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Invariant Theory

V: Complex n-dimensional vector space, C"
G: group acting linearly on V

Question: How can we understand the quotient space V/G?

Example: G = Z, acting on V = C? via (x,y) 2 (-X, -y).
The ring of (polynomial) functions on V is C[V] = C[x,y].

The functions on V/G ought to be polynomials invariant under the action of G
= C[V/G] = C[V]G = { f(X,y): f(X,y) = f(-Xa-y)} = C[Xza y2, Xy]

C[X, Y, Z]/ (XY-Z?)

C[X, Y, Z]/ (X?%+ Y222

V/IG .




Geometric Examples

G = C acts on V = C? via scaling
g*(x,y) = (9%, gy)
C[V]¢ = C so V//G is a point.
If we first remove the origin then we get
V* /| G = the projective line P’

]

In general, we need to remove a locus of bad points (non-semi-stable points)
and only then quotient. This GIT quotient is useful in constructing moduli spaces.

Example: moduli space of degree d rational plane curves
Parameterization: PT > P2
[s: t] = [Fq(s,t): Fy(s,t): F5(s,t)]
So curves parameterized by P34*2 but some of these are the same curve!
M = P3d+2 /| PGL,C.
This space is not compact; its compactification plays a key role in string theory and
enumerative geometry.




Classical Invariant Theory

1800’s: Many mathematicians (Cayley, Sylvester, Gordan, Clebsh, etc) worked
hard to compute invariant functions (particularly of SL, actions).

1868: Gordan: C[V]SL2 is finitely generated (symbolic method)

1890: Hilbert’s finiteness theorem: C[V]C is finitely generated for a wide
class of groups (linearly reductive groups)

Gordan: “Das ist Theologie und nicht Mathematik!”

1893: Hilbert makes his proof constructive.
1900: Hilbert asks whether C[V]€ is always finitely generated. (Nagata: no)

P. Gordan D. Hilbert M. Nagata



The Reynolds Operator

If G acts on V=C2 then G acts on R = C[V] = C[x,y] by (g * F) (x,y) = F(g * (x,y)).
RC = subring of R of functions F(x,y) such thatg ¢ F = F.

The map R® - R is an inclusion. When is there a compatible projection back?

G is linearly reductive if every G-invariant subspace W of V has a G-invariant

complement: V=WeaW°
Examples are finite groups, C*, SL,, GL,, O,,, etc.

Whenever G is linearly reductive, there is a spliting of RE > R: R, =R{ @ T
The projection R = RC is an RC-linear map called the Reynolds operator.

When G is finite, R(f)—|G|Eg S/

Otherwise, the Reynolds operator is obtained by integration.



Hilbert’'s wonderful proof
Thm (Hilbert): If G is lin. reductive then RC is f.g.

Proof: Consider the ideal J = (F € R®,) of R.

Hilbert’s Basis Theorem says that the poly ring R is Noetherian, so every ideal
in R is finitely generated. Let F, ..., F, be the generators of J.

We claim that R¢ = C[F,, ..., F,] and prove it by induction on degree. The degree
zero pieces of both rings are C. Suppose that the two rings agree for degree d.

Let g be in R®. Then gisin J and so g=G,;F, +G,F,+... +G, F,
for suitable G, of degree d-deg(F)) in R.

Now apply the Reynolds operator to get g =R(g) = R(Gy)F; +... + R(G))F,

But now each R(G;) is an invariant of
degree lessthand and so itis in C[F,, ..., FJ. Thus g is in C[F,,...,F].



Derksen’s Algorithm for R©

Derksen modified Hilbert’'s constructive proof to give an algorithm to construct
invariants.

To start, we parameterize the group G.
P:GxV->VxV given by ¥(g,x) = (x, g*x)
Let B = closure of the image of W.

The variety B is cut out by equations in an ideal b that can be computed using
Grobner bases (eliminating the parameters defining the group).

Hilbert-Mumford Criterion: B N (X x {0}) = V(Hilbert ideal) x {0}
Reynolds operator: b+ (z4, ..., z,) = Hilbert ideal + (z,, ..., z,)

Derksen’s algorithm: Compute b, set z's = 0, apply Reynolds operator to
generators and get invariants generating the Hilbert ideal. These generate RC.



Derksen’s Algorithm for R©

Harm Derksen and Gregor Kemper



Easy example

Let R=C[x,y,z] and G=42,.
Let G act on R by o(x) = -x, a(y)=z, a(z) =Y.

We represent G as V(t>-1) and the action
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by the interpolation matrix
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Easy example continued

t 0 0 tex = tx
pi=[o 1 = >ty = (tH)y/2 + (1-4)2/2
o 1=t 1+l tez = (1-t)y/2 + (1+t)z/2
2 2

The ideal defining the graph of ¥ :GxX — X x X is
B=(t?-1,z, -1tX, z, - tey, z, - tez) C C[t,X,y,2,24, Z5, Z3]

Compute the elimination ideal b = B N C[x,y,z, z,, z,, Z;]
and setz, = z, = z, = 0 to get (y+z, z?, xz, x?).

Applying the Reynolds operator R(f)=[f(x,y,z)+f(-x,z,y)]/2
gives gens for R®: y+z, y2+z2, xz-xy, and x2.



Grassmann Varieties

One of the most important moduli spaces in algebraic geometry is the
space parameterizing the collection of k-planes in n-space.

Projectively this becomes the space of k-1 dimensional planes in n-1
dimensional space, G(k-1,n-1).

Each subspace is determined by a basis:

R T ]
V] V2 ) Vk
Voo |

Of course, there are many bases for each subspace. The group SL,C
acts on the basis M via change of coordiantes: g*M, = M.,

The projectivization of the quotient M, // SL.C is the Grassmann variety G(k-1,n-1).



The Fundamental Theorem

The first fundamental theorem of invariant theory concerns the generators of the
ring of invariants for G(k-1,n-1).

In small examples we could compute these using Derksen’s algorithm.

THM: The generators for G(k-1,n-1) — the functions on the k x n matrices that are
SL, invariant — are the Plucker coordinates, the determinants of the various k x k
minors.

[K] = Xi1X2 — X1 Xip = det of j" and k" columns

X1 X X3 Xy

Ko Ax; Koz Koy

For G(1,3) the 6 invariants satisfy a single relation, the Plucker relation

[12][34] - [13][24] + [14][23] = 0



Schubert Calculus

Question: How many lines meet 4 given (general) lines in 3-space?

We’'ll solve this by looking at the moduli space G(1,3).

It is not hard to see that each of the conditions (that our line meet a given
line) is a linear constraint in the Plucker coordinates.

The space G(1,3) sits inside P> as a quadratic hypersurface. The four
linear conditions cut out a line that meets G(1,3) in 2 points. These
two points correspond to two lines meeting all four given lines!



Group actions on the Weyl algebra

Idea: replace R=C[x] with D(R)=C<x,d,> and compute
D(R)¢ = C<x,0,>C.

Extending the group action: G acts on an operator
0€D(R) by
(9°6)(f) =g * (B(g™ * f)).

Concretely, if g acts on x,,...,X, by the matrix A then
g acts on d,,..., 9, by the matrix (AT)-1.

This action preserves the defining relations on the

Weyl algebra: =0.X.—X.0.=0..

d., X.
1 1] J1 17

J




Sabbatical Work

The ring D(R) is filtered by the order of the differential operators.
The associated graded ring GrD(R) is a polynomial ring in 2n variables.

[GrD(R)]¢ = Gr[D(R)€] so can use Derksen’s algorithm to compute Gr[D(R)€].

The generators and relations on the graded ring can be lifted to give
generators and relations for D(R)C. I've done this for the case when
R=C[M,,,] and G = SL,C, giving a Fundamental Theorem of invariant
theory for the Weyl algebra.

There is a subtle distinction between the invariant differential operators and the
differential operators on the quotient variety. There is a map

Invariant diff ops D(R)© - Diff ops on the quotient D(R®)

and the kernel can be very hard to compute explicitly. | managed to do this

for G(1,3), where the kernel is generated by the Casimir operator. This allowed
me to give a complete presentation of the ring of differential operators on the
Grassmann variety G(1,3).



