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Invariant Theory 
V: Complex n-dimensional vector space, Cn 
G: group acting linearly on V 

         Question: How can we understand the quotient space V/G? 

Example: G = Z2 acting on V = C2 via (x,y)  (-x, -y).  
               The ring of (polynomial) functions on V is C[V] = C[x,y].  

The functions on V/G ought to be polynomials invariant under the action of G 
= C[V/G] = C[V]G = { f(x,y): f(x,y) = f(-x,-y)} = C[x2, y2, xy]  
                                                                   =  C[X,  Y,  Z] / (XY-Z2)  
                                                                   =  C[X’,  Y’, Z] / (X’2 + Y’2 – Z2) 

V/G V 
π 



Geometric Examples 

G = C* acts on V = C2 via scaling 
           g•(x,y) = (gx, gy) 
C[V]G = C so V//G is a point.  
If we first remove the origin then we get  
    V* // G = the projective line P1  

In general, we need to remove a locus of bad points (non-semi-stable points)  
and only then quotient. This GIT quotient is useful in constructing moduli spaces. 

Example: moduli space of degree d rational plane curves 
Parameterization:                             P1     P2  
                           [s: t]   [F1(s,t):  F2(s,t): F3(s,t)] 
So curves parameterized by P3d+2 but some of these are the same curve! 
                                                 M = P3d+2 // PGL2C. 
This space is not compact; its compactification plays a key role in string theory and  
enumerative geometry. 



Classical Invariant Theory 
1800’s: Many mathematicians (Cayley, Sylvester, Gordan, Clebsh, etc) worked  
            hard to compute invariant functions (particularly of SL2 actions).  
1868:   Gordan: C[V]SL2  is finitely generated  (symbolic method) 
1890:   Hilbert’s finiteness theorem:  C[V]G is finitely generated for a wide  
            class of groups (linearly reductive groups) 

            Gordan: “Das ist Theologie und nicht Mathematik!” 

1893:   Hilbert makes his proof constructive.  
1900:   Hilbert asks whether C[V]G is always finitely generated. (Nagata: no)  
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The Reynolds Operator 
If G acts on V=C2 then G acts on R = C[V] = C[x,y]  by  (g • F) (x,y) = F(g-1 • (x,y)). 
RG = subring of R of functions F(x,y) such that g • F = F.  

The map RG  R is an inclusion. When is there a compatible projection back?  

G is linearly reductive if every G-invariant subspace W of V has a G-invariant  
complement:       

Examples are finite groups, C*, SLn, GLn, On, etc.  

Whenever G is linearly reductive, there is a splitting of RG  R:  
The projection R  RG is an RG-linear map called the Reynolds operator.  

When G is finite,     

Otherwise, the Reynolds operator is obtained by integration.                                   



Hilbert’s wonderful proof 
Thm (Hilbert): If G is lin. reductive then RG is f.g. 

Proof: Consider the ideal J = (F є RG
+) of R. 

Hilbert’s Basis Theorem says that the poly ring R is Noetherian, so  every ideal  
in R is finitely generated. Let F1, …, Fr  be the generators of J.  

We claim that RG = C[F1, …, Fr] and prove it by induction on degree. The degree 
zero pieces of both rings are C. Suppose that the two rings agree for degree d.  

Let g be in RG
d. Then g is in J and so               g = G1 F1  + G2 F2 + … + Gr Fr 

for suitable Gi  of degree d-deg(Fi) in R.  

Now apply the Reynolds operator to get          g = R(g) =  R(G1)F1  + … + R(Gr)Fr 

But now each R(Gi) is an invariant of  
degree less than d and so it is in C[F1, …, Fr]. Thus g is in C[F1,…,Fr].  



Derksen’s Algorithm for RG 
Derksen modified Hilbert’s constructive proof to give an algorithm to construct 
invariants.   

To start, we parameterize the group G.  

                        Ψ : G x V  V x V      given by Ψ(g,x) = (x, g•x) 

Let B = closure of the image of Ψ.  

The variety B is cut out by equations in an ideal b that can be computed using  
Grobner bases (eliminating the parameters defining the group). 

Hilbert-Mumford Criterion: B ∩ (X x {0})   = V(Hilbert ideal) x {0} 

Reynolds operator:            b + (z1, …, zn) = Hilbert ideal + (z1, …, zn)  

Derksen’s algorithm:  Compute b, set z’s = 0, apply Reynolds operator to  
generators and get invariants generating the Hilbert ideal. These generate RG.    



Derksen’s Algorithm for RG 

Harm Derksen and Gregor Kemper 



Easy example 
Let R=C[x,y,z] and G=Z2. 
Let G act on R by σ(x) = -x, σ(y)=z, σ(z) = y. 

by the interpolation matrix 

We represent G as V(t2-1) and the action  



Easy example continued 
t•x = tx 
t•y = (t+1)y/2 + (1-t)z/2 
t•z = (1-t)y/2  + (1+t)z/2 

The ideal defining the graph of                                is 
 β = (t2 – 1, z1 - t•x, z2 - t•y, z3 - t•z) ⊂ C[t,x,y,z,z1, z2, z3] 

Compute the elimination ideal b = β ∩ C[x,y,z, z1, z2, z3] 
and set z1 = z2 = z3 = 0 to get (y+z, z2, xz, x2). 

Applying the Reynolds operator R(f)=[f(x,y,z)+f(-x,z,y)]/2 
gives gens for RG: y+z, y2+z2, xz-xy, and x2.  



Grassmann Varieties 
One of the most important moduli spaces in algebraic geometry is the  
space parameterizing the collection of k-planes in n-space.  

Projectively this becomes the space of k-1 dimensional planes in n-1  
dimensional space, G(k-1,n-1).  

Each subspace is determined by a basis:  

Of course, there are many bases for each subspace. The group SLkC  
acts on the basis M via change of coordiantes: g•Mv = Mg•v.  

The projectivization of the quotient Mkxn // SLnC is the Grassmann variety G(k-1,n-1).  



The Fundamental Theorem 
The first fundamental theorem of invariant theory concerns the generators of the  
ring of invariants for G(k-1,n-1).  

In small examples we could compute these using Derksen’s algorithm. 

[jk] = xj1xk2 – xk1xj2  = det of jth and kth columns 

For G(1,3)  the 6 invariants satisfy a single relation, the Plucker relation 

                                [12][34] – [13][24] + [14][23] = 0 

THM: The generators for G(k-1,n-1) – the functions on the k x n matrices that are  
SLk invariant – are the Plucker coordinates, the determinants of the various k x k  
minors. 



Schubert Calculus 
Question: How many lines meet 4 given (general) lines in 3-space?  

We’ll solve this by looking at the moduli space G(1,3).  

It is not hard to see that each of the conditions (that our line meet a given  
line) is a linear constraint in the Plucker coordinates.  

The space G(1,3) sits inside P5 as  a quadratic hypersurface. The four  
linear conditions cut out a line that meets G(1,3) in 2 points. These  
two points correspond to two lines meeting all four given lines!  



Extending the group action: G acts on an operator  
θ∈D(R) by          
                           (g•θ)(f) = g • (θ(g-1 • f)). 

Concretely, if g acts on x1,…,xn by the matrix A then  
g acts on ∂1,…, ∂n by the matrix (AT)-1.  

Group actions on the Weyl algebra 
Idea: replace R=C[x] with D(R)=C<x,∂x> and compute  
D(R)G = C<x,∂x>G.  

This action preserves the defining relations on the  
Weyl algebra:   



The generators and relations on the graded ring can be lifted to give  
generators and relations for D(R)G. I’ve done this for the case when  
R = C[Mk x n]  and G = SLkC, giving a Fundamental Theorem of invariant  
theory for the Weyl algebra.  

Sabbatical Work 

There is a subtle distinction between the invariant differential operators and the  
differential operators on the quotient variety. There is a map  

           Invariant diff ops D(R)G  Diff ops on the quotient D(RG) 

and the kernel can be very hard to compute explicitly. I managed to do this  
for G(1,3), where the kernel is generated by the Casimir operator. This allowed 
me to give a complete presentation of the ring of differential operators on the 
Grassmann variety G(1,3).  

The ring D(R) is filtered by the order of the differential operators.  
The associated graded ring GrD(R) is a polynomial ring in 2n variables.  

[GrD(R)]G = Gr[D(R)G] so can use Derksen’s algorithm to compute Gr[D(R)G]. 


