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Start at the Beginning

Line Arrangement due to Pappus of Alexandria (4th century C.E.)

Richter-Gebert: Perspectives on Projective Geometry 2011

Traves (USNA) Hexagons to Secants Berkeley, 28 SEPT 2012 2 / 17



Pascal’s Mystic Hexagon Theorem

Pascal: placed the 6 intersection points on a conic

Converse: Braikenridge-Maclaurin Theorem
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Folklore

Theorem
Suppose that k red lines meet k blue lines in a set Γ of k2 distinct
points. If S = 0 is an irreducible curve of degree d through kd points of
Γ then the remaining points lie on a unique curve C of degree
t = k − d.

Proof (Existence): Choose
Fa,b = aR + bB to vanish at
P ∈ S \ Γ. Then S = 0 is a
component of Fa,b = 0 and
Fa,b/S defines C. �

S degree-d  C degree-t
S and C are directly linked
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d-Constructible Curves

Definition
A curve C of degree t is d-constructible if there exist k = d + t red
lines and k blue lines so that:
(1) red lines meet blue lines in set Γ of k2 distinct points
(2) dk points in Γ lie on a degree-d curve S
(3) the remaining tk points of Γ lie on C.

Definition
The d-construction is dense in degree t if there is a nonempty
Zariski-open set U ⊂ P(St ) so that every degree-t curve in U is
d-constructible (here S = C[x , y , z]).
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Two Examples

Example
For any d , all lines and all irreducible conics are d-constructible.

For lines: arrange d + 1 points on the line and red and blue lines
through these points (with distinct intersection points).

For conics: arrange 2(d + 2) points, joined cyclicly by alternating red
and blue lines.
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Counting Dimensions

Theorem
If d ≥ 3, then the d-construction is not dense in degrees d + 4 or
higher. The 2-construction is not dense in degrees five or higher. The
1-construction is not dense in degrees six or higher.
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Elliptic Curves

Theorem
All elliptic curves are d-constructible so the d-construction is dense in
degree 3.

Need to arrange 3(d + 3) points on E with a blue and red line through
each of them.
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Density
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Secants and ideas related to tensors

Space of Completely Reducible Polynomials (Chow Variety):

X1n := {[F1 · · ·Fn] : each Fi ∈ S1}
= Image(Symn(P(S1)) ↪→ P(Sn))

Sec(X1n ) = σ2(X1n ) = {aF1 + bF2 ∈ P(Sn) : Fi ∈ X1n and [a : b] ∈ P1}

Reducible points in Sec(X1n ) give rise to constructible curves:
F1, F2 ∈ X1n , and GH = aF1 + bF2 ⇒ V(F1) ∩ V(F2) ⊂ V(G) ∪ V(H).

Expect dim Sec(X15) = min(2 dim(X15) + 1,dimP(S5)) = 20.
[Correct: verify with Terracini’s Lemma and explicit computation.]

Traves (USNA) Hexagons to Secants Berkeley, 28 SEPT 2012 10 / 17



1-Constructible Curves

Theorem
The 1-construction is dense in degrees 4 and 5.

Sketch of proof (degree 4 case only):
Y = {(F1,F2) ∈ X15 × X15 : |V(F1,F2)| = 25} is open.

Image of dominant map P1 × Y → Sec(X15) = P(S5) given by
([a : b],F1,F2) 7→ F = aF1 + bF2 is an open set U of P(S5).

For L ∈ P(S1), define φL : P(S4)
×L−→ P(S5). Then

V = φ−1
L (U) ∩ {irreducible forms} is open in P(S4).

For G ∈ V , LG = aF1 + bF2 and V(LG) ⊃ V(F1,F2). Bézout⇒ 5
points on V(L) and 20 points on V(G). So V(G) is 1-constructible.
Open set V ⊂ P(S4) of curves is 1-constructible. An example shows
V 6= ∅. �
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Density
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Some Questions

Are the d-constructible curves in a given degree Zariski-closed?

Is the d-construction dense in degree 4 for all d?
(Owen Gwilliam, a new postdoc at U.C. Berkeley, suggested that I
try to use the Jacobian variety on a degree 4 curve to prove this.)
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A test ....

X13 ⊂ P(S3) ∼= P9 has dim 6 so most lines L ∈ G(1,9) miss X13 .

Construct secant line L ∈ G(1,9) meeting X13 in two points (red and
blue).

Question
Are there lines that meet X13 in just 3 points?
(Hint: think back 1600 years)
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A test .... Part 2

Question
Are there lines that meet X13 in just 4 points?
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Hesse Configuration

Answer: The nine points of inflection on an elliptic curve lie on four
collections of 3 lines.

Traves (USNA) Hexagons to Secants Berkeley, 28 SEPT 2012 16 / 17



Parting Question

Yesterday Daniel Litt and I proved that there are no lines that meet X13

in just k points for 4 < k <∞.

Question
Let φ(d) = max finite k s.t. ∃ line L in P(Sd ) that meets X1d in just k
points. So φ(3) = 4. What can you say about the behavior of φ(d) as
d →∞?

(Daniel and I showed that φ(d) ≤ d + 1.)
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