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Optimization Using Lagrange Multipliers 

A typical problem in SM223 asks for the maximum of the 
function f(x,y,z) = x3 + 2xyz - z2 subject to the constraint 
g(x,y,z) = x2 + y2 + z2 - 1 = 0.  

J.-L. Lagrange showed that this can be done by solving 
the associated system of equations ∇f = λ∇ g, g = 0: 

Those look  
hard. 

I need Gröbner  
Bases to solve the  
system! 



Gröbner Basics 
A Gröbner Basis is a representation of a system of equations that 
may contain redundant equations, but that encapsulates a lot of 
information about the system and its solutions. 

1.  Ideals 
2.  Monomial Orderings 
3.  Division 
4.  Leading Term Ideal 
5.  Elimination Theory  
6.  Solving Lagrange’s Equations 

Bruno Buchberger named Gröbner Bases after 
his Ph.D. advisor, Wolfgang Gröbner.  
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Ideals 
Given polynomials f1, …, fs we consider the system of equations  

  f1(x1,…,xn)=0, …, fs(x1,…,xn)=0.            (*) 

A polynomial consequence is a polynomial g1f1+ g2f2 + … + gsfs.  

Solving (*) is equivalent to solving the system  
  {g=0: g is a polynomial consequence of f1, …, fs}. 

The ideal (f1, …, fs) is the set of all polynomial consequences of the  
fi’s.  

Example: The two ideals (xy+1,y2-1) and (xy+1,y2-1,-x-y) are equal.  
The second set of generators is more desirable – it is a Gröbner Basis. 

The fi’s are called basis elements for the ideal. 



Monomial Orders 
In order to define Gröbner Bases we introduce an ordering on  
monomials xaybzc

 in C[x,y,z]. A monomial ordering is an order 
that is: 

TOTAL: for every pair of monomials m1 and m2 we have either  
m1 ≥ m2 or m2 ≤ m1.  

ARTINIAN: every set of monomials has a smallest monomial. 

MULTIPLICATIVE: if m1 ≥ m2 then m ⋅ m1 ≥ m ⋅ m2 for any  
monomial m. 

Example: Order monomials xn
 by degree xn

 > xm if n > m.  



Lex Order 
We say that    xaybzc > xdyezf     

if    a > d or  
   a=d and b > e or  
   a=d and b=e and c>f.  

This says that the bigger monomial is determined by degree in  
the left-most variables (eg. x2 > xyz).    

Definition: The leading term of a polynomial is the largest monomial 
in the sum:            LT(5xy+3x2) = x2. 



r=0 
While f != 0 
 if LT(fi) divides LT(f)  
     for some fi then 
     subtract a multiple of  
     fi from f to kill LT(f).  
 else 
     r=r+LT(f) 
     f=f-LT(f) 
 endif 
End 
Return(r)  

Division Process 
Can use Leading Terms to “divide” f = xy2 – x by xy+1 and y2-1. 

LT(xy+1) divides LT(xy2-x)  
so change f = xy2-x to  
(xy2-x) – y(xy+1) = -x-y. 

Since LT(-x-y)  is not divisible by 
LT(xy+1) or LT(y2-1), add –x to r.  
Now f = -y.  

Since LT(-y)  is not divisible by 
LT(xy+1) or LT(y2-1), add –y to r.  
Now f = 0. Output r = -x-y.  
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We can correct this by using a  
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Example: A Gröbner Basis for the ideal (xy+1,y2-1) is given by  
[xy+1,y2-1,-x-y]. In fact, this is redundant. Another Gröbner Basis is 
given by [y2-1, -x-y]. 

Leading Term Ideal 
The leading term ideal of an ideal I is LT(I) = (LT(g): g in I).  
Example: LT((xy + 1, y2 – 1)) is not just (xy, y2) because 

     -x-y is in (xy+1, y2-1) so x is in LT((xy + 1, y2 – 1)).  

Definition: a Gröbner Basis for the ideal  
I=(h1,h2,…,hs) is a collection of polynomials 
g1, g2, …, gt such that  
(g1, g2, …, gt) = I and  
(LT(g1), LT(g2), …, LT(gt)) = LT(I).   



Theorem: If G=[g1, g2, …, gt] is a Gröbner Basis for I and  
f ∈ C[x1,…,xn] then the remainder Rem(f,G) of f upon division by G 
is well-defined and  f ∈ I if and only if Rem(f,G) = 0.  

Example: Dividing xy2 – x by the Gröbner Basis [y2
 - 1, - x - y] for  

the ideal (xy+1,y2-1), we obtain    
 xy2 – x  = -y2(-x-y) + (-y3 - xy)  
              = -y2(-x-y) + y(-x-y) + (-y3 + y2) 
              = -y2(-x-y) + y(-x-y) + (-y)(y2 - 1) + 0. 

The remainder is 0.  

Remainders are Well-Defined 



Elimination Theory 

Solving the system 

Can be accomplished by eliminating x, 

and solving for y.  

The polynomial 2y2 – 3y – 2  is an element of  

the ideal of all polynomials obtained by eliminating x. 
We call this ideal Elim((2y – x, xy – 3y – 2) , x). 

(2y – x, xy – 3y – 2) ∩ C[y],  



Elimination with Gröbner Bases 

Elimination Theorem: If [g1,…,gt] is a Gröbner Basis for I in Lex  
order then a Gröbner Basis for I∩C[xk,xk+1,…,xn] is just given by  
those gi that only involve the variables xk,…,xn.    

Elimination and back substitution can then be used to solve the  
associated system of equations  



A Hard Example 



Implicitization 

What is the equation (in x and y) of the curve? 

Compute the Gröbner basis for the ideal  

in the ring k[t,x,y] with lex order  t > x > y. 
The intersection of this ideal with k[x,y] is just 
(x2+y2-1). This shows that we have a circle.   

t 

(x,y) 



Linear Programming 
Linear programming solves optimization problems with: 

•  linear constraints a1u1 + a2 u2 + ⋅ ⋅ ⋅ + an un ≤ b 
•  linear objective functions c1 u1 + c2 u2 + ⋅ ⋅ ⋅ + cn un 
•  non-negativity conditions ui ≥ 0.  

Maximize u1 + u2 subject to 
3u1 + u2  ≤ 6 
10u1 +2u2 ≤ 32 
u1 ≥ 0, u2 ≥ 0. 



FACT: In linear programming problems the optimum is 
always achieved at a “corner” of the feasible region. 

The Simplex Algorithm (Dantzig, ’49) constructs a  
path that moves from corner vertices to neighboring  
corner vertices in such a way that the objective  
function never decreases. Thus,we meander about  
the outside of the feasible region.  

                               Interior point methods (Kamarkar) have         
                               recently been shown to be faster. In these more 
                               complicated methods, the path is allowed to 
                               traverse the interior of the feasible region.   

Simplex Algorithm 



Integer Programming 
Integer programming solves optimization problems similar to 
those in linear programming, except that we require the 
solutions to be integer-valued 

•  linear constraints a1u1 + a2 u2 + ⋅ ⋅ ⋅ + an un ≤ b 
•  linear objective functions c1 u1 + c2 u2 + ⋅ ⋅ ⋅ + cn un 
•  non-negativity conditions ui ≥ 0 
•  each ui is an integer 

The simplex method (and interior point 
methods) no longer work for IP problems. 



Heuristics 
IP problems are NP-complete so heuristic techniques are generally 
required to solve them.  

Gomory’s Cutting Plane Method: isolate non-integer solutions  
from the integer solutions with new constraint equations.  
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Genetic Algorithms 
Genetic Algorithms: consider a population of feasible solutions 
and, through random mutation and mating of good solutions,  
produce a new generation of feasible solutions. Because mating 
tends to preserve good characteristics of the solution, after many 
generations a very good solution will be found. 

Initial population 

Evaluate objective function 
Natural selection: remove  
worst specimens 

Mate good specimens by 
intermingling data 

Random mutation of data ENS Zane, MIDN Platt 



Reduction to Standard Form 
We first note a few reductions that standardize the  
optimization problem: 

Objective Function 

Our goal is to maximize or minimize the objective function  
f(u1, …, un) = c1 u1 + c2 u2 + ⋅⋅⋅ + cn un on the feasible region.  

maximizing f(u1, …, un)                minimizing –f(u1, …, un) 

We may assume that the problem is a minimization  
problem.  



Reduction to Standard Form (2) 

Replacing Inequality Constraints 

(1)  Inequalities a1u1 + ⋅ ⋅ ⋅ + anun ≥ b can be replaced by 
                  -a1u1 - ⋅ ⋅ ⋅  - anun ≤ -b. 

(2)  Inequalities a1u1 + ⋅ ⋅ ⋅ + anun ≤ b can be replaced by 
 an equality constraint by adding a slack variable s  
    

  a1u1 + ⋅ ⋅ ⋅ + anun + s = b 

  s ≥ 0. 



Minimize the objective function  

  f(u1, …, un) = c1u1 + ⋅ ⋅ ⋅ + cnun 

subject to  

  a11u1 + ⋅ ⋅ ⋅  + a1nun = b1 

           a21u1 + ⋅ ⋅ ⋅  + a2nun = b2 
    

  am1u1 + ⋅ ⋅ ⋅ + amnun = bm 

and  
  u1 ≥ 0, …, un ≥ 0 integers. 

Standard Form 

Au = b 
A1u1+ ⋅ ⋅ ⋅ + Anun = b 



Standard Form 

So u is in the feasible region 
 if and only if ϕ(xu) = tb. 



Kernel of ϕ 
The map ϕ contains a lot of information about the IP problem. 

How do we find Ker(ϕ), an ideal we call IA? 

If all the coefficients in the constraint equations are positive then 
we can use a Gröbner Basis computation in k[x1,…,xn,t1,…,tm]. 

Theorem: To find IA = Ker(ϕ), set   

and compute J ∩ k[x1,…,xn] using a lex order with  
t1 > ⋅⋅⋅ > tm > x1 > ⋅⋅⋅ > xn to eliminate the t’s.  The resulting  
generating set consists of monomials xu – xv with Au = Av. 



Take f(x1,…,xn) ∈ LHS. Then  

that is, f ∈ Ker(ϕ) = RHS.  

Similarly, if f ∈ Ker(ϕ) then f ∈ k[x1,…,xn] and   

so 





Solving the IP 
We’ve seen that IA = Ker(ϕ) = (xu

 – xv : Au = Av). It turns out that 
the Gröbner basis (under any monomial order) for IA is also  
generated by binomials xu – xv  with  Au = Av.  

Define a monomial order >c that depends on the cost vector c: 

Let u be any feasible solution (Au=b) to the IP and consider xu.   
Compute the remainder of xu divided by the Gröbner basis for IA.  
At each stage in the reduction process we replace xu by a monomial  
xv with smaller cost c⋅v and Av = Au = b. Thus, the remainder is  
an optimal solution to the IP.  

xu        xu
 – (xu – xv) = xv         xu >c xv ⇒ c⋅u ≥ c⋅v  



An Example 
Minimize -11u1 -15u2 subject to  
4u1 + 5u2  + u3         = 37 
2u1 + 3u2         + u4  = 20 
u1, u2, u3, u4 ≥ 0. 

Form the ideal  
I = (x1 - t1

4
 t2

2
 , x2 – t1

5t2
3, x3 – t1, x4 – t4)  

and compute its Gröbner basis: 

GB = {t1 – x3, 
t2 – x4, 
x4

2x3
4 – x1, 

x4x3
3x2 – x1

2, 
x4x3x1 – x2, 
x4x1

4 – x3x2
3, 

x3
2x2

2 – x1
3} 

The point (0,0,37,20) is feasible but not optimal. We find the  
remainder of x3

37x4
20 under division by the Gröbner basis. This  

gives x1
4x2

4x3
1.  

The optimal solution to the IP is (4,4,1,0) with value -104.  



Negative Coefficients 
Our computations so far required aij > 0.  

To deal with negative values, we still try to set  

and compute the kernel of ϕ.  Instead of considering the ideal  

we look at the ideal  

in k[x1,…,xn,t0,t1,…,tm]/(t0t1⋅⋅⋅tm - 1) and intersect it with the  
subring k[x1,…,xn]. 

We get the same result: IA = (xu – xv : Au = Av).  



To solve: Minimize c⋅u subject to Au=b and u≥0. 

1.  Construct Gröbner basis for the ideal  

with respect the monomial order that orders the monomials xu  
via >c and orders any monomial involving the t’s ahead of any 
monomial only involving the x’s. 

2. Find the remainder t0
qxv of  

where p = max{-bi : bi < 0}. 

3. If q ≠ 0 then the problem has no feasible solution, otherwise 
v is the optimal solution to the IP.  

Conti-Traverso Algorithm 



Effectiveness of CT-method 

The Conti-Traverso algorithm is implemented in GRIN,  
a software package developed by Serkan Hosten. 

The method is competitive with industrial software (CPLEX)  
for dense matrices filled with random entries.  

The method is particularly effective when the IP problem  
needs to be solved for many different values of b. In this case,  
the Gröbner basis can be pre-computed and finding the  
remainder (solving) is extremely fast.   


