Next: The MINIMOG description Up: MINIMOGs and Mathematical blackjack Previous: Contents   Contents

Curtis' kitten

J. Conway and R. Curtis [Cu1] found a relatively simple and elegant way to construct hexads in a particular Steiner system $S(5,6,12)$ using the arithmetical geometry of the projective line over the finite field with $11$ elements. This section describes this. Let

\begin{displaymath}
\mathbf{P}^1(\mathbf{F}_{11})
=\{\infty,0,1,2,...,9,10\}
\end{displaymath}

denote the projective line over the finite field $\mathbf{F}_{11}$ with $11$ elements. Let

\begin{displaymath}
Q=\{0,1,3,4,5,9\}
\end{displaymath}

denote the quadratic residues and $0$ and let

\begin{displaymath}
L=<\alpha,\beta>\cong PSL(2,\mathbf{F}_{11}),
\end{displaymath}

where $\alpha(y)=y+1$ and $\beta(y)=-1/y$. Let

\begin{displaymath}
S=\{\lambda(Q)\ \vert\ \lambda\in L\}.
\end{displaymath}

Lemma 1   $S$ is a Steiner system of type $(5,6,12)$.

The elements of $S$ are known as hexads (in the ``modulo $11$ labeling'').
          $\infty$          
                     
          6          
                     
        2   10        
                     
      5   7   3      
                     
    6   9   4   6    
                     
  2   10   8   2   10  
                     
0                   1
                     

Curtis' Kitten.
The ``views'' from each of the three ``points at infinity'' is given in the following tables.
6 10 3
2 7 4
5 9 8
5 7 3
6 9 4
2 10 8
5 7 3
9 4 6
8 2 10
picture at $\infty$ picture at $0$ picture at $1$
Each of these $3\times 3$ arrays may be regarded as the plane $\mathbf{F}_3^2$. The lines of this plane are described by one of the following patterns.
$\bullet$ $\bullet$ $\bullet$
$\times$ $\times$ $\times$
$\circ$ $\circ$ $\circ$
$\bullet$ $\times$ $\circ$
$\bullet$ $\times$ $\circ$
$\bullet$ $\times$ $\circ$
$\bullet$ $\times$ $\circ$
$\circ$ $\bullet$ $\times$
$\times$ $\circ$ $\bullet$
$\times$ $\circ$ $\bullet$
$\circ$ $\bullet$ $\times$
$\bullet$ $\times$ $\circ$
slope 0 slope infinity slope -1 slope 1
The union of any two perpendicular lines is called a cross. There are 18 crosses. The crosses of this plane are described by one of the following patterns of filled circles.
$\bullet$ $\bullet$ $\bullet$
$\bullet$ $\circ$ $\circ$
$\bullet$ $\circ$ $\circ$
$\bullet$ $\circ$ $\circ$
$\bullet$ $\bullet$ $\bullet$
$\bullet$ $\circ$ $\circ$
$\bullet$ $\circ$ $\circ$
$\bullet$ $\circ$ $\circ$
$\bullet$ $\bullet$ $\bullet$
$\bullet$ $\bullet$ $\bullet$
$\circ$ $\bullet$ $\circ$
$\circ$ $\bullet$ $\circ$
$\bullet$ $\bullet$ $\bullet$
$\circ$ $\circ$ $\bullet$
$\circ$ $\circ$ $\bullet$
$\circ$ $\bullet$ $\circ$
$\bullet$ $\bullet$ $\bullet$
$\circ$ $\bullet$ $\circ$
$\circ$ $\circ$ $\bullet$
$\bullet$ $\bullet$ $\bullet$
$\circ$ $\circ$ $\bullet$
$\circ$ $\circ$ $\bullet$
$\circ$ $\circ$ $\bullet$
$\bullet$ $\bullet$ $\bullet$
$\circ$ $\bullet$ $\circ$
$\circ$ $\bullet$ $\circ$
$\bullet$ $\bullet$ $\bullet$
$\bullet$ $\circ$ $\bullet$
$\circ$ $\bullet$ $\circ$
$\bullet$ $\circ$ $\bullet$
$\circ$ $\bullet$ $\bullet$
$\circ$ $\bullet$ $\bullet$
$\bullet$ $\circ$ $\circ$
$\circ$ $\circ$ $\bullet$
$\bullet$ $\bullet$ $\circ$
$\bullet$ $\bullet$ $\circ$
$\bullet$ $\bullet$ $\circ$
$\bullet$ $\bullet$ $\circ$
$\circ$ $\circ$ $\bullet$
$\bullet$ $\circ$ $\circ$
$\circ$ $\bullet$ $\bullet$
$\circ$ $\bullet$ $\bullet$
$\circ$ $\bullet$ $\bullet$
$\bullet$ $\circ$ $\circ$
$\circ$ $\bullet$ $\bullet$
$\circ$ $\bullet$ $\circ$
$\bullet$ $\circ$ $\bullet$
$\bullet$ $\circ$ $\bullet$
$\bullet$ $\bullet$ $\circ$
$\circ$ $\circ$ $\bullet$
$\bullet$ $\bullet$ $\circ$
$\bullet$ $\circ$ $\bullet$
$\bullet$ $\circ$ $\bullet$
$\circ$ $\bullet$ $\circ$
The complement of a cross in $\mathbf{F}_3^2$ is called a square. Of course there are also 18 squares. The squares of this plane are described by one of the above patterns of hollow circles. The hexads are
  1. $\{0,1,\infty\}\cup \{{\rm any\ line}\}$,
  2. the union of any two (distinct) parallel lines in the same picture,
  3. one ``point at infinity'' union a cross in the corresponding picture,
  4. two ``points at infinity'' union a square in the picture corresponding to the omitted point at infinity.

Lemma 2 (Curtis [Cu1])   There are 132 such hexads (12 of type 1, 12 of type 2, 54 of type 3, and 54 of type 4). They form a Steiner system of type $(5,6,12)$.


Next: The MINIMOG description Up: MINIMOGs and Mathematical blackjack Previous: Contents   Contents
David Joyner
2000-05-29