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Systems of Polynomial Equations

Systems of equations like {
3x2 + 2y2 = 5
4x2 − 3y3 = 1

arise in all sorts of applications, such as:
finding critical points of a function
finding max/mins using Lagrange multipliers
finding good statistical estimators - e.g. method of moments
geometric problems in engineering and science

Traves (USNA) Basic Notions BN, 8 NOV 2010 2 / 14



Solution Methods

Today we’ll concentrate on three types of solution methods

Linearization
Grobner basis techniques
Eigenspace methods

The common theme in these methods is the use of linear algebra to
solve nonlinear equations.
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Linearization

Solve the nonlinear system,{
x2 + y2 = 2
x2 − y2 = 0

Setting u = x2 and v = y2 we get the linear system,{
u + v = 2
u − v = 0

with solutions u = v = 1. Then x2 = y2 = 1 so x = ±1 and y = ±1.
We get 4 solutions (x , y) = (±1,±1).

Problems: Need enough equations to uniquely determine monomials.
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Elimination

Strategy: Use one equation to solve for one of the variables. Then
eliminate this variable from the other equations.

Solve {
x2 + y2 = 2

x2 − 4x + y2 − 4y = −6

[1] - [2] gives 4x + 4y = 8 so y = 2− x and thus

x2 + (2− x)2 = 2.

This solves to give x = y = 1.
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Elimination Ideals

Solve 
x2 + y2 + z2 = 4

x2 + 2y2 = 5
xz = 1

This is equivalent to the system
f = x2 + y2 + z2 − 4 = 0

g = x2 + 2y2 − 5 = 0
h = xz − 1 = 0

The solutions also satisfy x2f + 3y3g− (z + 1)h = 0.
In fact, the solutions are killed by all the polynomials in the ideal
(f,g,h).

Can we find polynomials F (z),G(y , z),H(x , y , z) that generate the
same ideal?
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Grobner Bases

A Grobner basis is a redundant set of generating polynomials with
some extra combinatorial structure.

Ordering on monomials→ leading term of each polynomial
e.g. lex: x2 > xy > x > yz LT(2x2 − xy + 3yz) = x2.

LT(Ideal I) = {LT(f ): f ∈ I} is a monomial ideal in S = k [x , y , z]

The Grobner basis of I is a generating set {F1, . . . ,Fk} of I so that
LT(I) = (LT(F1), . . . , LT(Fk )).

The monomials not in LT (I) are a basis for the vector space S/I.
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Can we find polynomials F (z),G(y , z),H(x , y , z) that generate the
ideal I = (x2 + y2 + z2 − 4, x2 + 2y2 − 5, xz − 1)?

ANS: YES. Compute a gb in lex order:
I = (x + 2z3 − 3z,y2 − z2 − 1,2z4 − 3z2 + 1).

Last poly factors as (z − 1)(z + 1)(2z2 − 1) so z = ±1,±1/
√

2.
Plug into second equation to get corresponding y -values (8).
Plug into first equation to get the x-values.

Bruno Buchberger
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Comments on Elimination

Elimination using Grobner bases in lex order can take a long time.
The Grobner walk speeds up computations but is complicated.

The TI-92+ used Grobner basis methods to run its solve function in
exact mode. I don’t know about the Voyage 200.
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Eigenspace Methods

Solve x3 − x2 + x − 1 = 0. [Newton’s method; factoring]

Let f = x2 + 1 and let I = (x3 − x2 + x − 1).
Map mf : S/I → S/I given by mf (g) = fg.
Basis of S/I is {1, x , x2}. Since fx = x2 + 1 mod I and fx2 = x2 + 1
mod I, matrix of mf wrt basis is

Mf =

1 1 1
0 0 0
1 1 1

 .
THM: The eigenvalues of Mf are precisely the evaluation of f on the
zeros of I.

Eigenvalues are 0 and 2. Solutions to x3 − x2 + x − 1 = 0 are {±i ,1}
and f (±i) = 0, f (1) = 2.

Traves (USNA) Basic Notions BN, 8 NOV 2010 10 / 14



Down to the grid

THM: The eigenvalues of Mf are precisely the evaluation of f on the
zeros of I.

COR: The eigenvalues of Mxi are precisely the i-th coordinates of the
zeros of I.

This gives a grid of points containing the solutions to polynomials in I.
Checking each of them gives the actual solutions.

Problems: 1. There may be many more points than solutions.
2. Numerical stability – the eigenvalues may only be determined
approximately.
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Eigenvector methods

THM: Let {1, x1, . . . , xn, . . .} be a basis of k [x1, . . . , xn]/I. Suppose
(Mf )

tr has only 1-dimensional eigenspaces with eigenvectors
Vi = (1,a1, . . . ,an, . . .). Then the solutions to I are the truncations
tr(Vi) = (a1, . . . ,an).

Solve


3x2 + 4xy + y2 − 7x − 5y + 4 = 0

3y3 + 10xy + 7y2 − 4x − 20y + 4 = 0
3xy2 − 7xy − 7y2 − 2x + 11y + 2 = 0

M3y =


0 0 0 −2 −4
0 0 0 2 4
3 0 0 −11 20
0 3 0 7 −10
0 0 3 7 −7


Basis of S/I: {1, x , y , xy , y2}
Eigenvectors: (1,1,0,0,0), (1,1,1,1,1),
(1,2,-1,-2,1),(1,-1,2,-2,4),(1,2,-2,-4,4)
Solutions:
(1,0),(1,1),(2,-1),(-1,2),(2,-2).
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Approximate Eigenvalues

Use SVD to compute eigenvectors of the n × n matrix Mf − λI:

Mf − λI = USV tr

where U, V are n × n orthonormal matrices and S = Diag(s1, . . . , sn)
with s1 ≥ · · · ≥ sn ≥ 0. If r = rankMf then the last n − r columns of V
are a basis for Ker(Mf − λI).

If ε > 0 is our error tolerance, then choose k so that sk > ε > sk+1.
The last n − k rows of V are approximate eigenvectors in the sense
that ||Mf v − λv ||2 < ε.

Scale each v to have first component 1 and then truncate to get
approximate solutions.

Traves (USNA) Basic Notions BN, 8 NOV 2010 13 / 14



Other Methods

There are many other methods. One is the homotopy method. Find a
deformation Pt of your original polynomial system P0 with P1 easy to
solve. Then the solutions to Pt satisfy an ODE, the Davidenko DE, and
the solutions to P0 can be computed by path tracing.
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