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Hyperplane Arrangements

An arrangement A is a finite collection of hyperplanes in V ∼= C�

Boolean Arrangement
A = {V(x1), . . . ,V(x�)}
Defining polynomial Q = x1 . . . x�.

Braid Arrangement
A� = {V(xi − xj) : 1 ≤ i < j ≤ �}
Defining polynomial Q =

�
i<j

(xi − xj).

Both arrangements are highly symmetric and highly singular.
They are free arrangements.
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Free Arrangements

A: a hyperplane arrangement with defining polynomial
Q ∈ S = C[x1, . . . , x�]

A derivation on A is a derivation θ on S so that θ(Q) ∈ (Q)
(polynomial vector fields on V tangent to all the hyperplanes in A)

The derivation y∂x + x∂y on
A with Q = (x − y)(x + y)
corresponds to the
polynomial vector field �y , x�

The collection Der(A) of derivations on A is a module over S.

The arrangement A is free if Der(A) is a free S-module.
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Topology of Free Arrangements

The complement of a free hyperplane arrangement has a nice
topology.

Theorem (Terao’s factorization theorem)
If A is a free hyperplane arrangement then the Hilbert series of

H∗(V \
�
A) factors as

�
(1 + di t) where the di are the degrees of a

minimal system of generators of Der(A).
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Saito’s criterion for Freeness

A: hyperplane arrangement in C� with θ1, . . . , θt generating Der(A)
M(A) = (θi(xj))
Minors(A) = ideal of �× �-minors of M(A)

Theorem (Saito)
�

Minors(A) = (Q). Moreover, A is free ⇐⇒ Minors(A) = (Q).

Restatement: A is free ⇐⇒ Minors(A) is radical.

Kyoji Saito
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From Hyperplane Arrangements to Subspace
Arrangements

To each hyperplane arrangement A we associate a lattice of
subspaces.

 

xy-plane 
 

xz-plane 
 

yz-plane 
 

x-axis 
 

y-axis 
 

z-axis 
 

origin 
 

A [3] 
 

A [2] 
 

A [1] 
 

A[c]: All subspaces of codimension c formed by intersecting
hyperplanes in A.
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Subspace arrangements are never free

A subspace arrangement A is free if
Der(A) = {θ ∈ S : θ(I(A)) ⊆ I(A)} is a free S-module.

Theorem (Wiens)
Free arrangements must have codimension 1 – so proper subspace

arrangements are never free.

Need a different notion of freeness for subspace arrangements.
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Derivation radical arrangements

A: pure subspace arrangement of C� of codimension c

Der(A) = S-module generated by θ1, . . . , θt

M(A) = (θi(xj))
Minors(A) = ideal of �− c + 1-minors of M(A)

Inspired by Saito, M. Wakefield and I showed that for pure subspace
arrangements,

�
Minors(A) = I(A).

Definition
A subspace arrangement A is derivation radical if Minors(A) is
radical.

Saito’s Freeness Criterion: A hyperplane arrangement is free ⇐⇒ it
is derivation radical.
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Coordinate subspace arrangements

A coordinate subspace arrangement consists
of subspaces cut out by setting some variables to
zero.

Theorem ( ,Wakefield)
Truncations of Boolean arrangements are derivation radical. Taking the

product with a linear space preserves the derivation radical property.

All derivation radical coordinate subspace arrangements occur in this

way.
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Truncations of the braid arrangement

The braid arrangement A� consists of
all the hyperplanes xi = xj in V = C�.

Theorem ( ,Wakefield)
All truncations of the braid arrangement A� are derivation radical.

The proof exploits the symmetry of the braid arrangement and uses a
structural result due to Kleitman and Lovász.
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Equations for Truncations

Problem: Find equations that cut out the truncation A[c] of a
hyperplane arrangement A.

In the examples, the �− c + 1-minors of M(A) generated I(A[c]).

This does not follow immediately from the fact that A[c] is derivation
radical because the minors of M(A) need not generate Minors(A[c]).

Example
The Edelman-Reiner hyperplane arrangement A is an important
counterexample to many natural questions. The 3-minors of M(A) do
not generate Minors(A[3]).
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Equations for Truncations

Theorem ( ,Wakefield)
The minors of M(A) generate I(A[c]) when the ideal of minors of M(A)
has no embedded primes. As well, under this condition, the

truncation A[c] is derivation radical.

Question: Is there a condition that is easier to check that implies that
all truncations are radical? Freeness?
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Truncations of free arrangements

Perhaps all free hyperplane arrangements have derivation radical
truncations? This is false.

Example
The non-Fano arrangement, the hyperplane arrangement A in C3

defined by Q = xyz(x − y)(x − z)(y − z)(x + y − z), is free but A[2] is
not derivation radical.

Der(A) is free with generators of
degrees 1, 3, 3.
A[2] is nine points, so ∃ cubic in
I(A[2])
2-minors of M(A) have degree ≥ 4
M2: 2-minors of M(A) generate
Minors(A[2]).
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Open questions

1 Which classes of hyperplane arrangements have the property that
all truncations are derivation radical: B�,D�?

2 Does some other property (e.g. inductively-free or supersolvable)
of hyperplane arrangements imply that all truncations are
derivation radical? Does it imply that the minors of M(A) generate
I(A[c])?

3 If A is a generic subspace arrangement does it follow that A is not
derivation radical?

4 What can be said about the topology of derivation radical
subspace arrangements? (E.g. Betti numbers, etc)
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