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Counting Lines in 3-space

Perhaps surprisingly, the study of certain rings of invariants helps us
answer geometric questions.

Question
Given four lines in general position in P3, how many lines meet all four?
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A ring of invariants

Given a k × n matrix M filled with variables,

M =

[
x11 x12 x13 x14
x21 x22 x23 x24

]
,

we let SLk act on the left by matrix multiplication.

If σ =

[
a b
c d

]
then σ • x11 = ax11 + bx21.

C[Mk ,n] = C[x11, . . . , xkn]

C[Mk ,n]
SLk = polynomials that are invariant on SLk orbits
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Some obvious invariants

SLk acts by multiplication on the left so it acts on each column of

M =

[
x11 x12 x13 x14
x21 x22 x23 x24

]
simultaneously.

The k × k subdeterminants are invariant because
σ • det(N) = det(σN) = det(σ) det(N) = 1 det(N).

Denote the k × k minor involving rows I1, . . . , Ik by

[I] = [I1 . . . Ik ].

This is a polynomial of degree k in the variables xij .
det(N) = [12]

Will Traves (U.S. Naval Academy) Invariants & Differential Operators Hokkaido 2007 5 / 31



First Fundamental Theorem of Invariant Theory

The First Fundamental Theorem of Invariant Theory

The k × k minors generate the ring of invariants C[Mk ,n]
SLk .

The ring C[Mk ,n]
SLk is called the bracket algebra.
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Geometric interpretation

G(k ,n) = k -dimensional subspaces of Cn

G(k ,n) −→ P(∧k (Cn)) = P(n
k)−1

Vk ⊂ Cn 7−→ ∧kV

Plücker coordinates on P(∧k (Cn))
= coeff of dvI1 ∧ · · · ∧ dvIk
correspond to the brackets [I]

By 1st FTIT,
C[G(k ,n)] = C〈[I]〉 = C[Mk ,n]

SLk

H. Grassmann
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Projectivization

k = 2, n = 4⇒ C(G(2,4)) = C[M2,4]
SL2 generated by(4

2

)
= 6 brackets so G(2,4) ⊂ P5.

Correspondence:
G(2,4) ∼= G(1,3) = lines in P3

Notation G(2,4) = affine cone
over G(1,3) ⊂ P5.

G(1,3) is the proj variety with proj
coordinate ring C[M2,4]

SL2
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Second Fundamental Theorem of Invariant Theory

The 2nd Fundamental Theorem of Invariant Theory

The generators of C[Mk ,n]
SLk satisfy the relation

k+1∑
`=1

(−1)`[I1 . . . Ik−1J`][J1 . . . Ĵ` . . . Jk+1] = 0.

All the relations come from these quadratic relations.

Example
(k = 2, n = 4) If I = 1 and J = 234 then the relation is

−[12][34] + [13][24]− [14][23] = 0.

All other relations are multiples of this one.
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Lines in 3 space

Question
Given four lines in general position in P3, how many lines meet all four?

Answer
G(1,3) is a quadratic hypersurface in P5 so has dimension 4.
To meet a fixed line is a linear condition on G(1,3).
If 4 independent linear conditions are imposed, we expect
deg(G(1,3)) = 2 points.
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Another invariant ring

C[Mk ,n] = C[V n] = C[Vk ⊕ Vk ⊕ · · · ⊕ Vk ]

C[V s ⊕ (V ∗)t ] = C

x11 . . . x1s
...

xk1 . . . xks

ξ11 . . . ξ1s
...

ξk1 . . . ξks


Coordinates on (V ∗) are ξ1·, . . . , ξk · with 〈ξi·, xj·〉 = δij .

SLk acts on the ξij by the contragredient representation

If σ ∈ SLk acts on C[V ] by A then σ acts on C[V ∗] by (A−1)T
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Some invariants
x11 . . . x1s

...
xk1 . . . xks

ξ11 . . . ξ1s
...

ξk1 . . . ξks


Define: |J| = |J1 . . . Jk | = k × k subdeterminant of the ξij

Inner product: v ∈ V ,w ∈ V ∗ ⇒

〈Av , (A−1)T w〉 = (Av)T (A−1)T w = vT AT (AT )−1w = vT w = 〈v ,w〉

New invariants:

〈ij〉 : V s ⊕ (V ∗)t −→ C
(v1, . . . , vs,w1, . . . ,wt) 7−→ 〈vi ,wj〉

.

In coordinates: 〈ij〉 =
∑k

`=1 x`iξ`j .
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First Fundamental Theorem of Invariant Theory

First Fundamental Theorem of Invariant Theory

The invariants [I], |J| and 〈ij〉 generate the ring C[V s ⊕ (V ∗)t ]SLk .

H. Weyl
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Second Fundamental Theorem of Invariant Theory

Second Fundamental Theorem of Invariant Theory

The relations are:

∑k+1
`=1 (−1)`[I1 . . . Ik−1J`][J1 . . . Ĵ` . . . Jk+1] = 0∑k+1
`=1 (−1)`|I1 . . . Ik−1J`||J1 . . . Ĵ` . . . Jk+1| = 0∑k+1

`=1 (−1)`[I1I2 · · · Î` · · · Ik+1]〈I`J1〉 = 0∑k+1
`=1 (−1)`〈I1J`〉|J1J2 · · · Ĵ` · · · Jk+1| = 0

det(〈IJ〉) = det(〈IaJb〉)k
a,b=1 = [I1I2 · · · Ik ]|J1J2 . . . Jk |

Example
If [I] = [134], |J| = [235] then

det

〈12〉 〈13〉 〈15〉
〈32〉 〈33〉 〈35〉
〈42〉 〈43〉 〈45〉

 = det

x11 x13 x14
x21 x23 x24
x31 x33 x34

det

ξ12 ξ13 ξ15
ξ22 ξ23 ξ25
ξ32 ξ33 ξ35


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The Weyl algebra

R = C[x1, . . . , xn] is the coordinate ring for Cn

The ring of differential operators on Cn is the Weyl algebra

D(Cn) = D(R) = C〈x1, . . . , xn, ∂1, . . . , ∂n〉

∂i = ∂/∂xi ⇒ ∂ixj = xj∂i + δij Product rule

(∂ixj) • f = ∂i • (xj f )

= xj∂i • f + δij f

= (xj∂i + 1) • f
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Filtration by order

R = C[x1, . . . , xn] is the coordinate ring for Cn

D(R) = C〈x1, . . . , xn, ∂1, . . . , ∂n〉

Filtration by order: x1∂1∂2 + ∂1 − 3x2 has order 2

Symbol map:
D(R) −→ GrD(R) = C[x1, . . . , xn, ξ1, . . . , ξn]

∂i 7−→ ξi
x1∂1∂2 + ∂1 − 3x2 7−→ x1ξ1ξ2

If M is a D(R) module then M is generated by lifts of the
generators of Gr(M) as a GrD(R) module.
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The group action on D(R)

We are interested in the case where R = C[Mk ,n]

SLk acts on each variable ∂ij in the same way it acts on ξij (A−1)T

Gr [D(R)SLk ] = [GrD(R)]SLk = C[V n ⊕ (V ∗)n]SLk

Lifts of the generators for Gr [D(R)SLk ] generate D(R)SLk

1st Fundamental Theorem for D(R)SLk

The generators have the form [I], |J| and 〈ij〉, where ξij is replaced by
∂ij .
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2nd Fundamental Theorem for D(R)SLk

2nd Fundamental Theorem of Invariant Theory for GrD(R)SLk

The relations are:

∑k+1
`=1 (−1)`[I1 . . . Ik−1J`][J1 . . . Ĵ` . . . Jk+1] = 0∑k+1
`=1 (−1)`|I1 . . . Ik−1J`||J1 . . . Ĵ` . . . Jk+1| = 0∑k+1

`=1 (−1)`[I1I2 · · · Î` · · · Ik+1]〈I`J1〉 = 0∑k+1
`=1 (−1)`〈I1J`〉|J1J2 · · · Ĵ` · · · Jk+1| = 0

det(〈IJ〉) = det(〈IaJb〉)k
a,b=1 = [I1I2 · · · Ik ]|J1J2 . . . Jk |

The first four relations extend trivially to D(R)SLk

The last relation needs to be modified:

[I]|J| = det〈IJ〉 −
∑

∅6=S⊂I∩J

αSIJβSIJ[I \ S]|J \ S|

[134]|234| = det〈134,234〉+ det〈14,24〉+ 2 det〈13,23〉+ 2〈12〉
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The Hilbert Series of GrD(M2,4)
SL2

Set k = 2 and n = 4. Then R = C[M2,4]

GrD(R) = C[xij , ξij ] is a graded ring using total degree

H(GrD(R)SL2 , t) =
∞∑

d=0

dim
(

GrD(R)SL2
d

)
td

tells us about the structure of the invariant ring

Usually need a resolution to get the Hilbert Series but we can
avoid using the relations entirely!
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The Torus-Hilbert series

SL2 contains a diagonal torus: σz =

[
z 0
0 z−1

]
∈ T

σzx1j = zx1j , σzx2j = z−1x2j , σzξ1j = z−1ξ1j , σzξ2j = zξ2j

If T acts diagonally on a v.s. W with matrix ρz =

za1

. . .
zan


then dim W T = coeff of z0 in Tr(ρz)

W = ⊕Wd ⇒ Define : HT (W , z, t) =
∑

d Tr(ρz on Wd)td

W = GrD(R)⇒ HT (W , z, t) =
1

(1− zt)8(1− z−1t)8
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The Weyl character formula

W = ⊕λW aλ
λ as SL2-modules

a0 = dim W SL2

Theorem (Weyl character formula)

Tr(ρz on Wλ)(z − z−1) = z1+λ − z−(1+λ)

Summing over the representations in W :
Tr(ρz on W )(z − z−1) =

∑
λ aλ(z1+λ − z−(1+λ))

dim W SL2 = a0 = coeff of z1 in Tr(ρz on W )(z − z−1)
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The Hilbert series of GrD(R)SL2

dim W G = a0 = coeff of z1 in Tr(ρz on W )(z − z−1)

W = ⊕dWd ⇒

H(W SL2 , t) =
∑

d dimW SL2
d td

= coeff of z in
∑

d Tr(ρz on W )td(z − z−1)

= coeff of z in HT (W , z, t)(z − z−1)

H(GrD(R)SL2 , t) = coeff of z0 in HT (GrD(R), z, t)(1− z−2)
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Coefficient extraction

H(GrD(R)SL2 , t) = coeff of z0 in

HT (GrD(R), z, t)(1− z−2) =
1− z−2

(1− zt)8(1− z−1t)8

Series converges if |zt | < 1 and |z−1t | < 1: choose t < 1 & |z| = 1

Coeff of z0 = 1
2πi

∫
C

1−z−2 dz
z(1−zt)8(1−z−1t)8

= Resz=t

(
(1−z−2)z7

(1−zt)8(z−t)8

)
= 7th coeff in p.s. exp of (1−z−2)z7

(1−zt)8 at z = t

= 1+15t2+50t4+50t6+15t8+t10

(1−t2)13 .

Example

When R = C[M2,4], H(GrD(R)SL2 , t) = 1+15t2+50t4+50t6+15t8+t10

(1−t2)13 .
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Differential operators on the Grassmann variety

Y = V(I) ⊆ Cn: C[Y ] = R/I = C[x1, . . . , xn]/I
Y = G(2,4) ⊂ C6

D(Y ) = D(R/I) =
{θ ∈ D(R) : θ(I) ⊆ I}

ID(R)

Practical problems in determining D(Y )

Restricting operators to RSLk gives π∗ : D(R)SLk → D(RSLk )
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From D(R)SLk to D(RSLk )

Theorem (Schwarz)

The map π∗ : D(R)SLk → D(RSLk ) is surjective. So D(RSLk ) is
generated by the restriction of the operators [I], |J|, and 〈ij〉.

Theorem (Schwarz)

The kernel of π∗ is just (D(R)slk )SLk

sl2 = Trace zero matrices

sl2 is generated by g12 =

[
0 1
0 0

]
, g21 =

[
0 0
1 0

]
and

g11 − g22 =

[
1 0
0 −1

]
Each matrix acts as a derivation on R = C[M2,4]
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The kernel of π∗

kerπ∗ = (D(R)sl2)
SL2

At one time I believed that the kernel of π∗ was generated by the
Casimir operator

This is incorrect! One way to show this is to compute the Hilbert
series of Gr(kerπ∗)
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An equivariant resolution

Gr(D(R)sl2) generated by symbols of g12, g21 and g11 − g22

These form a regular sequence in the polynomial ring GrD(R)

Koszul resolution

0 → GrD(C[V 4])(−6) → GrD(C[V 4])(−4)3

→ GrD(C[V 4])(−2)3 → GrD(C[V 4])sl2C → 0.

These three operators are eigenvectors for the torus action

Torus weights can be assigned to the resolution’s generators so
that it is SL2 equivariant
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Hilbert series of Gr(ker π∗)

Koszul resolution

0 → GrD(C[V 4])(−6) → GrD(C[V 4])(−4)3

→ GrD(C[V 4])(−2)3 → GrD(C[V 4])sl2C → 0.

Find HT (Res, z, t) as before and find H(ResSL2 , t) as the coeff of
z0 in (1− z−2)HT (Res, z, t)

Hilbert series for Gr(kerπ∗) = Gr(D(R)sl2)
SL2 is alternating sum

of H(ResSL2 , t) so

H(Gr kerπ∗, t) =
36t4 + 127t6 + 15t8 − 76t10 + 14t12 + 15t14 + t16

(1− t2)13
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Hilbert series of GrD(RSL2)

Get the Hilbert series for

Gr(D(G(2,4))) = GrD(RSL2) = Gr
(

D(R)SL2

kerπ∗

)
=

GrD(R)SL2

Gr kerπ∗

by subtraction

H(GrD(RSL2), t) = H(GrD(R)SL2 , t)− H(Gr kerπ∗, t)

=
1 + 18t2 + 65t4 + 65t6 + 18t8 + t10

(1− t2)10
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Summary

R = C[Mk ,n]
SLk coordinate ring of Grassmann variety used in

intersection theory of linear spaces

Fundamental Theorem of Invariant theory gives gens & relations

Extension: presented D(R)SLk

Computed Hilbert series H(GrD(R)SL2 , t)

Investigated D(RSL2) using the map π∗ and found H(GrD(RSL2), t)
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