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Preface

The adventures in this book are launched by easily under-

stood questions from the realm of discrete mathematics, a

wide-ranging subject that studies fundamental properties of

the counting numbers 1, 2, 3, . . . and arrangements of finite

sets

The book grew from talks for mathematically inclined

secondary school students and college students interested

in problem solving. The aim is high, but the prerequisites

are modest—mostly elementary algebra and geometry. Oc-

casionally, a perspective gained from more advanced sub-

jects is mentioned. A sampling of questions conveys the

spirit and scope of the topics.

◦ The art gallery problem. What is the minimum number of

stationary guards (or security cameras) needed to protect a

given art gallery?

◦ The pizza-cutter’s problem. What is the maximum number

of pizza pieces we can make with four straight cuts through

a circular pizza? What about n cuts?

◦ The computer line drawing problem. Which pixels should

a computer select to represent a given straight line on a

monitor?

◦ A quadratic residue question. Is there an integer whose

square is 257 more than a multiple of 641? In the jargon of

number theory, is 257 a quadratic residue modulo 641?

Our interest extends beyond answers to individual ques-

tions, no matter how accessible and enticing. The questions

are gateways to deeper mathematical material that can be

discussed without a lot of background. For instance, the fol-

lowing puzzle (taken from a memorable scene in the movie

ix



x P r ef a c e

Die Hard: With a Vengeance ) leads to a discussion of a fa-

mous result of Fermat in number theory.

◦ The Bruce Willis problem. We are at a fountain with two

unmarked jugs with capacities 3 and 5 gallons. How can we

measure exactly 4 gallons of water?

Our goal is to impart a genuine feel for discovery and

mature mathematical thinking by attacking problems from

several points of view and in various degrees of generality.

We also reveal hidden connections between seemingly un-

related topics. For instance, we will discover a relationship

between computer line drawing and quadratic residues. You

will also likely be surprised to learn that the following two

questions are related.

◦ An area question. What is the area of the oddly shaped or-

chard shown in the figure if the rows and columns of trees

are 1 unit apart?

◦ A dollar-changing question. How many ways are there to

make change for a dollar with quarters, dimes, and nickels?

Readers inspired to chart their own mathematical adven-

tures can explore the problems at the end of each chapter.

The more challenging problems include hints or are broken

into smaller steps. The lightly annotated references are a

starting point for further reading.
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ways to improve each chapter. I also greatly appreciate the

patience and guidance of my editor, Trevor Lipscombe.

Finally, I dedicate this book to Tom Apostol, who set me

on the path to mathematical maturity 30 years ago.
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How to Guard an Art Gallery

I found I could say things with color and shapes

that I couldn’t say any other way—

things I had no words for.

Georgia O’Keeffe

3.1 The Sunflower Art Gallery

Figure 3.1 shows the unusual floor plan of the Sunflower

Art Gallery and the locations of four guards. Each guard is

stationary but can rotate in place to scan the surroundings

in all directions. Guards cannot see through walls or around

corners. Every point in the gallery is visible to at least one

guard, and theft of the artwork is prevented. Of course, it

Figure 3.1: The Sunflower Art Gallery
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74 D i s c r et e M a t h em a t i c a l A d v e nt u r e s

would be more economical to protect the gallery with fewer

guards, if possible.

Question. What is the smallest number of guards re-

quired to protect the Sunflower Art Gallery?

Removing any one of the four guards in Figure 3.1 leaves

part of the gallery unprotected. Nonetheless, it is possible

to protect the gallery with three suitably positioned guards.

We can dismiss the lowest guard if we move the leftmost

guard slightly downward. However, we cannot get by with

two guards. To see why, consider the eight outer corners of

the gallery. It is not possible for one guard anywhere in the

gallery to keep an eye on more than three of these corners.

So two guards could protect at most six of the eight outer

corners.

The Sunflower Art Gallery has 16 walls and needs three

guards. This raises a broader question.

Question. What is the smallest number of guards needed

to protect any 16-walled gallery, regardless of its shape?

Our art gallery questions involve issues in computational

geometry, a large and active field that blends geometry with

ideas from discrete mathematics and optimization. Appli-

cations of computational geometry include:

◦ Barcode scanners that read prices at grocery stores

◦ Digital special effects common in today’s movies and

video games1

◦ Calculations performed by global positioning satellite

(GPS) receivers to determine location, speed, and di-

rection

1The special case of representing straight lines on a computer moni-

tor is the topic of Chapter 4.
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◦ Algorithms executed by machines and robotic arms on

assembly lines to carry out complex tasks in a specific

order

◦ Computerized fingerprint recognition schemes used

in security systems and forensics

At the core of most problems in computational geome-

try is a connection between theory and algorithms. The the-

ory describes or defines desired geometric configurations,

which the algorithms construct using known mathematical

procedures.

Theoretical and algorithmic issues are tightly linked in

art gallery problems. For instance, we will discover a the-

orem asserting that every w -walled art gallery can be pro-

tected by at most w/3 guards. Our demonstration of this

result leads to an algorithm telling us exactly where to post

the guards. We also look at several variations, including an

unsolved three-dimensional guarding problem.

3.2 Art Gallery Problems

Let us define our terms carefully. For our purposes, an art

gallery is a polygon in the plane.2 The polygon need not

serve as the floor plan of any real-world art gallery. An art

gallery includes the interior region as well as the boundary

segments—the walls. We letG denote an arbitrary art gallery

and write Gw for an art gallery with w walls.

Let p be any point in an art gallery. The point q is visible

to p provided the line segment joining p and q does not exit

the gallery. (We also assume that every point is visible to

itself.) The segment represents the sight line of a guard. A

set of guards protects an art gallery provided every point in

2More precisely, an art gallery is a simple polygon. We exclude poly-

gons with holes, boundaries that cross, and other oddities.
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the gallery is visible to at least one guard. Note that a guard

at a corner protects the two adjacent walls.

Example 1. (a) The four guards in Figure 3.1 protect the

Sunflower Art Gallery.

(b) The Sunflower Art Gallery is not protected by guards

at the eight outer corners (Figure 3.2). Even though all of

the walls are protected, a region in the center of the gallery

remains invisible to all the guards.

Figure 3.2: The eight guards protect the walls, but not the interior

(c) Each gallery in Figure 3.3 is protected by one or two

guards, as shown.

An art gallery is convex provided every point in it is vis-

ible to every other point. A convex gallery is easy to guard;

a guard can be posted anywhere in the gallery. Every trian-

gle is convex, as are the first two galleries in the top row of

Figure 3.3. The other galleries in the figure are nonconvex.

Galleries in Particular

Our desire to post as few guards as possible raises two gen-

eral problems about art galleries. The first problem deals
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Figure 3.3: The first two galleries in the top row are convex

with specific galleries, and the second deals with all galle-

ries with a fixed number of walls. These are generalizations

of the two questions we posed earlier. Let

guard(G) = the minimum number of guards

needed to protect the art gallery G.

Gallery problem 1. Find the value of guard(G) for every

art gallery G. In other words, find the minimum number of

guards needed to protect every art gallery.

Example 2. (a) A convex galleryG satisfies guard(G) = 1.

(b) We have seen that the Sunflower Art Gallery G16 sat-

isfies guard(G16) = 3.

To show that guard(G) = g, we must demonstrate two

facts:

◦ The gallery G can be protected by g guards.

◦ The gallery G cannot be protected by fewer than g

guards.

The first fact implies that guard(G) ≤ g, while the second

gives guard(G) ≥ g. The second fact becomes increasingly
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difficult to demonstrate as the number of walls increases

and the shape of the gallery becomes more complicated.

Ideally, we would have an efficient algorithm that takes

an arbitrary gallery G as its input and produces the value

of guard(G) as its output. Such an algorithm could be car-

ried out by a computer (or a patient, careful person) to de-

termine the minimum number of guards needed to protect

any given gallery. Researchers in computational complex-

ity, an advanced area of discrete mathematics, have strong

evidence that we will never find an efficient algorithm of

the desired type. The crux of the matter is that the num-

ber of essentially different guard configurations to exam-

ine increases exponentially as a function of the number of

walls. Any proposed general algorithm becomes effectively

worthless, even with the fastest computers available. In this

sense, gallery problem 1 remains unsolved.

Galleries in General

Now suppose we know an art gallery has w walls, but we do

not know its exact shape. Let

g(w) = the maximum number of guards required

among all art galleries with w walls.

In other words, g(w) is the maximum value of guard(Gw)

among all w -walled galleries Gw .

Example 3. (a) Any triangular art gallery can be pro-

tected with one guard. Therefore, g(3) = 1.

(b) The Sunflower Art Gallery has 16 walls and requires

three guards. Therefore, g(16) ≥ 3. We cannot conclude

that g(16) = 3 since there could be a 16-walled gallery that

requires more than three guards. In fact, we will soon see a

16-walled gallery requiring five guards.
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Gallery problem 2. Find the value of the function g(w)

for w = 3, 4, 5, . . . . In other words, find the largest number

of guards required among all w -walled art galleries.

To show that g(w) = g, we must demonstrate two facts:

◦ Every w -walled gallery can be protected by g guards.

◦ There is a w -walled gallery that cannot be protected

by fewer than g guards.

The first fact shows that g(w) ≤ g, while the second shows

that g(w) ≥ g. We will solve gallery problem 2 by estab-

lishing both facts. Naturally, we must first find the correct

relationship between g and w .

Crown Galleries

To establish a lower bound for g(w), we construct “hard to

guard” galleries—those that require at least as many guards

as any other gallery with the same number of walls.

We have already noted that g(3) = 1. Also, g(4) = 1

since a convex quadrilateral clearly requires just one guard,

and a nonconvex quadrilateral can be protected by posting

one guard at the corner with the largest interior angle (see

Figure 3.3). Moreover, it is not difficult to convince oneself

that g(5) = 1.

The situation is more complicated for galleries with at

least six walls, but we can take a hint from the nonconvex,

“horned” hexagonal art gallery in Figure 3.3. Because no

lone guard can possibly cover both of the two upper cor-

ners, we know that g(6) ≥ 2. The crown-shaped galleries

in Figure 3.4 extend this idea. The Crown Gallery G3t has

t tines3 and 3t walls and requires at least t guards since

3The crown with one tine is more suitable for a dunce than a prince.
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G3 G6 G9

G12 G13

Figure 3.4: The Crown Gallery Gw requires bw/3c guards

no guard can see more than one of the uppermost corners.

Therefore, guard(G3t) ≥ t and

g(3t) ≥ t.

If w is one more than a multiple of 3, say, w = 3t + 1, then

we put a small dent in the crown G3t to produce the gal-

lery G3t+1. Figure 3.4 includes the dented gallery G13, for

instance. Because G3t+1 requires t guards, we have

g(3t + 1) ≥ t.

Similarly, if w = 3t + 2, a twice-dented crown shows that

g(3t + 2) ≥ t.

Some notation helps us state our findings concisely. The

floor of the real number x is

bxc = the largest integer less than or equal to x.

So the floor function “rounds down.” For example, b16/3c =

b17/3c = 5 and
⌊

3t

3

⌋

=

⌊

3t + 1

3

⌋

=

⌊

3t + 2

3

⌋

= t
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for each positive integer t . Our crown-shaped galleries thus

give the lower bound

g(w) ≥

⌊

w

3

⌋

.

3.3 The Art Gallery Theorem

We are now ready to solve the second gallery problem. The

answer confirms that the crown-shaped galleries are indeed

the hardest to guard.

Art gallery theorem. We have

g(w) =

⌊

w

3

⌋

for w = 3, 4, 5, . . . .

In other words, bw/3c guards are sufficient and sometimes

necessary to protect an art gallery with w walls.

The art gallery theorem was first stated and proved by

Vasek Chvátal in 1975 in response to a query from Victor

Klee (1925–2007), an expert in combinatorial problems with

a geometric flavor. We have already discovered that g(w) ≥

bw/3c. Chvátal’s crucial contribution was to establish the

reverse inequality by showing that every w -walled gallery

can be protected by at most bw/3c guards. His proof uses

mathematical induction on the number of walls (the validity

of the inequality for galleries with w walls is deduced from

its validity for galleries with fewer walls) and requires some

care in its execution. Problem 24 at the end of this chapter

outlines his argument.

A Colorful Idea

Steve Fisk produced a new and colorful proof of the art gal-

lery theorem in 1978. His ingenious argument is less sophis-

ticated than Chvátal’s and has a visual appeal. He assigns
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(a) (b)

(c)

Figure 3.5: Fisk’s colorful proof of the art gallery theorem

colors to the corners of the art gallery in a special way and

then posts guards based on the arrangement of colors. Fig-

ure 3.5 illustrates the steps for the Sunflower Art Gallery.

First, partition the gallery into triangles by inserting suit-

able noncrossing diagonals, as in (a). The diagonals triangu-

late the gallery.4 Then assign one of three colors—black,

gray, or white, say—to each of the w corners so that every

triangle has one corner of each color. The resulting config-

uration is called a polychromatic 3-coloring of the triangu-

lation. In (b) we have w = 16, and there are four black, six

4The vertices of the triangles must be corners of the gallery; interior

vertices are forbidden. More general triangulations appear in Chapter 2

and in Problem 18 of Chapter 1.
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gray, and six white corners. Finally, if we post guards at the

four black corners, then every triangle is certainly protected

(since every triangle has a black corner), and hence the en-

tire gallery is protected by the guards in (c). The six white

corners or the six gray corners also protect the gallery, but

the black corners give us fewer guards in this case.

The same argument applies to any w -walled gallery. In

a polychromatic 3-coloring of a triangulation, the least fre-

quently used color occurs at most bw/3c times. Guards at

those corners protect every triangle and hence the entire

gallery.

3.4 Colorful Consequences

Fisk’s colorful proof of the art gallery theorem has several

consequences.

How to Guard an Art Gallery: An Algorithm

The colorful proof not only guarantees that bw/3c guards

suffice to protect any w -walled gallery but also tells us ex-

actly where to post at most bw/3c guards. Briefly, trian-

gulate, color, and post. The art gallery algorithm (Algo-

rithm 3.1) formalizes the process.

The interactive site

cut-the-knot.org/Curriculum/Combinatorics/Chvatal.shtml

lets you build your own art galleries and triangulations; the

applet then produces a 3-coloring and posts the guards.

What Is an Algorithm?

We have seen the first of several algorithms in this book,

and it is appropriate to make a few comments here. An al-

gorithm is a recipe—a list of precise instructions—that be-
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Algorithm 3.1. Art gallery algorithm

Input: art gallery Gw with w walls

Output: positions for at most w/3 guards that protect Gw

1. Triangulate Gw by inserting suitable diagonals.

2. Find a polychromatic 3-coloring of the corners of the

triangulation.

3. Post guards at the corners with the least frequently

used color.

gins with given ingredients (the input) and ends at a speci-

fied goal (the output). Algorithms occur throughout mathe-

matics but are especially prevalent in discrete mathematics.

Reading and writing a well-constructed algorithm hones our

problem-solving skills and focuses our attention on the es-

sential aspects of a mathematical problem.

An algorithm to be used in a real-world application must

be written with great formality in a suitable programming

language to avoid the glitches for which computers have be-

come infamous. The algorithms we present in this book are

intended for human edification, not actual computer imple-

mentation. They are therefore less formal and written in

ordinary English.

Nice Try, But . . .

Now that we know that bw/3c guards suffice to protect any

w -walled gallery, it is natural to seek a simpler and direct

process to post the guards. For instance, one attempt to

avoid the fuss of triangulation and coloring in Algorithm 3.1

merely posts guards at every third corner of the gallery.
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Figure 3.6: Guards at every third corner fail to protect the gallery

This naive strategy works for many galleries but fails for

others. Consider the 15-walled gallery in Figure 3.6 with

successive corners colored in a repeating black-white-gray

pattern. If we post guards at all the black corners, then part

of the gallery is unprotected. Guards at the white or gray

corners also fail to protect the entire gallery.

Cornered Guards

The art gallery algorithm does not necessarily post the min-

imum number of guards needed to protect a given gallery.

For instance, the algorithm posts four guards in the Sun-

flower Art Gallery in Figure 3.5, and we know that three

guards suffice. In other words, Algorithm 3.1 solves the sec-

ond gallery problem but not the first.

The algorithm also shows that we can protect the gallery

Gw by placing at most bw/3c guards at corners. There is no

need to place guards in the interior of the gallery—although

such placements might be helpful in trying to find the true

minimum number of guards required to protect Gw . For

instance, one suitably placed guard along the “horizon” of
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Figure 3.7: The Sunrise Gallery

the Sunrise Gallery in Figure 3.7 protects the entire gallery.

But if we must place the guards at corners, then many more

guards are needed to cover each ray of the sun.

3.5 Triangular and Chromatic Assumptions

A careful reader might object that our colorful proof of the

art gallery theorem is incomplete because we relied on two

assumptions without justifying them. Both assumptions are

so plausible, you likely did not identify them as potential

causes for concern.

Assumption 1. Every art gallery has a triangulation.

Assumption 2. Every triangulation has a polychromatic

3-coloring.

It is wise to question the assumptions we make in mathe-

matics. Plausible assertions sometimes turn out to be false

on closer inspection (as we will see later in this chapter), in-

validating an entire line of reasoning. The correctness of the

colorful proof art gallery theorem is not in doubt, however.

Triangulations and polychromatic 3-colorings occur in sev-

eral contexts in discrete mathematics and have been studied

in detail. Rigorous justifications of both assumptions have
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been known for a long time. See Problems 22 and 23 for a

verification of assumption 1.

Polychromatic 3-Colorings

There is a convincing, constructive way to verify assump-

tion 2. To show that the particular triangulation of the gal-

lery G9 in Figure 3.8 has a polychromatic 3-coloring, we first

assign three different colors to the corners of an arbitrary

triangle, say, triangle acd, as shown. Since each triangle is

to contain one corner of each color, corner b must be the

same color as corner d. Also, corner f must be the same

color as corner c, and then i must be the same color as d.

We continue in this manner and eventually produce the de-

sired polychromatic 3-coloring for the entire triangulation.

a

b

c d

e

f g

h

i

Figure 3.8: The start of a polychromatic 3-coloring

The same process works in general. Once three colors

are assigned to the corners of any triangle, the colors for

the remaining corners of the gallery are forced.

Degenerate Quadrilaterals

The triangulation of the gallery G9 in Figure 3.8 illustrates a

technical issue that sometimes arises in triangulating a gal-

lery. We maintain that deleting diagonal ad destroys the tri-
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angulation even though each remaining region would indeed

be triangular. The problem is that the four corners a, c, d,

and f of G9 occur on the boundary of one triangular region.

We regard such regions as degenerate quadrilaterals, not

triangles, and exclude them from our triangulations. This

exclusion is necessary for our colorful argument to work.

3.6 Modern Art Galleries

The art gallery theorem has inspired work on related prob-

lems in which the rules are changed in some manner to

make the model more realistic or more interesting. The

changes are of two types. First, we can restrict or relax the

allowed shapes for the galleries. Second, we can bestow new

powers on the guards or alter their responsibilities. All such

variants are referred to as art gallery problems. The goals

are the same as before. We want to find the minimum num-

ber of guards needed and write an efficient algorithm that

posts a relatively small number of guards.

The remainder of this chapter is devoted to some of

these art gallery problems. A few have been solved, usually

by adapting Chvátal’s inductive approach or Fisk’s colorful

argument, but many remain unsolved. The more realistic an

art gallery problem, the more difficult it is to discover, to

state, and to prove a counterpart to the basic guard formula

g(w) = bw/3c.

Fortresses, Prisons, and Zoos

Here are some examples of art gallery problems.

In the fortress problem, we view a polygon not as an art

gallery to be protected against theft from the inside but as a

fortress to be alerted to attack from the outside. The goal is

to post the minimum number of guards along the fortress
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walls so that every point outside the fortress is visible to at

least one guard.

The prison yard problem asks us to post guards on the

boundary of a polygon so that every point in the plane—

both inside and outside the polygon—is visible to at least

one guard. From a mathematical perspective, a prison yard

is an art gallery on the inside but a fortress from the outside,

a viewpoint presumably not shared by the prison yard’s oc-

cupants.

In some realistic art gallery problems, the guards are mo-

bile. We can ask for a path of minimum length inside a poly-

gon such that every point in the polygon is visible to some

point on the path. Such a path is an efficient route for a lone

guard patrolling a large art gallery.

In the zookeeper problem we have a collection of dis-

joint polygons (the animals’ cages) inside a large polygon

(the zoo). We seek a path of minimum length inside the zoo

that meets the boundary of each cage, while avoiding the

interior. Such a path traces an efficient and safe route for a

zookeeper at feeding time.

The whimsical names bestowed on art gallery problems

do not limit the scope of possible applications. For example,

the scientists directing the actions of a rover on Mars con-

front a type of zookeeper problem. The goal is to maneuver

the rover to various locations, gather images and measure-

ments of interesting features in the vicinity of the landing

spot, and send the data to Earth. There are constraints on

time and energy, and steep terrain must be avoided.

3.7 Art Gallery Sketches

We now state some art gallery theorems with proofs omit-

ted.
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Galleries with Holes

Most art galleries in the real world contain obstacles that

block the sight lines of the guards. We model this situation

by allowing holes in the interior of the galleries. We assume

Figure 3.9: A gallery with eight walls and one hole

that each hole is a simple polygon. Guards must not be

posted in the interiors of the holes, of course. Figure 3.9

shows a gallery with eight walls and one hole. The gallery

is protected by three guards. It is not difficult to verify that

the gallery cannot be protected by two guards.

The general problem asks for the minimum number of

guards sufficient to protect any gallery with w walls and h

holes. Note that the walls surrounding the holes contribute

to w . Here is the main theorem in the area.

Theorem. Any art gallery with w walls and h holes can

be protected by b(w + h) /3c guards.

Half-Guards: Restricted Field of Vision

Suppose we want to protect a w -walled gallery with station-

ary cameras, each of which has a fixed 180◦ field of vision.

We call this type of camera a half-guard. It seems likely that

more than w/3 half-guards might be needed to compensate
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for the restricted field of vision of the guards. In any case,

2 bw/3c half-guards suffice since we can use bw/3c pairs of

back-to-back half-guards. Surprisingly, we can always get

away with just bw/3c half-guards.

Half-guard theorem. Any art gallery with w walls can be

protected by bw/3c half-guards.

The half-guard theorem was established by the Hungar-

ian mathematician Csaba Tóth in 2000. The new twist is

that suitable corners for the half-guards can no longer be

found by a colorful argument. In fact, it is sometimes nec-

essary to place half-guards in the interior or along the walls

of the gallery. Figure 3.10 shows a gallery protected by one

half-guard along a wall. No corner placement of a lone half-

guard does the job for this gallery.

Figure 3.10: A gallery guarded by a half-guard

Rectangulated Galleries: Guarding the Met

Figure 3.11 shows a slightly modified floor plan of one sec-

tion of the Metropolitan Museum of Art in New York City.

(Some walls were adjusted, and a few new doorways were in-

cluded.) Interior walls partition the large rectangle into rect-

angular rooms, and each pair of adjacent rooms is joined by
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Figure 3.11: A rectangulated gallery with 29 rooms and 15 guards

a narrow doorway. We call this type of configuration a rect-

angulated gallery. As usual, we want to protect the gallery

with as few guards as possible. Guards in doorways protect

two rooms simultaneously. The gallery in Figure 3.11 has 29

rooms and is protected by 15 guards, which is the best we

can hope for since 14 guards can protect at most 28 rooms.

In general, if there are r rooms, then at least dr/2e guards

are required. We have used the ceiling function, defined by

dxe = the smallest integer greater than or equal to x.

It turns out that dr/2e guards suffice, but this is difficult to

prove.

Rectangulated gallery theorem. Any rectangulated gal-

lery with r rooms can be protected by dr/2e guards, but no

fewer.
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3.8 Right-Angled Art Galleries

We now examine several art gallery problems in detail and

illustrate how art gallery results are discovered and proved.

Adjacent walls in a right-angled art gallery meet at right

angles, just like the floor plans of most buildings. See Fig-

ure 3.12. Each interior angle is 90◦ or 270◦. A right-angled

G4t G4t+2

Figure 3.12: The comb-shaped galleries G4t and G4t+2

gallery can be drawn so that the walls run alternately north-

south and east-west. It follows that the number of walls

must be even.

We let

g⊥(w) = the maximum number of guards

required to protect a right-angled

art gallery with w walls.

The notation g⊥(w) is pronounced “g perp of w .” The sub-

script is a visual reminder of the perpendicularity of the

walls. The comb-shaped galleries in Figure 3.12 play the role

of our earlier crown-shaped galleries. Each of the t teeth of

the comb adds four more walls and requires one additional

guard. It follows that the galleriesG4t and G4t+2 in the figure

require t guards, giving us the lower bound

g⊥(w) ≥

⌊

w

4

⌋

.

To establish the reverse inequality, we attempt to mod-

ify Fisk’s colorful argument. Figure 3.13 depicts a promis-

ing strategy. First, partition the right-angled gallery Gw into
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Figure 3.13: A colorful argument for right-angled galleries

quadrilaterals by inserting noncrossing diagonals. The re-

sulting configuration is a quadrangulation of Gw . Each qua-

drilateral has exactly four corners of Gw on its boundary. If

three of the corners are collinear, then the quadrilateral has

a triangular shape, a degeneracy we now allow. Second, as-

sign one of four colors (black, dark gray, light gray, white) to

each of the w corners of Gw so that each quadrilateral has

one corner of each color. The least frequently used color in

this polychromatic 4-coloring occurs at most bw/4c times.

Finally, post guards at these corners (the black ones in Fig-

ure 3.13); the whole gallery is protected since every quadri-
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lateral has a black corner. It seems we have established the

following result.

Right-angled art gallery theorem. We have

g ⊥(w) =

⌊

w

4

⌋

for w = 4, 6, 8, . . . .

In other words, bw/4c guards are sufficient and sometimes

necessary to protect a right-angled art gallery with w walls.

Alas, our colorful argument has a flaw. It fails to post the

guards correctly in some situations. Consider the polychro-

matic 4-coloring of the quadrangulation in Figure 3.14. The

three guards at the black corners fail to protect part of the

rightmost nook of the gallery. The reason is clear. A guard

at a corner of nonconvex quadrilateral might not cover the

entire quadrilateral.

?

Figure 3.14: A convex quadrangulation is required

To guarantee that the colorful argument works, we must

start with a convex quadrangulation—one whose quadrilat-

erals are all convex. Jeffry Kahn, Maria Klawe, and Daniel

Kleitman fixed the flaw in the above argument by proving

the following result in 1985.
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Convex quadrangulation theorem. Every right-angled

art gallery has a convex quadrangulation.

The right-angled art gallery algorithm (Algorithm 3.2)

formalizes our discussion.

Algorithm 3.2. Algorithm for right-angled art galleries

Input: right-angled art gallery Gw with w walls

Output: positions for at most w/4 guards that protect Gw

1. Form a convex quadrangulation of Gw by inserting

suitable diagonals.

2. Find a polychromatic 4-coloring of the corners of the

quadrangulation.

3. Post guards at the corners with the least frequently

used color.

3.9 Guarding the Guards

We now demand that our guards protect one another in ad-

dition to the art gallery. Every guard must be visible to at

least one other guard. Such configurations protect against

an ambush of an isolated guard. We refer to guarded guards

in this case and study the function

gg(w) = the maximum number of

guarded guards required to protect

an art gallery with w walls.
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It is not difficult to see that gg(w) = 2 for w = 3, 4, 5, 6.

We must have

⌊

w

3

⌋

≤ gg(w) ≤ 2

⌊

w

3

⌋

.

The left inequality is clear because we need at least g(w)

guards just to cover the gallery. Also, by starting with a

feasible configuration of g(w) guards and assigning each

guard a nearby partner, we see that no more than 2g(w)

guarded guards are needed.

To determine the formula for gg(w), we might start with

another modification to the crown galleries. The New Wave

Gallery G5t (shown for t = 4 in Figure 3.15) has t waves and

5t walls. Note that G5t requires 2t guarded guards since

each additional wave increases the number of walls by 5

and the number of guarded guards required by 2. We dent

the gallery in suitable places if w is not divisible by 5 and

conclude that

gg(w) ≥

⌊

2w

5

⌋

for w = 5, 6, 7, . . . .

G5t

Figure 3.15: The New Wave Gallery G5t

It is tempting to conjecture that gg(w) = b2w/5c, but a

rude counterexample intrudes at w = 12. The 12-walled gal-

lery in Figure 3.16 requires five guarded guards, contrary to

the predicted maximum of b2w/5c = b(2× 12) /5c = 4. As
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Figure 3.16: A 12-walled gallery requiring five guarded guards

this counterexample suggests, the true formula for guarded

guards is more complicated than any we have encountered

so far.

Guarded guards theorem. We have

gg(w) =

⌊

3w − 1

7

⌋

for w = 5, 6, 7, . . . .

In other words, b(3w − 1) /7c guarded guards are sufficient

and sometimes necessary to protect an art gallery with w

walls for w = 5, 6, 7, . . . .

Table 3.1 gives some values of the function gg(w). The

only known proof of the guarded guards theorem follows

the same general scheme of Chvátal’s inductive argument

Table 3.1: Number of guarded guards for a gallery with w walls

w 5 6 7 8 9 10 11 12 13 14 15 16 17

gg(w) 2 2 2 3 3 4 4 5 5 5 6 6 7
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for the original art gallery theorem, but two issues compli-

cate the argument. First, the w -walled galleries that require

b(3w − 1) /7c guarded guards have complex shapes that are

difficult to discover and describe.

Challenge 1. Can you find a 17-walled gallery that re-

quires seven guarded guards? Look at Figure 3.15 if you are

stumped.

Second, the inductive step is more subtle than the one

used by Chvátal. Is there a pleasant, colorful argument?

Nobody has found one yet.

Research problem. Find a colorful, Fisk-like argument

for the inequality gg(w) ≤ b(3w − 1) /7c.

Guarded Guards in Right-Angled Galleries

The guarded guards formula for right-angled galleries turns

out to be less complicated. Let

gg ⊥(w) = the maximum number of guarded guards

required to protect a right-angled

art gallery with w walls.

The Square Wave Gallery G6t (shown for t = 4 in Fig-

ure 3.17) has t waves and 6t walls. Note that G6t requires

G6t

Figure 3.17: The Square Wave Gallery G6t
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2t guarded guards since each additional wave increases the

number of walls by 6 and the number of guarded guards re-

quired by 2. We truncate the gallery in suitable places if w

is not divisible by 6 and conclude that

gg ⊥(w) ≥

⌊

w

3

⌋

for w = 6, 8, 10, . . . .

This time there are no surprises.

Guarded guards theorem for right-angled galleries. We

have

gg ⊥(w) =

⌊

w

3

⌋

for w = 6, 8, 10, . . . .

In other words, bw/3c guarded guards are sufficient and

sometimes necessary to protect a right-angled art gallery

with w walls for w = 6, 8, 10, . . . .

To show that bw/3c guarded guards are sufficient for a

right-angled gallery, we again modify Fisk’s colorful argu-

ment. Start with a convex quadrangulation of a right-angled

gallery Gw , as in Figure 3.18(a). Then triangulate the gallery

by inserting a diagonal in each quadrilateral (the thin lines

in (b)). The inserted diagonals should “alternate” so that if

two quadrilaterals share an edge, then their diagonals do

not share a corner. After the diagonal for one quadrilateral

is selected arbitrarily, the diagonals for the other quadrilat-

erals are all forced by this alternating condition. The result-

ing triangulation has a polychromatic 3-coloring, as shown

in (b), and we post guards temporarily at the corners of the

least frequently used color—the four black corners in (c).

Of course, we have posted at most bw/3c guards, and these

guards protect the entire gallery.

Alas, some guards might be invisible to all other guards.

The lowest guard in (c) is invisible to the other guards, as

is the rightmost guard. We remedy this situation by giving
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(a) (b)

(c) (d)

Figure 3.18: Guarded guards for right-angled galleries

marching orders to each guard standing at a corner with

exactly one diagonal. Such a guard must march along the

diagonal to the opposite corner, as indicated by the arrows

in (c). If two or more guards end up at the same corner,

then the extra ones are sent home. One can prove that the

resulting configuration of guards is indeed guarded and that

the entire gallery remains protected, as in (d). We do not give

the details.

As with the original art gallery theorem, the resulting

configuration of guarded guards need not be minimal. For

instance, the process posts four guarded guards in the right-

angled gallery in Figure 3.18(d), but three guarded guards

suffice; simply dismiss the uppermost guard.
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3.10 Three Dimensions and the Octoplex

Art galleries and other buildings in the real world are three-

dimensional, a fact that has been conspicuously absent from

our discussion so far. Let us model three-dimensional gal-

leries by polyhedra—solid shapes bounded by polygons. Fa-

miliar polyhedra include cubes, prisms, and pyramids. As

usual, we want to post cameras in the gallery so that ev-

ery point is visible to at least one camera. We use security

cameras instead of guards since it will sometimes be nec-

essary to post them on the ceiling, in midair, or at other

inconvenient locations. We make the somewhat unrealistic

assumption that a camera can see in all directions.

Research question. What is the maximum number of se-

curity cameras required to protect a three-dimensional gal-

lery with c corners?

We seek a simple answer to the three-dimensional art

gallery problem, similar to our expressions for two-dimen-

sional galleries. However, no one has been able to find such

a formula—or even propose a plausible guess—for reasons

we will explain soon.

In a two-dimensional gallery the number of corners is

equal to the number of walls. But these parameters are un-

equal for most three-dimensional galleries. (A corner is a

point where three or more walls meet.) We would be just

as pleased to answer the research question in terms of the

number of walls.

The Octoplex

Guards posted at each corner of a two-dimensional gallery

certainly protect the whole gallery. Astonishingly, this ob-

vious assertion is false for three-dimensional galleries. This
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center

p

q3

4

7

7

Figure 3.19: The Octoplex

fact frustrates would-be solvers of the three-dimensional

problem.

The example in Figure 3.19 is constructed as follows.

Start with a 20-by-20-by-20 cube. Remove a rectangular

channel 12 units wide and 6 units deep from the center of

the front face. There is an identical channel in the back face.

The channels in the left and right faces are 6 units wide and

3 units deep, while those in the top and bottom faces are 6

units wide and 6 units deep. The figure that remains is the

Octoplex. It consists of eight 4-by-7-by-7 theaters connected

to one another and to a central lobby by passageways 1 unit

wide. The Octoplex has 56 corners and 30 walls.

Claim. Even if we post a camera at every corner, part of

the Octoplex is unprotected.
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To see why the claim is true, observe that the center

point q of the Octoplex is not visible to a camera at the

corner p in Figure 3.19 since the direct line of sight from p

to q exits and then reenters the Octoplex, as shown. Similar

reasoning shows that point q is hidden from cameras at the

other 55 corners. In fact, there is a small region in the mid-

dle of the lobby that is hidden from every corner camera.

Challenge 2. Protect the Octoplex with 25 cameras. At

least one of your cameras will not be at a corner. Can you

find a way to use fewer cameras?

The Megaplex

For some three-dimensional galleries, the number of cam-

eras required greatly exceeds the number of corners. The

Megaplex is formed by a cubical arrangement ofm3 abutting

copies of the Octoplex, as shown for m = 4 in Figure 3.20.

The interior walls of adjacent theaters are removed so that

some theaters in the Megaplex are formed by merging two,

four, or eight Octoplex theaters. For the sake of clarity, the

walls separating each Octoplex from its neighbors are re-

tained in the figure. There are m3 lobbies in the Megaplex.

Also, The many channels and shafts do not cross one an-

other.

Claim. The Megaplex has c = 24m2 + 24m + 8 corners

and requires at least m3/8 cameras to protect.

To see why the claim is true, observe that the Megaplex

has eight outer corners, and that each of the 3m(m + 1)

shafts and channels also contributes eight corners. The to-

tal number of corners is therefore

c = 8+ 3m(m+ 1)× 8 = 24m2 + 24m + 8.
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Figure 3.20: The Megaplex

A little experimentation shows that no camera could possi-

bly cover the centers of eight lobbies, and it follows that at

least m3/8 cameras are required.

Notice that the ratio of cameras to corners satisfies

cameras

corners
≥

m3/8

24m2 + 24m+ 8
≥

(m3 − 1)/8

24(m2 +m+ 1)
≥
m− 1

192
.

The factorizationm3−1 = (m−1)(m2+m+1)was used for

the last inequality. If m ≥ 194, then the number of cameras

required exceeds the number of corners of the Megaplex.

Moreover, as m increases, the ratio of cameras to corners
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becomes arbitrarily large, which dashes any hope for a lin-

ear upper bound (say, 1000c) for the number of cameras

required. A similar assertion holds in terms of the number

of walls. Although our Megaplex with m ≥ 194 does not

resemble any three-dimensional building in the real world,

it does show that the three-dimensional guarding problem

is fundamentally different from the two-dimensional prob-

lems we have seen.

The horizontal shafts passing completely through the

Megaplex from front to back form undesirable “holes.” We

can eliminate them by erecting a thin wall to close up the

back of each shaft. The shafts in other directions can be

dealt with similarly, and the essential features of the Mega-

plex are preserved.

3.11 Notes and References

The original proof of the art gallery theorem is by Chvátal [2]. A more

leisurely treatment of Chvátal’s proof by mathematical induction ap-

pears in Honsberger’s book [5]. The book [1] includes a first-hand ac-

count of how Fisk discovered his colorful proof [4] on a bus trip in

Afghanistan. The right-angled art gallery theorem was first proved by

Kahn, Klawe, and Kleitman [6]. Guarded guards are examined in [7].

Żyliński [12] surveys the use of colorful arguments in proving art gal-

lery theorems. The theorem on rectangulated galleries appears in the

paper by Czyzowicz et al. [3].

In 1987, O’Rourke wrote the book [9] on art gallery theorems, cov-

ering both theory and algorithms. Variants examined in O’Rourke’s

book include mobile guards, the fortress and prison yard problems, and

three-dimensional galleries. The encyclopedic tome [11] spans all of

computational geometry, and the chapter on art gallery theorems has

more than 100 references. Algorithms for art gallery problems (and

computational geometry in general) are treated in [10], which also cov-

ers computational complexity.

The site

http://maven.smith.edu/~orourke/TOPP/

lists unsolved problems in computational geometry.
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3.12 Problems

The problems deal with two-dimensional art galleries.

1. Find a triangulation of the Sunflower Art Gallery and a poly-

chromatic 3-coloring that leads to a posting of three guards.

2. True or false.

(a) If G is a convex gallery, then guard(G) = 1.

(b) If guard(G) = 1, then the gallery G is convex.
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(c) If guard(G) ≥ 2, then G has at least six walls.

(d) If G has at least six walls, then guard(G) ≥ 2.

3. (a) Exhibit an art gallery with eight walls that has a unique

triangulation.

(b) Exhibit aw -walled gallery that has a unique triangulation

for each w = 3, 4, . . . .

4. Which corners are the same color as c when Figure 3.8 is

completed to a polychromatic 3-coloring?

5. Let s be the number of 90◦ interior angles in a right-angled

gallery with w walls. Show that w = 2s − 4. Hint: What is

the sum of all the angles in the gallery?

6. Exhibit an art gallery with both of the following properties.

◦ The gallery can be protected by one guard.

◦ It is possible to post guards at seven corners and not

protect the entire gallery.

7. Exhibit an art gallery with both of the following properties.

◦ The gallery can be protected by two guards but not by

one guard.

◦ It is possible to post guards at 29 corners and not pro-

tect the entire gallery.

8. Let G15 denote the 15-walled gallery in Figure 3.6.

(a) Protect G15 with five guards.

(b) Show that G15 cannot be protected by four guards.

(c) What is the minimum number of guarded guards needed

to protect G15?

9. The galleries in Figure 3.17 show that gg ⊥(w) ≥ bw/3c

when w is divisible by 6. Exhibit right-angled galleries for

the cases when w − 2 or w − 4 is divisible by 6.
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10. Find the final configuration of guarded guards if we begin

with guards at the four white corners in Figure 3.18(b).

11. Write an algorithm to post guarded guards in right-angled

galleries. The input of your algorithm will be a right-angled

gallery Gw with w walls (w ≥ 6), and the output will be the

positions of at most bw/3c guarded guards that protect Gw .

12. Post 10 guards in a particular 17-walled art gallery so that

the entire gallery is protected, but dismissal of any guard

leaves some part of the gallery unprotected.

13. Figure 3.21 shows four guards that protect a rectangulated

gallery with six rooms and one rectangular hole.

(a) Explain why the gallery cannot be protected by three

guards.

(b) Explain why every rectangulated gallery with r rooms

and one rectangular hole can be protected by d(r + 1) /2e

guards.

(c) Explain why every rectangulated gallery with r rooms

and h rectangular holes can be protected by d(r + h)/2e

guards.

Figure 3.21: A rectangulated gallery with a hole
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14. There is an art gallery with 8t walls and t holes that requires

3t guards for each t = 1, 2, 3, . . . . Figure 3.9 shows such a

gallery for t = 1. Find a gallery for t = 2, 3, . . . .

15. What is the minimum number of half-guarded needed to

protect the Sunflower Art Gallery?

16. Give an example of a gallery that can be protected by one

guard but not by one half-guard.

17. Explain why a triangulation of a w -walled gallery must have

w − 2 triangles and w − 3 diagonals.

18. (a) Find a 10-walled gallery requiring four guarded guards.

(b) Find a 15-walled gallery requiring five guarded guards.

19. The Scorpio Gallery in Figure 3.22 has 17 walls.

(a) Protect the gallery with seven guarded guards.

(b) Show that the gallery cannot be protected by six guarded

guards.

Figure 3.22: The Scorpio Gallery
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20. Consider a triangulation of an art gallery with at least four

walls. Identify each statement as true or false.

(a) Every triangle in the triangulation must have at least one

side in common with the boundary of the gallery.

(b) There is a triangle with exactly two sides in common with

the boundary.

(c) There are at least two triangles with exactly two sides in

common with the boundary.

21. Consider a triangulation of an art gallery with at least four

walls. Let Nk denote the number of triangles with exactly

k sides in common with the boundary of the gallery. Of

course, Nk = 0 for k ≥ 3.

(a) Explain why N0 +N1 +N2 = w − 2.

(b) Explain why N1 + 2N2 = w .

(c) Show that 3N0 + 2N1 +N2 = 2w − 6.

(d) Show that N2 = N0 + 2.

22. The purpose of this problem is to prove that every art gal-

lery with at least four walls has a diagonal. Let Gw be an

art gallery with w walls (w ≥ 4), and let q be the leftmost

corner of the gallery. If more than one corner is leftmost,

choose the lowest of these. Let p, q, and r be consecutive

corners of the gallery and consider the triangle pqr .

(a) Suppose that p, q, and r are the only corners of Gw in

pqr (including the boundary). Show that segment pr is

a diagonal of Gw .

(b) Suppose that pqr contains at least one other corner of

Gw . Show that Gw has a diagonal with one endpoint at q.

23. Show that every art gallery has a triangulation. Hint: As-

sume that every art gallery with at least four walls has a

diagonal (Problem 22).
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24. This problem outlines Chvátal’s proof of the art gallery the-

orem. Consider a triangulated art gallery Gw with w walls

(w ≥ 4). Select any diagonal of the triangulation. The diag-

onal partitions Gw into two galleries with w1 and w2 walls.

(a) Explain why w1 +w2 = w + 2.

(b) Show that if w ≥ 6, then we can always select a diagonal

so that w1 = 5, 6, or 7. Hint: Among all diagonals for

which w1 ≥ 5, choose one for which w1 is smallest.

(c) Assume that w1 = 5. Show that
⌊

w1

3

⌋

+

⌊

w2

3

⌋

=

⌊

w

3

⌋

.

Hint: Show that
⌊

w2

3

⌋

=

⌊

w − 3

3

⌋

=

⌊

w

3

⌋

− 1.

(d) Assume that w1 = 5. Make an inductive hypothesis and

apply (c) to show that g(w) ≤ bw/3c. Chvátal also deals

with the more difficult cases w1 = 6 and w1 = 7.

The picture will have charm when each color

is very unlike the one next to it.

Leon Battista Alberti

Who will guard the guardians?

Juvenal

Science is what we understand

well enough to explain to a computer.

Art is everything else we do.

Donald Knuth

Mighty is geometry; joined with art, resistless.

Euripedes
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Żyliński, P., Placing guards in art galleries by graph coloring, Contem-

porary Mathematics 352 (2004), 177–188.



Index

Abbot Albert, 155

abbreviated state sequence, 145,

151

absolute sequence, 122

addition table, 173, 174

additive number theory, 170

additivity of area, 50

Afghanistan, 106

Aikman, Leo, 113

Alberti, Leon Battista, 112

algorithm, 75, 78, 83

art gallery, 83, 84

right-angled, 96

Bresenham’s, 115, 122, 123,

134

Bruce Willis problem, 143

circle of lights, 197, 202

Euclid’s, 132, 135, 242

line drawing, 115, 122

Bresenham’s, 115, 122, 123,

134

water measuring, 148–150

Alice and Bob, 194, 200, 201, 204

Anderson, John T., 135

antialiasing, 124

Apostol, Thomas M., xi

approximation, 41, 125

area, 34

Diophantine, 128

arithmetical Islamic calendar, 126,

130, 137

arithmetic array, 118, 119, 151,

152, 163, 168, 198, 201,

230

diminished, 182, 184, 186,

201

arithmetic array theorem, 153, 185,

199

arithmetic progression, 120, 152–

154

art gallery, ix, 51, 73, 75, see also

gallery

algorithm, 83, 84

right-angled galleries, 96

problems, 75, 88

theorem, 81

AT&T Laboratories, 20

Atiyah, Michael, 32

ATM card, 164

attainable number, 170

uniquely, 181

axis-parallel, 44

Ball, Keith, 65

Banks, Robert B., 22

barcode, 74

baseball, 56

batting average, 56, 68

Beck, Matthias, 65

Berra, Yogi, 1

bijection, 180

binomial theorem, 161, 167

Bogomolny, Alex, 156

Boldi, P., 164, 168

Bresenham, Jack, 115, 134

Bresenham’s algorithm, 115, 122,

123, 134

Brualdi, Richard A., 22

Bruce Willis problem, x, 139, 152,

156

calculus, 8, 43

calculus of finite differences, 7

calendar, 125

Hebrew, 125

Islamic, 126, 137

Julian, 131

251



252 I n d ex

Cartesian

coordinates, 35, 113

plane, 39, 42

ceiling function, dxe, 92

Chinese Remainder Theorem, 172,

187, 222

choose function, 10, 12, 167, 241

chords, 26

Chvátal, Vasek, 81, 88, 98, 106,

112

circle of lights algorithm, 197, 202

code

length, 214

parameters, 214

quadratic residues, 214, 240

repetition, 213

size, 214

code word, 213

coding theory, 208, 213

coin exchange problem, 190

coin theorem, 192

comb-shaped gallery, 93

complete state sequence, 145

complete the square, 241

compound, 200

computational complexity, 78

computational geometry, 74

computer graphics, 113, 115

computer line drawing, see line

drawing

congruence, 161, 187, 209

Fermat’s, 160, 162, 167, 242

connected graph, 17

continued fractions, 130

continuity error, 146

convex, 76

convex polyhedron, 60

convex quadrangulation, 95, 100

theorem, 96

Conway, John Horton, 194

co-primality theorem, 133, 154,

155, 164, 187

co-prime, 122, 140, 141, 147, 167,

168, 172

Cromwell, Peter R., 22

Crown Gallery, 79

cryptography, 164, 208, 224, 225

cube, 19, 102

Cuoco, Al, 22

Czyzowicz, J., 106

Davenport, H., 239

Dean, James, 207

degenerate quadrilateral, 88, 94

derivative, 8

determinants, 37

Die Hard: With a Vengeance, x,

139, 146

difference table, 2, 7, 11, 24, 30

digital signature, 164, 225

diminished arithmetic array, 182,

184, 186, 201

Diophantine approximation, 128

Diophantus, 129

discrete mathematics, ix, 2, 5, 34,

65, 74, 78, 84, 86, 150,

164, 196

dissection puzzle, 68

distance formula, 117

vertical, 117

dollar-changing, 37

problem, x, 33, 171

theorem, 47

Ebert, Roger, 146

edge, 17

Ehrhart polynomial, 65

Einstein, Albert, 43

Eisenstein, Ferdinand, 237, 239

Eppstein, David, 22

Eratosthenes, 188

error-correcting code, 213

Euclid’s algorithm, 132, 135, 242

Euler, Leonhard, 16, 216, 219, 236



I n d ex 253

Euler’s criterion, 219, 220, 226,

244

Euler’s formula, 16, 17, 22, 25–

27, 56, 65

Euripedes, 112

face, 17

factorial, 12

Fermat, Pierre de, x, 142, 160

Fermat’s congruence, 160, 162,

167, 242

Fermat’s theorem, 160

fingerprint recognition, 75

finite differences, 7

Fisk, Steve, 81, 88, 93, 100, 106

floor function, bxc, 80

forensics, 75

fortress problem, 88

four squares theorem, 171

framed (triangle), 36, 52

Frobenius, Ferdinand Georg, 191

Frobenius number, 191, 198, 202

gallery, 75

comb, 93

convex, 77

Crown, 79, 80

New Wave, 97

rectangulated, 92, 109

theorem, 92

right-angled, 93

Scorpio, 110

Square Wave, 99

Sunflower, 73, 76, 110

Sunrise, 86

Gauss, Carl Friedrich, 226, 236,

244

Gauss’s lemma, 226, 243

gcd, see greatest common divi-

sor

generating function, 196

Gentry, Sommer, xi

global positioning satellite (GPS),

74

golden theorem, 237

grapefruit-cutter’s formula, 11, 30

grapefruit-cutter’s recurrence, 30

greatest common divisor, 45, 132,

141, 172, 204, 242

Gruber, Simon, 139, 150

guard, 73

guarded, 96

half-, 90, 110

guarded guards, 96

theorem, 98

right-angled galleries, 100

half-guard, 90, 110

theorem, 91

Harris, M. A., 135

Hebrew calendar, 125

Heron’s formula, 35, 67

holes, 44, 70, 75, 90, 106, 109,

110

Honsberger, Ross, 106, 197

IBM, 115

integer pairs, 39

integer triangle, 72

intercalation, 125

irrational number, 129

Islamic calendar, 126

Ismailescu, Dan, 22

Ismailescu’s theorem, 22, 30

Jenny’s prime, 242

Julian calendar, 131

Juvenal, 112

Kahn, Jeffry, 95, 106

Kertzner, S., 164

Klawe, Maria, 95, 106

Klee, Victor, 81

Kleitman, Daniel, 95, 106

Knuth, Donald, 112



254 I n d ex

Lagrange, Joseph Louis, 171

Larson, Loren, 22

lattice point, 42, 58, 113, 227,

238

enumerator, 61, 65, 68, 70,

71

theorem, 62, 63

lattice polygon, 42, 180, 204

lattice polyhedron, 58

Law of Quadratic Reciprocity, 208,

234, 243

leap day, 125

leap month, 125

leap year, 113, 125, 135

Legendre, Adrien-Marie, 216, 218,

236

Legendre symbol, 218, 226

length of a code, 214

Leyland number, 240

line drawing, 229

algorithm, 115, 122

problem, ix, 74, 130, 152, 208

line segment, 113

Longfellow, Henry Wadsworth, 168

Mach, Ernst, 43

majority rules, 213

Marcia and Greg, 224, 241

McDonald’s, 190

McNuggets problem, 190, 192, 195

Megaplex, 104, 105

Metropolitan Museum of Art, 91

mnemonic, 149

modular arithmetic, 161, 164, 187,

208

modulus, 161, 187, 209

Moen, Courtney, xi

Muir, John, 72

multiplication table, 216

multiplicativity, 218, 219

Myers, Amy, xi

Nelson, Roger B., 22

Neumann, John von, 138

New Wave Gallery, 97

Nijenhuis, A., 197

N-largement, 58, 60, 62

nonconvex, 76

number

attainable, 170

Frobenius, 191, 198

irrational, 129

Leyland, 240

rational, 69, 129, 132

unattainable, 170

uniquely attainable, 181

number theory, ix, x, 160, 172,

225, 239

additive, 170

Octoplex, 103

OEIS, 20

Ogilvy, C. Stanley, 135

O’Keeffe, Georgia, 73

On-Line Encyclopedia of Integer

Sequences (OEIS), 20, 30

O’Rourke, Joseph, 106

Owens, R. W., 197

palindrome, 122, 209, 217

parameters of a code, 214

Parshall, Karen Hunger, 196

partition problem, 171, 197

periodicity, 219

permutation, 20

Pick, Georg, 34, 43, 65

Pick’s formula, 33, 42, 65, 180,

204

pixels, ix, 113, 212, 227

pizza-cutter’s formula, 7, 10

pizza-cutter’s problem, ix, 1, 16

pizza-cutter’s recurrence, 5

pizza envy theorem, 21

plane-cutting, 3

plane graph, 16, 17

polychromatic, 82



I n d ex 255

3-coloring, 82, 86, 108

4-coloring, 94

polygon

convex, 76

holes, 44, 70, 75, 90, 109,

110

lattice, 42, 180, 204

simple, 43, 75, 90

polyhedron, 19, 29, 58, 102

convex, 60, 71

holes, 106

lattice, 58, 71

polynomial, 8, 178

Ehrhart, 65

prime, 188, 201, 207

Jenny’s, 242

primitive lattice triangle, 50, 52

theorem, 50

primitive lattice triangulation, 50

prism, 19, 102

prison yard problem, 89

problem

art gallery, ix, 75, 88

coin exchange, 190

dollar-changing, x, 171

fortress, 88

line drawing, ix, 74, 113, 130,

208

McNuggets, 190, 192, 195

partition, 171, 197

pizza-cutter’s, ix

prison yard, 89

stamp, 169, 172

Steiner’s plane-cutting, 3

Tartaglian water measuring,

155, 167

water measuring, 139

Willis, Bruce, x, 139, 152, 156

zookeeper, 89

proof without words, 12, 22, 27,

28

puzzle

dissection, 68

three utilities, 28

pyramid, 19, 58, 102

Pythagorean triple, 171

quadrangulation, 94

convex, 95, 100

quadratic reciprocity, 152

quadratic residue, ix, 207–209

quadrilateral, 94

convex, 95

degenerate, 87, 94

nonconvex, 95

Ramírez Alfonsín, J. L., 197

rational number, 69, 129, 132

rectangulated gallery, 92, 109

theorem, 92

recurrence, 2, 5, 25

grapefruit cutter’s, 30

pizza-cutter’s, 5

Reichenbach, Hans, 244

Reingold, E. M., 135

repetition code, 213

right-angled art gallery, 93

theorem, 95

Robins, Sinai, 65

Rokne, J. G., 135

rounding function, round[Y], 114

round-up counter, 226

Santini, M., 164

Schumer, Peter D., 197

Schur, Issai, 193, 197

Scorpio Gallery, 110

semiperimeter, 67

Sharp, C. W. Curran, 178

Sicherman, George, 197

sieve

Eratosthenes, 188

tabular, 188, 192, 201

simple polygon, 43, 75, 90

size of a code, 214



256 I n d ex

skew billiard table, 144, 148, 156

Sloane, Neil J. A., 20, 22

square pyramid, 19, 71

square root, 221, 222

square root formula, 221

Square Wave Gallery, 99

stamp problem, 169, 172

stamp theorem, 184, 191

state, 142

state sequence

abbreviated, 145

complete, 145

Steiner, Jakob, 3, 22

Steiner’s plane-cutting problem,

3

Stewart, Ian, 65

Stillwell, John, 135, 239

strategy-stealing, 195, 197

Sunrise Gallery, 86

supplementary law, 212, 219, 220,

227, 232

sweep-line, 15

sylver coinage, 169, 172, 194, 197,

200, 201, 204

sylver theorem, 196

Sylvester, James Joseph, 169, 170,

194, 196, 200, 205

Sylvester’s formula, 177, 200, 204

table

addition, 173, 174

multiplication, 216

tabular sieve, 188, 192, 201

Tartaglia, Niccolò, 156

Tartaglian water measuring prob-

lem, 155, 167

tetrahedron, 58, 59

theorem

arithmetic array, 153, 185,

199

art gallery, 81

binomial, 161, 167

Chinese Remainder, 172, 187,

222

coin, 192

convex quadrangulation, 96

co-primality, 133, 154, 155,

164, 187

dollar-changing, 47

Fermat’s, 160

four squares, 171

golden, 237

guarded guards, 98

right-angled galleries, 100

half-guard, 91

lattice point enumerator, 62,

63

pizza envy, 21

primitive lattice triangles, 50

rectangulated gallery, 92

right-angled art gallery, 95

stamp, 184, 191

sylver, 196

three denominations, 48

triangulated polygon, 32, 55

water measuring, 147

general, 158, 164, 168

theorema aureum, 237

Theresienstadt, 43

three denominations theorem, 48

three utilities puzzle, 28

Tommy Tutone, 242

Tóth, Csaba, 91

transitivity, 161

triangular lattice, 71

triangular prism, 19

triangular pyramid, 19, 70

triangulated polygon, 31

theorem, 32, 55

triangulation, 51, 82, 108, 111

primitive, 50

trigonometry, 22, 69

trilinear coordinates, 164

Tweedie, M. C. K., 147, 156, 164



I n d ex 257

unattainable number, 170

uniquely attainable number, 181

vectors, 37

vertex, 17

video games, 74

Vigna, S., 164

visible points, 75, 96

water measuring, 139

algorithm, 148–150

problem, 139

theorem, 147

general, 158, 164, 168

Wetzl, John E., 22

Wilde, Oscar, 33

Wilf, Herbert, 197

Willis, Bruce, x, 139, 142, 155

Wright, Steven, 32

Wu, X., 135

zonohedra, 20

zookeeper problem, 89
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