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Abstract Let A be a (0, 1)-matrix of size b by v with b > v. Suppose that all rows
(columns) of A are nonzero and distinct. We show that the rank of A over a field
of characteristic 2 satisfies

ranka(A) > log, (v + 1)

with equality if and only if A is the incidence matrix of a point-hyperplane Hadamard
design. This generalizes a rigidity theorem of Hamada and Ohmori, who assumed
that v + 1 is a power of 2 and that A is already known to be the incidence matrix
of a Hadamard design. Our results follow from a generalization of a rank inequality
of Wallis.

1 Introduction and Definitions

In this paper we observe that some inequalities in the literature on the ranks
of incidence matrices of Hadamard designs apply to a wider class of matrices
and that the proofs are somewhat simpler in the more general context. In
particular, we show that an analysis of the case of equality of an extension
of a rank inequality of Wallis yields generalizations of two rigidity theorems
of Hamada and Ohmori.

Let A be a rectangular matrix with entries in a field F. Let rankg(A)
denote the rank of A over F. The p-rank of A is the rank of A over the field
Z, of integers modulo p and is denoted by

rank,(A4).

Let us say that the matrix A is column-projective over F' provided its
columns are nonzero and no column is a multiple of another column. Also, A
is projective provided both A and its transpose AT are column-projective.
Suppose that A is (0,1)-matrix, that is, a matrix with each element in the
set {0,1}. Then A is column-projective if and only if its columns are distinct
and nonzero; this property is independent of the field F.

Combinatorial interest in p-ranks stems in part from their use in the study
of linear codes associated with incidence matrices of block designs. Let F
denote a field with ¢ elements, where ¢ is a power of the prime p. Let A
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be the incidence matrix of a square balanced incomplete block design with
parameters (v, k, ). Thus A is a (0, 1)-matrix of size v by v that satisfies

ATA=(k—-NI+X and AJ=kJ,

where J denotes an all 1’s matrix of an appropriate size. The codewords of the
g-ary linear code C;(A) generated by A are the linear combinations over Fy
of the row vectors of A. Clearly the length and dimension of C,(A) are v and
rankp(A), respectively. One may show that C4(A) corrects |k/2A] errors [2].
In this context it is natural to assume that A is (column)-projective.

2 Two Rigidity Theorems

We now state our generalizations of two rigidity theorems of Hamada and
Ohmori. The proofs appear in § 4. The point-hyperplane design D, in the
projective geometry PG(s — 1,2) and its complement D, play special roles
in these theorems. We recall some basic properties of these designs in § 3.

Theorem 1. Let A be a projective (0,1)-matrix of size b by v with b > v.
Then

ranks(A) > log, (v + 1) (1)

with equality if and only if b = v and A is an incidence matrix of the com-
plement D, of the point-hyperplane design, where s = logy (v + 1).

Remark. Hamada and Ohmori [1] established Theorem 1 under much
stronger hypotheses; they assumed that A is the incidence matrix of a square
block design with parameters of the form

(U7k7 /\) = (25 - 1728_17 25_2)7 (2)

that is, a Hadamard design. Their proofs seemingly depend on deeper
results on the ranks of incidence matrices of block designs associated with
projective geometries. We remove these apparent dependencies and show that
a specific design-theoretic structure is forced when equality holds in (1). This
characterization of a combinatorial structure from the value of a single para-
meter is the hallmark of a rigidity theorem.

Theorem 2. Let A be a (0,1)-matrix of size b by v with b > v. Suppose
that J — A is projective, b is odd, and each row and column of A has an odd
number of 1’s. Then

ranks(A) > log,(v+1) + 1 (3)

with equality if and only if b= v and A is an incidence matrix of the point-
hyperplane design Dg, where s = log, (v + 1).

Remark. Hamada and Ohmori [1] established Theorem 2 under the stronger
hypothesis that A is the incidence matrix of the complement of a Hadamard
design with parameters of the form (2).
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3 A Rank Inequality

Theorem 3. Let A be a column-projective (0,1)-matrix with v columns.
Then over any field F

rankp(A) > log, (v + 1). (4)

Equality holds if and only if A has a column-projective submatrix of size s
by 2° — 1, where s = rankp(A).

Remark. Wallis [3] used an elaborate inductive scheme of row and col-
umn operations to prove an inequality equivalent to (4) under much stronger
hypotheses; he assumed that A is a (0, 1)-matrix of size v by v that is non-
singular over the field of rationals. (Also see his book [4], pp 168-170.) More-
over, he did not characterize equality. Our direct proof is based on a counting
argument and leads to the stated characterization of equality, which in turn
leads to proofs of Theorems 1 and 2.

Proof. Let s = rankp(A). Without loss of generality the leading s by s sub-
matrix of A has rank s. Then two columns of A are distinct and nonzero if
and only if they are distinct and nonzero in their leading s positions. There
are exactly 2° — 1 nonzero column vectors of 0’s and 1’s with s components.
Thus v < 2% — 1. This proves (4) with the stated characterization of equality.

O

4 The Extremal Designs

In this section we recall properties of the extremal designs that arise in Theo-
rems 1 and 2. Let D, denote the complement of the point-hyperplane design
in the projective geometry PG(s — 1,2). Let A, be the incidence matrix of
D,. The columns of A, correspond to the 2° — 1 nonzero vectors (points)
in an s-dimensional vector space over Zs, while the rows correspond to the
2% — 1 complements of the (s — 1)-dimensional subspaces (blocks). Contain-
ment defines incidence in D,. Without loss of generality
A= |2

where the leading s by s submatrix Ny is nonsingular. The columns of the
submatrix [N4|M] consist of all 2° — 1 nonzero linear combinations of the
columns of N,. Now the symmetric difference of two blocks of D, is also a
block; this is a defining property of the design Dj. It follows that the rows
of A, are the nonzero linear combinations of the rows of [N;|M]. One may
verify that A, is a (0, 1)-matrix of size 2° — 1 by 2° — 1 that satisfies

ATA=2"2(I+J) and AJ=2""1]
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and thus that D, is indeed a square block design with parameters
(v,k,\) = (2° —1,2571,2572),

Clearly the incidence matrix A, is determined by the parameter s up to row
and column permutations. Also,

ranks(As) = s.
The complementary design D, has incidence matrix J — A, and parameters
(v,k, ) = (2° —1,2°71 — 1,272 —1).

Both D, and Dy satisfy v = 4(k — A) — 1 and hence are Hadamard designs.

5 Proofs of Theorems 1 and 2

Proof of Theorem 1. Apply Theorem 3 with F' = Z5 to deduce that
ranks (A) > log,(v + 1). Suppose that equality holds, say, v = 2° — 1, where
s =ranks(A). Then A has a column-projective submatrix of size s by 25 — 1.
The projectivity of A and the inequality b > v imply that b = v = 2% —1, and
thus the rows and columns of A are determined up to permutations, as in the
discussion of the matrix A, in § 4; the characterization of equality follows.

O

Theorem 2 follows immediately from Theorem 1 and the following lemma.

Lemma. Let A be a (0,1)-matrix of size b by v. Suppose that b is odd and
that each row and column of A has an odd number of 1’s. Then

ranks(A) =ranks(J — 4) + 1.

Proof. The hypotheses imply that we may transform A as follows without
altering its 2-rank: Append a column of 1’s, and then append a row of 1’s to
the resulting matrix to obtain a bordering of A of size b+1 by v+ 1. Now add
column v + 1 to each of the first v columns, and then subtract row b+ 1 from
each of the first b rows. The resulting matrix is the direct sum (J + A) & [1],
which clearly has 2-rank equal to ranks(J — A) + 1. O

6 The Smith Normal Form

Let A be an integral matrix of size b by v and rank r over the field of rationals.
Then A may be transformed by elementary row and column operations to a
diagonal matrix

Sa = diag[as,as,... ,a.,0,...,0],
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known as the Smith normal form of A, with the property that a; divides
ajy1 for i =1,... ,r — 1. The diagonal elements ai,...,a,, 0,...,0 are the
invariant factors of A and are uniquely determined up to sign. The p-rank
of A is related to the invariant factors ay,... ,a, in a simple manner:

rank,(A) = max{i : p does not divide a;}. (5)

Our generalization in Theorem 3 of a result of Wallis leads directly to the
following two theorems, which extend his work in [3], [4]. The first is an
immediate consequence of (5) and Theorem 3.

Theorem 4. The invariant factors of a column-projective (0,1)-matrix A
with v columns satisfy a1 = --- = a5 = 1 for some s > log,(v + 1).

Theorem 5. Let H be a (1, —1)-matrix with v columns, none of which is a
multiple of any other. Then for some s > log,(v) the Smith normal form of
H is of the form

s

. ——
Sg =diag[l,2,...,2,%,...,%.

Proof. We may multiply suitable rows and columns of H by —1 so that all
elements in the first row and column are 1. Now subtract column 1 from all
other columns, and then subtract row 1 from all other rows to transform H
to a matrix [1] @ (24), where A is a (0,1)-matrix with v — 1 columns. The
hypothesis on the columns of H implies that A is a column-projective, and
the result follows from Theorem 4. O
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