| |
| > | with(linalg): with(plots): |
| |
| > | A:=matrix([[0,-4],[-1,0]]); lambda:=eigenvals(A); v:=eigenvects(A); soln:=c1*op(op(3,v[1]))*exp(lambda[1]*t)+c2*op(op(3,v[2]))*exp(lambda[2]*t); de:=diff(x(t),t)=-4*y(t),diff(y(t),t)=-x(t); ics:=x(0)=150,y(0)=90; soln:=dsolve({de,ics},{x(t),y(t)}); plot([rhs(soln[1]),rhs(soln[2])],t=0..2); tod:=solve(rhs(soln[1])=0,t); evalf(tod); Y_losses:=90-subs(t=tod,rhs(soln[2])); evalf(Y_losses); |
Solve the following
system Av=b,
(a) using Gauss elimination,
(b) by computing A^{-1}b.
| > | A:=matrix([[1,2],[3,-4]]); eigenvals(A); eigenvects(A); Px:=plot([A[1,1]*t,A[2,1]*t,t=0..1]): Py:=plot([A[1,2]*t,A[2,2]*t,t=0..1],color=green): box1:=plot([t,0,t=0..1],color=blue): box2:=plot([0,t,t=0..1],color=blue): #box3:=plot([t,1,t=0..1],color=blue): #box4:=plot([1,t,t=0..1],color=blue): display([Px,Py,box1,box2],axes=none,scaling=constrained,title=`image of (blue) unit square under A:R^2->R^2`); B:=inverse(A); evalm(B&*vector([2,3])); solve({x+2*y=2,3*x-4*y=3},{x,y}); |
| |
z'=3z.
using the eigenvalue method.
| > | A:=matrix([[1,1,1],[0,-2,1],[0,0,3]]); lambda:=eigenvals(A); v:=eigenvects(A); soln:=c1*op(op(3,v[1]))*exp(lambda[3]*t)+c2*op(op(3,v[2]))*exp(lambda[2]*t)+c3*op(op(3,v[3]))*exp(lambda[1]*t); de:=diff(x(t),t)=x(t)+y(t)+z(t),diff(y(t),t)=-2*y(t)+z(t),diff(z(t),t)=3*z(t); ics:=x(0)=1,y(0)=1,z(0)=1; soln:=dsolve({de,ics},{x(t),y(t),z(t)}); spacecurve([rhs(soln[2]),rhs(soln[1]),rhs(soln[3])],t=0..1,scaling=unconstrained,axes=normal); plot([rhs(soln[2]),rhs(soln[1]),rhs(soln[3])],t=0..1); |
| |
Using the eigenvalue
method, solve
x'=x+3y,
y'=x-y.
| > | A:=matrix([[1,3],[1,-1]]); lambda:=eigenvals(A); v:=eigenvects(A); soln:=c1*op(op(3,v[1]))*exp(lambda[1]*t)+c2*op(op(3,v[2]))*exp(lambda[2]*t); de:=diff(x(t),t)=x(t)+3*y(t),diff(y(t),t)=x(t)-y(t); ics:=x(0)=1,y(0)=1; soln:=dsolve({de,ics},{x(t),y(t)}); plot([rhs(soln[2]),rhs(soln[1])],t=0..2); plot([rhs(soln[2]),rhs(soln[1]),t=0..2]); |
| |
| > | A:=matrix([[1,-2],[-3,6]]); lambda:=eigenvals(A); v:=eigenvects(A); soln:=c1*op(op(3,v[1]))*exp(lambda[1]*t)+c2*op(op(3,v[2]))*exp(lambda[2]*t); de:=diff(x(t),t)=x(t)-2*y(t),diff(y(t),t)=-3*x(t)+6*y(t); soln:=dsolve({de},{x(t),y(t)}); |
| |
| |
| |
| |
sm212_h12.mws |