Publications
     T. S. Michael   (updated October 2012)



  1. T. S. Michael,
    Cycles of length 5 in triangle-free graphs: a sporadic counterexample to a characterization of equality,
    Bulletin of the Institute of Combinatorics and Its Applications, to appear
  2. T. S. Michael and Val Pinciu,
    Guarding orthogonal prison yards: an upper bound,
    Congressus Numerantium,to appear
  3. Ilhan Hacioglu and T. S. Michael,
    The p-ranks of residual and derived skew Hadamard designs,
    Discrete Mathematics, 311 (2011) 2216-2219.
  4. T. S. Michael,
    Guards, galleries, fortresses, and the octoplex,
    College Math Journal, 42 (2011) 191-200.
  5. Elizabeth Doering, T. S. Michael, and Bryan Shader,
    Even and odd tournament matrices with minimum rank over finite fields,
    Electronic Journal of Linear Algebra,  22 (2011) 363-377.
  6. Brenda Johnson, Mark E. Kidwell, and T. S. Michael,
    Intrinsically knotted graphs have at least 21 edges,
    Journal of Knot Theory and Its Ramifications, 19 (2010) 1423-1429.
  7. T. S. Michael,
    How to Guard an Art Gallery and Other Discrete Mathematical Adventures. (book)
    Johns Hopkins University Press, Baltimore, 2009.
  8. T. S. Michael and Val Pinciu,
    Art gallery theorems and triangulations
    DIMACS Educational Module Series, 2007, 18 pp (electronic 07-1) 
  9. T. S. Michael and Thomas Quint,
    Sphericity, cubicity, and edge clique covers of graphs,
    Discrete Applied Mathematics, 154 (2006) 1309-1313. (erratum June 2009)
  10. T. S. Michael and Val Pinciu,
    Guarding the guards in art galleries,
    Math Horizons
    , 14 (2006), 22-23, 25.
  11. Richard J. Bower and T. S. Michael,
    Packing boxes with bricks,
    Mathematics Magazine
    , 79 (2006), 14-30.
  12. T. S. Michael and Thomas Quint,
     
    Optimal strategies for node selection games: skew matrices and symmetric games,
     Linear Algebra and Its Applications
    412 (2006) 77-92.
  13. T. S. Michael,
    Ryser's embedding problem for Hadamard matrices,
    Journal of Combinatorial Designs
    14 (2006) 41-51.
  14. Richard J. Bower and T. S. Michael,
    When can you tile a box with translates of two given rectangular bricks?,
    Electronic Journal of Combinatorics
    11 (2004) Note 7, 9 pages (electronic). 
    PDF file
    (6 June 2004: corrects index typo in Theorem 8')
  15. T. S. Michael,
    Alumni Profiles: United States Naval Academy,
    Math Horizons 12, February 2004.
  16. T. S. Michael and Val Pinciu,
    Art gallery theorems for guarded guards,
    Computational Geometry 26 (2003) 247-258.  DVI File
  17. T. S. Michael,
    Impossible decompositions of complete graphs into three Petersen subgraphs,
    Bulletin of the Institute of Combinatorics and Its Applications 39 (2003) 64-66.
  18. T. S. Michael  and William N. Traves,
    Independence sequences of well-covered graphs: non-unimodality and the roller-coaster conjecture,
    Graphs and Combinatorics 
    19  (2003) 403-411.
  19. T. S. Michael and Thomas Quint,
    Sphere of influence graphs and the L-Infinity metric,
    Discrete Applied Mathematics 
    127 (2003) 447-460.
  20. T. S. Michael,
    Signed degree sequences and multigraphs,
    Journal of Graph Theory 41 (2002) 101-105.
  21. T. S. Michael and Val Pinciu,
    Multiply guarded guards in orthogonal art galleries,
    Lecture Notes in Computer Science 2073, pp 753-762,
    in: Proceedings of the International Conference on Computer Science, San Francisco, Springer, 2001.
  22. T. S. Michael,
    The rigidity theorems of Hamada and Ohmori, revisited,
    in Coding Theory and Cryptography: From the Geheimschreiber and Enigma to Quantum Theory.
    (Annapolis, MD, 1998), 175-179, Springer, Berlin, 2000. 
      pdf
  23. T. S. Michael and Thomas Quint,
    Sphere of influence graphs in general metric spaces,
    Mathematical and Computer Modelling, 29 (1999) 45-53.
    MR 2000c:05106
  24. Suk-Geun Hwang, Arnold R. Kraeuter, and T. S. Michael,
    An upper bound for the permanent of a nonnegative matrix,
    Linear Algebra and Its Applications 281 (1998), 259-263.  MR 99k:15011
    * First Corrections: Linear Algebra and Its Applications 300 (1999), no. 1-3,  1-2  MR 2001f:15006
  25. T. S. Michael and W. D. Wallis,
    Skew-Hadamard matrices and the Smith normal form,
    Designs, Codes, and Cryptography, 13 (1998) 173-176.
  26. T. S. Michael,
    The p-ranks of skew Hadamard designs,
    Journal of Combinatorial Theory, Series A, 73 (1996) 170-171.
  27. T. S. Michael,
    The ranks of tournament matrices,
    American Mathematical Monthly, 102 (1995) 637-639.
  28. T. S. Michael,
    Lower bounds for graph domination by degrees,
    pp 789-800 in Graph Theory, Combinatorics, and Algorithms: Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs, Y. Alavi and A. Schwenk (eds.), Wiley, New York, 1995.
  29. T. S. Michael and Thomas Quint,
    Sphere of influence graphs: a survey,
    Congressus Numerantium, 105 (1994) 153-160.
  30. T. S. Michael and Thomas Quint,
    Sphere of influence graphs: edge density and clique size,
    Mathematical and Computer Modelling, 20 (1994) 19-24.
  31. T. S. Michael and Aaron Stucker,
    Mathematical pitfalls with equivalence classes,
    PRIMUS, 3 (1993) 331-335.
  32. T. S. Michael,
    The structure matrix of the class of r-multigraphs with a prescribed degree sequence,
    Linear Algebra and Its Applications, 183 (1993) 155-177.
  33. T. S. Michael,
    The decomposition of the complete graph into three isomorphic strongly regular graphs,
    Congressus Numerantium, 85 (1991) 177-183.
  34. T. S. Michael,
    The structure matrix and a generalization of Ryser's maximum term rank formula,
    Linear Algebra and Its Applications, 145 (1991) 21-31.
  35. Richard A. Brualdi and T. S. Michael,
    The class of matrices of zeros, ones and twos with prescribed row and column sums,
    Linear Algebra and Its Applications, 114(115) (1989) 181-198.
  36. Richard A. Brualdi and T. S. Michael,
    The class of 2-multigraphs with a prescribed degree sequence,
    Linear and Multilinear Algebra, 24 (1989) 81-102.
  37. Richard A. Brualdi, John L. Goldwasser, and T. S. Michael,
    Maximum permanents of matrices of zeros and ones,
    Journal of Combinatorial Theory, Series A, 47 (1988) 207-245.
Dr T. S. Michael's homepage Math Main Page USNA Main Page