego, I 
realized that the conjecture naturally extends to a statement about the 
possible h-vectors of Artin level algebras.    

Artin Level Algebras: An Artin level algebra is a graded zero-dimensional 
algebra in which all the socle elements (Soc(R) = AnnR(m)) are 
homogeneous of the same degree. Many researchers (Bigatti, Hulett, 
Pardue, Iarrobino, Froberg, Laksov, Geramita, etc.) have asked after the 
possible h-vectors (Poincaré series) of Artin level algebras. The h-vector of 
R is (h0, h1, ..., hα), where hk is the dimension of the kth graded piece of R.   

To each graph, we may associate an ideal of quadratic monomials. Assign a 
variable to each vertex of the graph to get S = k[x1,…,xn]. The ideal  

      I = (xixk: [xi,xk] is not an edge of G)  
contains the square of each variable. Note that R=S/I is zero-dimensional. 
Moreover, a square-free monomial xa

 is in Soc(R) if and only if supp(xa) is a 
clique in G but supp(xaxi) is not a clique in G for all vertices i.  

Hibi [H] extended results of Stanley and Björner on simplicial complexes to 
Artin level algebras. Using combinatorial means he showed that the first 
half of the hi’s must increase and hi ≤ hα-i for Artin level algebras.   

Conjecture: There are no constraints on the relative sizes of the last half 
of the h-vectors of Artin level algebras: if σ is a permutation on  
{⎡α/2⎤, ..., α-1, α} then there is an Artin level algebra with socle 
concentrated in level α and hσ(⎡α/2⎤) ≥ hσ(α-1) ≥  h σ(α).    

Corollary: The Roller Coaster conjecture for well-covered graphs implies 
the conjecture for Artin level algebras.  
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Thm: (1) homog. elts of Soc(R) correspond to the maximal cliques in G. 
(2) G is well-covered if and only if R is an Artin level algebra.  
(3) The clique sequence of G agrees with the h-vector of R. 
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The graph G contains a clique on 5 vertices. 
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