SM212
PROF WD JOYNER
Roots of the characteristic polynomial are : r=1,1,1
y2 + 4 =0 y=c2sin2x
r= 2i, -2i y/ = +2c2cos2x
a=0 b=2 y/(0)=1= 2c2cos2(0)
1=2c2
c1cos2x + c2sin2x = y c2=1/2
y(0)=0=c1cos2(0) + c2sin2(0)
0=c1
(D3 + 2D2 - D - 2) / (D-1) = D2 + 3D
+ 2
(D-1)(D2 + 3D + 2)=0
(D-1)(D+2)(D+1)=0
D= 1,-2,-1
(D2 + 1)(D2 + 1)=0
D=i,i,-i,-i a=0 b=1
ANSWER: y=c1cos(x)+c2sin(x)+ c3xcos(x)+c4xsin(x).r2-1=0
(r-1)(r+1)=0
r=1,-1
c1ex + c2e-x = yh
g(x)= e2x g/ (x)= 2e2x
yp =A e2x y/ =2A e2x y// =4Ae2x
4A e2x -A e2x = e2x 3A e2x = e2x A=(1/3)
yp = (1/3) e2x
yp + yh = (1/3) e2x + c1ex + c2e-x = y
y(0) = 0 = (1/3) e2(0) + c1e(0) + c2e-(0)
0= (1/3) + c1 + c2
c1 = -c2 - (1/3)
y = (1/3) e2x + (-c2 - (1/3)) ex + c2e-x
y = (1/3) e2x -c2 ex - (1/3) ex + c2e-x
y/=(2/3) e2x -c2 ex - (1/3) ex - c2e-x
y/(0)= 0 = (2/3) e0 -c2 e0 - (1/3) e0 - c2e-0
0 = (2/3) -c2 - (1/3) - c2
2 c2 = (2/3) -(1/3) = (1/3)
c2=(1/6)
c1 = (-1/6) -(1/3) = (-1/2)
Written by MIDN 3/c Bernice Javier on 28 April 1997.