
Linear Feedback Shift Registers and Cyclic
Codes in SAGE
Timothy Brian Brock ∗

April 24, 2006

1 Introduction
1.1 Thesis
This paper will discuss the history of linear feedback shift registers (LFSR)
in cryptographic applications and will attempt to implement an algorithm in
SAGE [11] and Python (www.python.org) to create a linear feedback shift regis-
ter sequence (LFSR sequence) in cryptography. Also, this paper will attempt to
implement the Berlekamp Iterative Algorithm in SAGE and Python. This algo-
rithm will be able to use the Linear Feedback Shift Register sequence generated
by the �rst algorithm to �nd the sequence's connection polynomial.

I will attempt to show that the connection polynomial of a given LFSR
sequence is the reverse of a generator polynomial of the cyclic code of length p,
where p is also the period of the LFSR sequence. This will provide a connection
between cyclic error-correcting codes and LFSR sequences.

1.2 Background on Linear Feedback Shift Registers
A linear feedback shift register can be easily implemented in hardware or soft-
ware and is used to create a pseudo-random sequence of numbers for many
di�erent applications. These applications include uses in consumer electronics,
such as cellphones and digital cable [2]; multiple access and polling techniques;
secure and privacy communications; error detecting and correcting codes; and
cryptographic systems [1].

In consumer electronics, a Linear Feedback Shift Register can be used as
a counter [2]. When used in this manner, LFSRs are desirable because they
perform the function with less resources and usually much faster than the con-
ventional counters, such as binary counters or Gray Code counters. Though it
goes against intuition, LFSRs can also be used to generate pseudo-noise which is
used by such consumer electronics as cellphones and digital cable to increase the

∗Mathematics Department USNA Honors 2005-2006 Advisor: Professor Joyner

1

reliability of the signal [2]. LFSR can also be used in spread spectrum systems
[2]. A spread spectrum system utilizes the entire bandwidth a signal may use
to send information by spreading the data frequency over many frequencies in
the bandwidth. The next frequency to be utilized is determined by the LFSR
sequence. Other more common applications of a LFSR is the use in white noise
machines (such as the one shown below) and music synthesizers.

Another application of LFSRs is the creation of pseudo-random sequences
that can be used in cryptography. According to the Merriam-Webster Dictio-
nary, cryptography is the enciphering and deciphering of messages in secret code
or cipher. The LFSR sequence is a pseudo-random number sequence that can
be applied to a message as a cipher, a cipher is the system used to create a
secret message. Throughout this paper, the cipher will be a sequence of binary
terms that is added to the binary message to provide the encoded message, also
known as the ciphertext. The cipher encodes the message so that only some-
one with the key knows the proper way to decode the message and is then able
to read the message, anyone without the key receives the ciphertext and reads
only nonsense. The key is a piece of information that allows a user to determine
the speci�c cipher used in encrypting the message. In digital communication,
the enciphering of a message with a LFSR sequence is the same as adding in
pseudo-random noise. The proper recipient with a key removes the noise from
the message, but a third party without the key interprets the message only as
noise.

1.3 How to Create a LFSR Sequence
A linear feedback shift register sequence is a pseudo-random sequence of num-
bers that is often created in a hardware implementation of a linear feedback
shift register. A LFSR is �an algorithm which yields a sequence of numbers
which is eventually periodic� [9]. When a LFSR is implemented in hardware,
a LFSR sequence is recursively generated by taking the output from the last
�stage� of a given LFSR to compute the next �stage.� An example of a LFSR
implemented in hardware is included in Figure 1 (from Massey [4]). This LFSR
is of length L, and each state cell's current state is used as the input to the mod
2 adder. This adder is implemented in hardware with an exclusive-or function.
Since this is a shift register, each iteration of the register causes the state of
each state cell to shift to the next cell (in this case, to the right). We use the

2

output of the last state cell to provide the next term of the sequence after each
iteration.

This hardware LFSR can be modeled mathematically to generate a LFSR
sequence. In order to build this sequence, three pieces of information are needed.
They are the key, the initial �ll, and an algorithm to obtain the next term of
the sequence. In the hardware implementation, the connections between the
state cells and the mod 2 adder determines how the outputs of the cells are
used as inputs to the mod 2 adder. In the same way, the key determines how
the previous terms of the LFSR sequence are used to compute the next term in
the sequence. The key may be represented as a vector c = [c1, c2, ..., cL], but is
more often de�ned by a polynomial, known as the connection polynomial

C(x) = 1 + c1 · x + c2 · x2 + ... + cL · xL. (1)

The coe�cients ci's can also be considered the key. In �gure 1, the coe�cients
described which cells were used as inputs to the modulo 2 adder. The degree
of the polynomial also describes how many cells (or bits) are needed to create
the minimal linear feedback shift register that will generate the given LFSR
sequence [3].

According to Massey [4], the initial �ll is the initial values of the state cells,
s0, s1, s2, ..., sL−1 the initial contents of the L stages of Figure 1 above. In
general, the LFSR sequence is de�ned by the following recursion relation

sj =
L∑

i=1

ci · sj−i mod 2, (2)

for j ≥ L.

Example 1 If we are given the key as a vector c = [1, 0, 0, 1] and the initial
�ll as a vector s = [1, 1, 0, 1] in the �nite �eld GF (2), we can create the se-
quence 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, ... Note that the �rst four terms of

3

the sequence are the same as the terms given to us by the vector s (namely
s0 = 1, s1 = 1, s2 = 0, s3 = 1). The next term (s4) is found by using the
recursion function to give

s4 =
∑4

i=1 ci · s4−i = c1 · s3 + c2 · s2 + c3 · s1 + c4 · s0

= 1 · 1 + 0 · 0 + 0 · 1 + 1 · 1 = 0.

We know that L = 4 since the length of vectors c and s is 4 and s4 = 0.
This process can be easily automated and a function has been written for SAGE
which will quickly generate terms of a LFSR sequence of any length de�ned by
the user (see the appendix below). The inputs for this function are two vectors
representing the key and the initial �ll and an integer n > L representing the
desired number of terms in the output.

2 Linear Feedback Shift Registers in Cryptogra-
phy

2.1 Four Tenets of Security
Imagine that Alice and Bob are sending messages back and forth to one another.
If the content of these messages was not very secret and Alice and Bob did not
care if anyone else read the message, they would not bother with any kind of
encryption. Then, if a third person, say Charlie, intercepts the message he
can read it without any di�culty. If, on the other hand, Alice and Bob were
exchanging information they wanted to keep secret, they would need to employ
some kind of encryption system to encode their messages. Depending upon the
type of encryption they employ, Alice and Bob would receive a certain level of
security against the actions of third parties.

No matter what type of encryption Alice and Bob use, there will be several
objectives that Alice and Bob want the encryption method to achieve. Out
of a long list objectives, there are four that form a framework upon which all
the others are built [5]. The four security objectives that would apply to this
message include:

1. Secrecy : This objective ensures that the information is available only to
those people who are authorized to have it.

2. Integrity : This ensures that no third party can make unauthorized alter-
ations to the data.

3. Authentication: Authentication is related to identi�cation. Two parties
that are communicating with each other need to be able to identify one an-
other and the receiver can be sure that the person sending the information
is who the receiver thinks it is.

4. Non-repudiation: This prevents the sender of information from denying
that they sent that information. This also allows the receiver to prove to
a third party that the information was sent by the sender [5].

4

Sometimes, these four basic objectives are reduced to just three, Privacy, Sig-
nature, and Integrity [6]. Privacy is a synonym for secrecy and signature is the
same as non-repudiation. This three objective list seems incomplete and we will
continue to use the four objectives discussed earlier. The LFSR sequences that
we will be studying can be applied to a message as a stream cipher that encrypts
the message. This encryption method then tries to meet the above four security
objectives.

A LFSR sequence stream cipher achieves secrecy by adding the sequence
to the binary representation of the message. The sequence appears as added
noise to the message and anyone who intercepts the message would be unable
to read the information due to the added sequence. The problem with relying
on LSFR sequences for secrecy is the minimal connection polynomial of the
sequence is easily determined using the Berlekamp-Massey Algorithm, which
is discussed later. The minimal connection polynomial is the key necessary to
generate the LFSR sequence used as the stream cipher. With this key, Charlie
can easily add the sequence to the ciphertext to retrieve the original message.
One method Alice and Bob can use to have more secrecy in the stream cipher
is by picking LFSR sequences with extremely long periods (i.e. period length
p = 1050). With long period lengths, Charlie needs a longer amount of time
to �nd the minimal connection polynomial and he needs more terms of the
sequence to determine the correct polynomial.

As presented in this paper, LFSR sequences combined with some error-
correcting codes can provide a limited amount of integrity. While this would
be most useful against the attacks of noise in the transmission lines, if Charlie
was desperate enough to attempt to try to �ip random bits in the hopes of
changing the message, the error-correcting code may provide some protection
against this by correcting the errors intentionally made to the message. The
actual amount of protection provided by this, however, is almost negligible since
the error-correcting codes can only correct a limited number of errors and a
malicious attack would probably be able to overwhelm the capabilities of an
error-correcting code very easily. On its own, a LFSR sequence provides very
little integrity.

In order to provide for authentication, Alice and Bob could each create their
own stream cipher using a di�erent LFSR sequence. Alice would then send her
key and initial �ll to Bob and Bob would send his key and initial �ll to Alice.
Alice would then add together her sequence and Bob's sequence to obtain a
new sequence. She would use this sequence as the stream cipher and encode
her message to send to Bob. Bob would also add together the two sequences
to obtain the same stream cipher. This would allow Alice and Bob to verify
that they are talking with each other since they created their stream cipher by
adding their own individual sequences.

2.2 Pseudo-random Binary Sequences
A stream cipher is a sequence of binary digits called a cryptographic bit-
stream [7]. The stream cipher is then added to the message to create a cipher-

5

text (encryption) and can be added to the ciphertext to obtain the original mes-
sage (decryption). One type of stream cipher that is used to create ciphertexts
is pseudo-random binary sequences. Linear feedback shift register sequences are
one type of pseudo-random binary sequence that are easily generated by linear
feedback shift registers.

Ideally, a sequence would have in�nite length and could achieve complete
randomness. The reality of practical application and construction techniques
necessitates the use of only �nite sequences. Since �nite sequences can never be
truly random, there are certain properties singled out that are associated with
randomness. Golomb states these properties are:

1. The number of 1's is approximately equal to the number of 0's.

2. The runs of consecutive 1's or 0's frequently occur with short runs more
frequent than long runs.

3. The sequence possesses an auto-correlation function, which is peaked
in the middle and tapering o� rapidly at the ends. [1]

The auto-correlation function is a way to quantize how random a sequence is
and is de�ned by

AC(k) =
1
p

p∑

i=1

xi · xi+k

where p is the period of the sequence {xi}and when 0 < k < p, AC(k) is close
to zero (meaning there is very little correlation of the sequence with itself) and
AC(k) =

1
2
when k = 0, indicating that the number of 1's is equal to the number

of 0's.
Any sequence that has these three properties is considered to be pseudo-

random. We �nd that linear feedback shift register sequences ful�ll the above
three properties and are pseudo-random. Linear Feedback Shift Registers are
also easy to use as stream ciphers since adding the LFSR sequence to the message
encodes it and adding the sequence again to the ciphertext returns the original
message [9].

Example 2 I would now like to provide an example of how a message might be
encrpypted for secrecy and then decrypted by the authorized receiver so that the
information can be read. In order for Alice and Bob to send messages to each
other using computers, they must convert the english syntax of the message into
a binary form. For our purposes we will allow the following table de�ne our

6

alphabet.
SPACE = 0000 L = 1111
A = 0001 ! = 1000
B = 0010 # = 1001
E = 0011 ? = 1010
M = 0100 ; = 1011
R = 0101 , = 1100
T = 0110 . = 1101
Y = 0111 Q = 1110

Suppose Alice wanted to send the message M =�BEAT ARMY!� to Bob, but
she wanted to keep it secret. By converting �BEAT ARMY!� from english to
binary, we have a string of binary bits

M = 0010001100010110000000010101010001111000

In order to generate a stream cipher that only Alice and Bob know, each person
will generate a pseudo-random sequence of su�cient length. Alice will send her
sequence to Bob and Bob will send his sequence to Alice. The two people will then
add their sequences together bit-wise to produce a common stream cipher. For
our purposes, suppose the resultant sequence from the two individual sequences
is

C = 1101011001000111101011001000111101011001

Alice now has a message in binary format and a cipher to encode the message.
Adding the cipher to the message, Alice gets the encrypted message or ciphertext,
E.

0010001100010110000000010101010001111000 M
+ 1101011001000111101011001000111101011001 = + C

1111010101010001101011011101101100100001 E

If a third party, Charlie, were to intercept the ciphertext and tried to read it,
knowing that the computers used the above table to talk to one another, he would
decrypt the ciphertext as �LRRA?..;BA�. Notice that both `A's in the original
message where changed to two di�erent letters (`R' the �rst time and `.' the
second time) and that `E' and `A' both are changed to `R' and `T' and `!' are
both changed to `A'. This helps prevent a cryptanalyst from breaking the code by
mapping each character to something di�erent everytime. The mapping appears
random since the stream cipher used was a pseudo-random sequence.

When Bob receives the ciphertext, however, he is able to decrypt it since he
has the stream cipher that he and Alice created earlier. By adding the stream
cipher to the ciphertext, he will uncover the original message.

1111010101010001101011011101101100100001 E
+ 1101011001000111101011001000111101011001 = + C

0010001100010110000000010101010001111000 M

Now Bob can use the table to decode the message from binary into english and
receives �BEAT ARMY!� from Alice.

7

3 Connection With Cyclic Codes
3.1 Background
We recall some background de�nitions from McGowan [12]

De�nition 1 A linear code C of length n is a cyclic code if whenever c =
(c1, ..., cn) is a codeword then so is its cyclic shift c′ = (c2, ..., cn, c1).

Cyclic codewords are conveniently represented as polynomials modulo xn−1.
In fact, if c = (c1, ..., cn) then let

c(x) = c1 + c2x + ... + cnxn−1

denote the associated codeword polynomial. In this notation the cyclic shift
c′ = (c2, ..., cn, c1) of c corresponds to the polynomial xc(x) (mod xn − 1). In
other words cyclic shifts correspond to multiplication by x. Since cyclic shifts
leave cyclic codes invariant, multiplication by any power of x modulo xn − 1
corresponds to a codeword in C. Since C is a linear code, the sum of any two
such codeword polynomials is another codeword polynomial. Therefore, in fact,
the product of any codeword polynomial times any polynomial in x modulo
xn − 1 is another codeword polynomial.

Denote by Rn the ring of polynomials with coe�cients in F modulo xn − 1:

Rn = F[x]/(xn − 1). (3)
De�ne an ideal I of Rn to be any subset of Rn closed under addition and
multiplication by an arbitrary element of Rn:

• If f, g ∈ I then f + g ∈ I, and

• If f ∈ I and r ∈ Rn then rf ∈ I.

In other words an ideal in Rn is simply a subset closed under addition and
multiplication by an arbitrary polynomial modulo xn − 1. In particular, the
collection of codeword polynomials associated to a cyclic code is an ideal of Rn.

Lemma 1 There is natural one-to-one correspondence between cyclic codes of
length n over F and ideals of Rn.

This can be found in any book on coding theory, for example MacWilliams and
Sloane [13].

In fact GUAVA allows you to easily pass back and forth between codewords
as vectors and codewords as polynomials.

In order to de�ne the generator polynomial of a cyclic code we need the
following mathematical fact.

Lemma 2 Every ideal I of Rn is of the form g(x)Rn. In other words every
element of I is a multiple of g(x) for some polynomial g(x) in Rn.

8

Ideals which are of the form I = g(x)Rn are called principal ideals and g(x)
is called a generator of the ideal I.

proof: Suppose not. Let s(x) be a non-zero element in I of smallest degree.
Pick an arbitrary non-zero element f(x) in I. By the division algorithm, we
can write f(x) = q(x)s(x) + r(x) where q and r are polynomials and the degree
of r(x) is strictly less than the degree of s(x). Notice that r(x) = f(x) −
q(x)s(x) belongs to I by de�nition. This contradicts the assumption that s(x)
has smallest degree unless r(x) = 0. Therefore every element of I is a multiple
of s(x). Take g(x) = s(x). ¤

De�nition 2 Let C be a cyclic code of length n. Let I be the ideal corresponding
to C by Lemma 1. We call g(x) a generator polynomial of C if it is a
generator of I.

It is also necessary to de�ne what the check polynomial of a cyclic code
is.

De�nition 3 Let C be a cyclic code of length n and g(x) be the generator
polynomial of C. The check polynomial is some h(x) such that

xn − 1 = g(x) · h(x)

.

The check polynomial is used to determine whether or not a codeword be-
longs to C.

3.2 Connection Polynomial and Generator Polynomial
In section 1.3, it was shown that LFSR sequences can be described with two
vectors and a recursive relation. Another way to describe the LFSR sequence
is using a polynomial. The connection polynomial, C(x) = 1 + c1 · x + c2 · x2 +
... + cL · xL, describes the LFSR sequence

As recalled above, a cyclic code can also be described by a polynomial,
namely the generator polynomial. In practice, a cyclic code can be generated
by a shift register for actual application in communication and computers [8].
This statement implies that LFSR sequences are in some way connected to cyclic
codes. Before I show the connection with cyclic codes, however, I will de�ne the
reverse of a polynomial.

De�nition 4 Let f(x) = f1 + f2 · x + ... + fn · xn−1 be a polynomial such that
f1, f2, ..., fn ∈ GF (2). The reverse of f(x) is f∗(x) = fn+fn−1·x+...+f1·xn−1.

Proposition 1 The connection polynomial de�ning a LFSR sequence is the
reverse of a check polynomial for a cyclic code of length p, where p is the period
of the LFSR sequence.

9

proof: Let A be a cyclic [n, k] code over F = GF (q). Let g(x) = g0 + g1 · x +
...+gn−k ·xn−k be the generator polynomial and h(x) = h0 +h1 ·x+ ...+hk ·xk

be the check polynomial. The code A has check matrix:

H =

hk hk−1 ... h0 0 ... 0
0 hk ... h0 0 ... 0
.
.
.
0 ... 0 hk hk−1 ... h0

This is an (n − k) × n matrix. Assume h0 = 1. If a = (a1, ..., an) ∈ A then
H · a = 0. So a ·H1 = 0 (H1 = top row of H). This means

a1 · hk + a2 · hk−1 + ... + ak+1 · h0 + ak+2 · 0 + ... + an · 0 = 0

So
ak+1 = −a1 · hk − a2 · hk−1 − ...− ck · h1 (4)

Let (a1, ..., ak) denote the �information bits� or �message coordinates� to be
encoded. To �nd the �check bits� ak+1, ..., an, use 4 to get ak+1, use ak+2 =
−a2 · hk − ... − ak+1 · h1, which is the second row of H, to �nd ak+2, use
ak+i = −ai · hk − ...− ak+i−1 · hi, 1 ≤ i ≤ n− k, the ith row of H, to �nd ak+i.
In general, ak+1, ak+2, ..., ak+i = s1, s2, ..., si. Then, the recursive relation

sn+1 = −sn · h1 − sn−1 · h2 − ...− sn−k+1 · hk

de�nes a LFSR sequence. From the de�nitions 1, 2, 4, it follows C(x) = −h∗(x),
where h is the above check polynomial. Since we are over GF (2), this is the
same as C(x) = h∗(x), as claimed. ¤

3.3 Rational Functions
The basic idea behind decoding a LFSR sequence is to �nd the key. The gener-
ator function of the LFSR sequence {si} is a power series

g(x) =
∞∑

i=0

si · xi

Since {si} is a periodic sequence, this power series is actually a rational function.
This subsection explains this fact in more detail.

It is a well known theorem that a real number is rational if and only if
its sequence of decimal digits is eventually periodic [10]. The analog for this
theorem for a power series is the following result.
Lemma 3 Let ai ∈ GF (q) for i ≥ 0. The series

f(x) =
∞∑

i=0

ai · xi

is rational if and only if the sequence of coe�cients is eventually periodic.

10

proof: Suppose that ai+P = ai for i > i0. Then

∞∑

i=i0+1

ai ·xi = xi0+1 ·
∞∑

j=0

P−1∑

i=0

ai0+i+j·P ·xi+j·P = xi0+1 ·
∞∑

j=0

xj·P
P−1∑

i=0

ai0+i+j·P ·xi

By geometric series, this is a rational function ¤.
This lemma immediately implies the following result.

Proposition 2 If {si} is a LFSR sequence then its connection polynomial is a
rational function.

4 How to Find the Connection Polynomial
4.1 Recovering the Connection Polynomial from a LFSR

Sequence
In some cases, it is necessary to recover the connection polynomial of a LFSR
sequence from the sequence. This is true when attempting to do cryptanalysis
on a piece of intercepted code. When a part of the stream cipher is intercepted,
the connection polynomial can be recovered even if the number of terms of the
cipher is less than the period of the sequence. Once this polynomial is known,
the entire cipher can be generated and any messages that are encrypted using
that particular sequence as a stream cipher can be decrypted and read by the
third party.

4.2 Berlekamp-Massey Algorithm
An algorithm exists that readily provides a connection polynomial given only
a few terms of a LFSR sequence. This algorithm is known as the Berlekamp-
Massey algorithm. In my studies, I have been able to determine the connection
polynomial of a LFSR sequence of period 15 with only 8 terms of the sequence.
This can be generalized since if we know that a sequence has a minimal con-
nection polynomial with degree ≤ L, then only 2 ·L terms of the sequence need
to be known in order to determine the correct connection polynomial. We can
determine L if we know the period length of the sequence, since the period
p = 2L − 1 [14]. This is an extremely powerful tool for cryptanalysts trying
to break stream ciphers generated from LFSRs, since only a relatively small
sample of a long period sequence is needed to break the cipher. The algorithm
as it is described by James Massey is presented below [4]:

Input: a LFSR sequence of length n, where n is even.
Output: a connection polynomial C(x) of the minimal LFSR.

1. Initialize the algorithm by setting C(x) = 1, B(x) = 1, m = 1, b = 1,
L = 0, and, N = 0.

11

2. If N = n, then terminate, otherwise calculate the discrepancy

d = sN +
L∑

i=1

ci · sN−i

3. If d = 0, then m = m + 1, go to step 6.

4. If d 6= 0 and 2 · L > N , then calculate C(x) = C(x) − d · b−1 · xm · B(x),
m = m + 1, go to step 6.

5. If d 6= 0 and 2 ·L ≤ N , then set T (x) = C(x), calculate C(x) = C(x)− d ·
b−1 · xm ·B(x), L = N + 1− L, and set m = 1 and b = d, go to step 6.

6. Calculate N = N + 1 and repeat steps 2 through 6.

This algorithm determines whether or not the current connection polynomial
C(x) can correctly produce the next term of the given sequence. If it can, the
discrepancy d = 0 and the algorithm leaves C(x) unchanged and iterates to
the next step. If C(x) does not provide the next term of the sequence, the
discrepancy d 6= 0 and a new C(x) is calculated as in steps 4 and 5 above.

Though an implementation of this algorithm already exists in SAGE and
Python, we believe that it is possible to implement this algorithm more e�-
ciently. It is hoped that a faster implementation will be created for SAGE and
Python for this algorithm in this project. This algorithm is analyzed further in
[3].

Example 3 The LFSR sequence used in this example: 110101100100011. We
take the algorithm all the way out to the termination when N = n. Though this
sequence is length n = 15, we arrive at the correct connection polynomial C(x)
after only 8 iterations of the algorithm. Iterations 9 through 15 return a dis-
crepancy d = 0 which causes the algorithm to return the connection polynomial
calculated in the previous iteration.

1. Step 1: C(x) = 1,B(x) = 1, m = 1, b = 1, L = 0, N = 0 6= 15 = n.

Step 2: �nd the discrepancy

d = s0 +
0∑

i=1

ci · s0−i = s0 = 1

since d 6= 0, we compare 2 · L to N

2 · L = 2 · 0 = 0 ≤ 0 = N

go to step 5.

Step 5: calculate C(x)
T (x) = C(x) = 1

12

C(x) = C(x)− d · b−1 · xm ·B(x) = 1− 1 · 1−1 · x1 · 1 = 1− x

L = N + 1− L = 0 + 1− 0 = 1

B(x) = T (x) = 1

b = d = 1

m = 1

go to step 6.

Step 6: increase N
N = N + 1 = 0 + 1 = 1

2. Step 1: C(x) = 1− x, B(x) = 1, m = 1, b = 1, L = 1, N = 1 6= 15 = n.

Step 2: �nd the discrepancy

d = s1 +
1∑

i=1

ci · s1−i = s1 + c1 · s0 = 1 + 1 · 1 = 0

Step 3: since d = 0, m = m + 1 = 1 + 1 = 2, and we skip to step 6.

Step 6: increase N
N = N + 1 = 1 + 1 = 2

3. Step 1: C(x) = 1− x, B(x) = 1, m = 2, b = 1, L = 1, N = 2 6= 15 = n.

Step 2: �nd the discrepancy

d = s2 +
1∑

i=1

ci · s2−i = s2 + c1 · s1 = 0 + 1 · 1 = 1

since d 6= 0, we compare 2 · L and N

2 · L = 2 · 1 = 2 ≤ 2 = N

go to step 5.

Step 5: calculate C(x)

T (x) = C(x) = 1− x

C(x) = C(x)− d · b−1 · xm ·B(x) = (1− x)− 1 · 1−1 · x2 · 1 = 1− x− x2

L = N + 1− L = 2 + 1− 1 = 2

B(x) = T (x) = 1− x

b = d = 1

13

m = 1

go to step 6.

Step 6: increase N
N = N + 1 = 2 + 1 = 3

4. Step 1: C(x) = 1 − x − x2, B(x) = 1 − x, m = 1, b = 1, L = 2,
N = 3 6= 15 = n.

Step 2: �nd the discrepancy

d = s3 +
2∑

i=1

ci · s3−i = s3 + c1 · s2 + c2 · s1 = 1 + 1 · 0 + 1 · 1 = 0

since d = 0, m = m + 1 = 1 + 1 = 2, and we skip to step 6.

Step 6: increase N
N = N + 1 = 3 + 1 = 4

5. Step 1: C(x) = 1 − x − x2, B(x) = 1 − x, m = 2, b = 1, L = 2,
N = 4 6= 15 = n.

Step 2: �nd the discrepancy

d = s4 +
2∑

i=1

ci · s4−1 = s4 + c1 · s3 + c2 · s2 = 0 + 1 · 1 + 1 · 0 = 1

Step 3: since d 6= 0, we compare 2 · L and N

2 · L = 2 · 2 = 4 ≤ 4 = N

go to step 5.

Step 5: calculate C(x)

T (x) = C(x) = 1− x− x2

C(x) = C(x)−d·b−1 ·xm ·B(x) = (1−x−x2)−1·1−1 ·x2 ·(1−x) = 1−x−x3

L = N + 1− L = 4 + 1− 2 = 3

B(x) = T (x) = 1− x− x2

b = d = 1

m = 1

go to step 6.

Step 6: increase N
N = N + 1 = 4 + 1 = 5

14

6. Step 1: C(x) = 1 − x − x3, B(x) = 1 − x − x2, m = 1, b = 1, L = 3,
N = 5 66= 15 = n.

Step 2: �nd the discrepancy

d = s5 +
3∑

i=1

ci ·s5−i = s5 +c1 ·s4 +c2 ·s3 +c3 ·s2 = 1+1 ·0+0 ·1+1 ·0 = 1

since d 6= 0 we compare 2 · L and N

2 · L = 2 · 3 = 6 > 5 = N

go to step 4.

Step 4: calculate C(x)

C(x) = C(x)−d·b−1·xm·B(x) = (1−x−x3)−1·1−1·x1·(1−x−x2) = 1+x2

m = m + 1 = 1 + 1 = 2

go to step 6.

Step 6: increase N
N = N + 1 = 5 + 1 = 6

7. Step 1: C(x) = 1 + x2, B(x) = 1 − x − x2,m = 2, b = 1, L = 3, N = 6 6=
15 = n.

Step 2: �nd the discrepancy

d = s6 +
3∑

i=1

ci ·s6−i = s6 +c1 ·s5 +c2 ·s4 +c3 ·s3 = 1+0 ·1+1 ·0+0 ·1 = 1

since d 6= 0 we compare 2 · L and N

2 · L = 2 · 3 = 6 ≤ 6 = N

go to step 5.

Step 5: calculate C(x)

T (x) = C(x) = 1 + x2

C(x) = C(x)−d·b−1·xm·B(x) = (1+x2)−1·1−1·x2·(1−x−x2) = 1+x3+x4

L = N + 1− L = 6 + 1− 3 = 4

B(x) = T (x) = 1 + x2

b = d = 1

15

m = 1

go to step 6.

Step 6: increase N
N = N + 1 = 6 + 1 = 7

8. Step 1: C(x) = 1 + x3 + x4, B(x) = 1 + x2,m = 1, b = 1, L = 4, N = 7 6=
15 = n.

Step 2: �nd the discrepancy

d = s7+
4∑

i=1

ci·s7−i = s7+c1·s6+c2·s5+c3·s4+c4·s3 = 0+0·1+0·1+1·0+1·1 = 1

since d 6= 0 we compare 2 · L and N

2 · L = 2 · 4 = 6 > 7 = N

go to step 4.

Step 4: calculate C(x)

C(x) = C(x)−d·b−1·xm·B(x) = (1+x3+x4)−1·1−1·x1·(1+x2) = 1−x+x4

m = m + 1 = 1 + 1 = 2

go to step 6.

Step 6: increase N
N = N + 1 = 7 + 1 = 8

9. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 2, b = 1, L = 4,
N = 8 6= 15 = n.

Step 2: �nd the discrepancy

d = s8+
4∑

i=1

ci·s8−i = s8+c1·s7+c2·s6+c3·s5+c4·s4 = 0+1·0+0·1+0·1+1·0 = 0

Step 3: since d = 0, m = m + 1 = 2 + 1 = 3, and we skip to step 6.

Step 6: increase N
N = N + 1 = 8 + 1 = 9

10. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 3, b = 1, L = 4,
N = 9 6= 15 = n.

16

Step 2: �nd the discrepancy

d = s9+
4∑

i=1

ci·s9−i = s9+c1·s8+c2·s7+c3·s6+c4·s5 = 1+1·0+0·0+0·1+1·1 = 0

Step 3: since d = 0, m = m + 1 = 3 + 1 = 4, and we skip to step 6.

Step 6: increase N
N = N + 1 = 9 + 1 = 10

11. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 4, b = 1, L = 4,
N = 10 6= 15 = n.

Step 2: �nd the discrepancy

d = s10+
4∑

i=1

ci·s10−i = s10+c1·s9+c2·s8+c3·s7+c4·s6 = 0+1·1+0·0+0·0+1·1 = 0

Step 3: since d = 0, m = m + 1 = 4 + 1 = 5, and we skip to step 6.

Step 6: increase N
N = N + 1 = 10 + 1 = 11

12. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 5, b = 1, L = 4,
N = 11 6= 15 = n.

Step 2: �nd the discrepancy

d = s11+
4∑

i=1

ci·s11−i = s11+c1·s10+c2·s9+c3·s8+c4·s7 = 0+1·0+0·1+0·0+1·0 = 0

Step 3: since d = 0, m = m + 1 = 5 + 1 = 6, and we skip to step 6.

Step 6: increase N
N = N + 1 = 11 + 1 = 12

13. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 6, b = 1, L = 4,
N = 12 6= 15 = n.

Step 2: �nd the discrepancy

d = s12+
4∑

i=1

ci·s12−i = s12+c1·s11+c2·s10+c3·s9+c4·s8 = 0+1·0+0·0+0·1+1·0 = 0

Step 3: since d = 0, m = m + 1 = 6 + 1 = 7, and we skip to step 6.

Step 6: increase N
N = N + 1 = 12 + 1 = 13

17

14. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 7, b = 1, L = 4,
N = 13 6= 15 = n.

Step 2: �nd the discrepancy

d = s13+
4∑

i=1

ci·s13−i = s13+c1·s12+c2·s11+c3·s10+c4·s9 = 1+1·0+0·0+0·0+1·1 = 0

Step 3: since d = 0, m = m + 1 = 7 + 1 = 8, and we skip to step 6.

Step 6: increase N
N = N + 1 = 13 + 1 = 14

15. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 8, b = 1, L = 4,
N = 14 6= 15 = n.

Step 2: �nd the discrepancy

d = s14+
4∑

i=1

ci·s14−i = s14+c1·s13+c2·s12+c3·s11+c4·s10 = 1+1·1+0·0+0·0+1·0 = 0

Step 3: since d = 0, m = m + 1 = 8 + 1 = 9, and we skip to step 6.

Step 6: increase N
N = N + 1 = 14 + 1 = 15

16. Step 1: C(x) = 1 − x + x4, B(x) = 1 + x2, m = 9, b = 1, L = 4,
N = 15 = n. terminate the algorithm

At this point the algorithm outputs the last value of L and C(x) which are
L = 4 and C(x) = 1− x + x4 . The algorithm terminates since N = n. Figure
2 (from Massey [4]) depicts the minimal LFSR found in this example. Since
the coe�cients (c1, c2, c3, c4) of the connection polynomial C(x) = 1−x+x4are
(1, 0, 0, 1) we know that the inputs for the mod 2 adder are taken o� the �rst
and forth registers. Since L = 4, we know that the LFSR must have a minimum
of four registers.

18

Of course, when performing cryptanalytic work on an intercepted enciphered
message, one may not always have all the information available about the stream
cipher to make breaking the code as easy as I have just shown. Prior to beginning
the example, it was mentioned that for a LFSR sequence of known period length
p, one can easily determine how many terms of the sequence were necessary to
�nd the minimal connection polynomial. Further research will look at what to
do when the full period length of the sequence is unkown.

5 Appendix
5.1 LFSR Sequence Generator Function in SAGE
"""
Linear feedback shift register (LFSR) sequence commands

Stream ciphers have been used for
a long time as a source of pseudo-random number generators.

S. Golomb [G] gives a list of three
statistical properties a
sequence of numbers ${\bf a}=\{a_n\}_{n=1}^\infty$,
$a_n\in \{0,1\}$, should display to be considered
``random''. Define the {\bf autocorrelation} of
${\bf a}$ to be
\[
C(k)=C(k,{\bf a})=\lim_{N\rightarrow \infty}
{1\over N}\sum_{n=1}^N (-1)^{a_n+a_{n+k}}.
\]
In the case where ${\bf a}$ is periodic with
period P then this reduces to

19

\[
C(k)={1\over P}\sum_{n=1}^P (-1)^{a_n+a_{n+k}}.
\]
Assume ${\bf a}$ is periodic with period P.
\begin{itemize}
\item[] {\bf balance}: $|\sum_{n=1}^P(-1)^{a_n}|\leq 1$.
\item[] {\bf low autocorrelation}:
\[
C(k)=
\left\{
\begin{array}{cc}
1,& k=0,\\
\epsilon, & k\not= 0.
\end{array}
\right.
\]
(For sequences satisfying these first two properties,
it is known that $\epsilon=-1/P$ must hold.)
\item[] {\bf proportional runs property}:
In each period, half the runs have length 1,
one-fourth have length 2, etc. Moveover, there
are as many runs of 1's as there are of
0's.
\end{itemize}

A {\bf general feedback shift register} is a map
$f:{\bf F}_q^d\rightarrow {\bf F}_q^d$
of the form
\[
\begin{array}{c}
f(x_0,...,x_{n-1})=(x_1,x_2,...,x_n),\\
x_n=C(x_0,...,x_{n-1}),
\end{array}
\]
where $C:{\bf F}_q^d\rightarrow {\bf F}_q$ is a given
function. When C is of the form
\[
C(x_0,...,x_{n-1})=a_0x_0+...+a_{n-1}x_{n-1},
\]
for some given constants $a_i\in {\bf F}_q$, the
map is called a {\bf linear feedback shift register
(LFSR)}.

{\bf Example of a LFSR} Let
\[
f(x)=a_{{0}}+a_{{1}}x+...+a_{{n}}{x}^n+...,

20

\]
\[
g(x)=b_{{0}}+b_{{1}}x+...+b_{{n}}{x}^n+...,
\]
be given polynomials in ${\bf F}_2[x]$ and let
\[
h(x)={f(x)\over g(x)}=c_0+c_1x+...+c_nx^n+... \ .
\]
We can compute a recursion formula which allows us to rapidly compute
the coefficients of $h(x)$ (take $f(x)=1$):
\[
c_{n}=\sum_{i=1}^n {{-b_i\over b_0}c_{n-i}}.
\]

The coefficients of $h(x)$ can, under certain conditions on
$f(x)$ and $g(x)$, be considered ``random'' from certain statistical
points of view.

{\bf Example}:
For instance, if
\[
f(x)=1,\ \ \ \ g(x)=x^4+x+1,
\]
then
\[
h(x)=1+x+x^2+x^3+x^5+x^7+x^8+...\ .
\]
The coefficients of h are
\[
\begin{array}{c}
1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, \\
1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, ...\ .
\end{array}
\]
The sequence of $0,1$'s is periodic with period
$P=2^4-1=15$ and satisfies Golomb's three
randomness conditions.
However, this sequence of period 15 can be ``cracked''
(i.e., a procedure to reproduce $g(x)$)
by knowing only 8 terms! This is the function of the
Berlekamp-Massey algorithm [M], implemented as
\code{berlekamp_massey.py}.

[G] Solomon Golomb, {\bf Shift register sequences},
Aegean Park Press, Laguna Hills, Ca,
1967

21

[M] James L. Massey, ``Shift-Register Synthesis and BCH Decoding.''
IEEE Trans. on Information Theory, vol. 15(1), pp. 122-127, Jan 1969.

AUTHOR:
-- Timothy Brock

Created 11-24-2005 by wdj. Last updated 12-02-2005.
"""

###
Copyright (C) 2006 Timothy Brock
and William Stein <wstein@ucsd.edu>
#
Distributed under the terms of the GNU General Public License (GPL)
#
http://www.gnu.org/licenses/
###

import copy

from sage.structure.all import Sequence
from sage.rings.all import is_FiniteField

def lfsr_sequence(key, fill, n):
r"""
This function creates an lfsr sequence.

INPUT:
key -- a list of finite field elements, [c_0,c_1,...,c_k].
fill -- the list of the initial terms of the lfsr sequence,

[x_0,x_1,...,x_k].
n -- number of terms of the sequence that the

function returns.

OUTPUT:
The lfsr sequence defined by $x_{n+1} = c_kx_n+...+c_0x_{n-k}$,
for $n \leq k$.

EXAMPLES:
sage: F = GF(2); l = F(1); o = F(0)
sage: F = GF(2); S = LaurentSeriesRing(F,'x'); x = S.gen()
sage: fill = [l,l,o,l]; key = [l,o,o,l]; n = 20
sage: L = lfsr_sequence(key,fill,20); L
[1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0]
sage: g = berlekamp_massey(L); g

22

x^4 + x^3 + 1
sage: (1)/(g.reverse()+O(x^20))
1 + x + x^2 + x^3 + x^5 + x^7 + x^8 + x^11 + x^15 + x^16 +

x^17 + x^18 + O(x^20)
sage: (1+x^2)/(g.reverse()+O(x^20))
1 + x + x^4 + x^8 + x^9 + x^10 + x^11 + x^13 + x^15 +

x^16 + x^19 + O(x^20)
sage: (1+x^2+x^3)/(g.reverse()+O(x^20))
1 + x + x^3 + x^5 + x^6 + x^9 + x^13 + x^14 + x^15 +

x^16 + x^18 + O(x^20)
sage: fill = [l,l,o,l]; key = [l,o,o,o]; n = 20
sage: L = lfsr_sequence(key,fill,20); L
[1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1]
sage: g = berlekamp_massey(L); g
x^4 + 1
sage: (1+x)/(g.reverse()+O(x^20))
1 + x + x^4 + x^5 + x^8 + x^9 + x^12 + x^13 + x^16 + x^17 + O(x^20)
sage: (1+x+x^3)/(g.reverse()+O(x^20))
1 + x + x^3 + x^4 + x^5 + x^7 + x^8 + x^9 + x^11 +

x^12 + x^13 + x^15 + x^16 + x^17 + x^19 + O(x^20)

AUTHOR:
-- Timothy Brock (11-2005, with code modified from Python Cookbook,

\url{http://aspn.activestate.com/ASPN/Python/Cookbook/}
"""
if not isinstance(key, list):

raise TypeError, "key must be a list"
key = Sequence(key)
F = key.universe()
if not is_FiniteField(F):

raise TypeError, "universe of sequence must be a finite field"

s = fill
k = len(fill)
L = []
for i in range(n):

s0 = copy.copy(s)
L.append(s[0])
s = s[1:k]
s.append(sum([key[i]*s0[i] for i in range(k)]))

return L

5.2 Autocorrelation Function for Sequences in SAGE
import copy

23

def autocorrelation(L,p,k):
"""
INPUT:

L -- is a periodic sequence of elements of ZZ or GF(2). L must have length >= p
p -- the period of L
k -- k is an integer (0 < k < p)

OUTPUT:
autocorrelation sequence of L

EXAMPLES:

AUTHOR: Timothy Brock (February 2006)
"""
L0 = copy.copy(L)[:int(p)]
L0=L0+L0[:int(k)]
L1 = [int(L0[i])*int(L0[i+int(k)])/p for i in range(p)]
return sum(L1)

5.3 Berlekamp-Massey Algorithm implemented in SAGE

def massey(s):
"""
INPUT:

s -- a sequence of elements of a finite field (F) of even length
OUTPUT:

C(x) -- the connection polynomial of the minimal LFSR.

This implements the algorithm in section 3 of J. L. Massey's article [M].

EXAMPLE:
sage: F = GF(2)

sage: F
Finite Field of size 2
sage: o = F(0); l = F(1)

sage: key = [l,o,o,l]; fill = [l,l,o,l]; n = 20
sage: s = lfsr_sequence(key,fill,n); s
[1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0]
sage: massey(s)
x^4 + x + 1

AUTHOR: Timothy Brock (24 Mar 2006)

24

REFERENCES:
[M] J. L. Massey, "Shift-register synthesis and BCH decoding,"

IEEE Trans. Inform. Theory, vol. IT-15, pp. 122--127, Jan. 19 69.
"""

FF = s[0].base_ring()
R = PolynomialRing(FF, "x")
x = R.gen()
C = R(1); B = R(1); m = 1; b = FF(1); L = 0; N = 0
##The above was initializing steps
while N < len(s):

if L > 0:
r = min(L+1,C.degree()+1)
d = s[int(N)] + sum([(C.list())[int(i)]*s[int(N-i)] for i in range(1,r)])

if L == 0:
d = s[int(N)]

if d == 0:
m += 1
N += 1

if d > 0:
if 2*L > N:

C = C - d*b**(-1)*x**m*B
m += 1
N += 1

else:
T = C
C = C - d*b**(-1)*x**m*B
L = N + 1 - L
m = 1
b = d
B = T
N += 1

return C

References
[1] S. W. Golomb. Shift Register Sequences. Aegean Park Press Laguna Hills,

CA, USA 1981.

[2] R. Paddock, �A Guide to Online Information About: Noise/Chaos/Random
Numbers and Linear Feedback Shift Registers.� Circuit Cellar On-

25

line: The Magazine for Computer Applications. http://www.designer-
iii.com/cco/noise/c89r4.htm, last modi�ed April 17, 2005.

[3] T. Brock and R. Rivas, �Linear Feedback Shift Regis-
ter Sequences and the Berlekamp Iterative Algorithm.�
http://web.usna.navy.mil/%7Ewdj/teach/sm463/brock-rivas_berlekamp-
massey.pdf

[4] J. L. Massey, �Shift-Register Synthesis and BCH Decoding.� IEEE Trans.
on Information Theory, vol. 15(1), pp. 122-127, Jan 1969.

[5] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, Inc.; 1997 pp1-4.

[6] H. van Tilborg. �Coding Theory at Work in Cryptology and Vice Versa.�
Handbook of Coding Theory, vol. 2. Ed. by V.S. Pless and W.C. Hu�man.
Elsevier Science B.V., 1998. pp. 1195-1226.

[7] S. Matyas and C. Meyer. Cryptography: A New Dimension in Computer
Data Security-A Guide for the Design and Implementation of Secure Sys-
tems. John Wiley & Sons, Inc. 1982. pp. 53.

[8] R. Hill. A First Course in Coding Theory. Oxford University Press,1986.
pp. 141-163.

[9] M. Lucas. Linear Feedback Shift Register Systems. United States Naval
Academy, 1990.

[10] G. Hardy and E. Wright. The Theory of Numbers. Oxford University Press,
1956.

[11] William Stein, David Joyner, SAGE: System for Algebra and Ge-
ometry Experimentation, Comm. Computer Algebra 39(2005)61-64.
http://sage.scipy.org

[12] J. McGowan, �Implementing Generalized Reed-Solomon
Codes and a Cyclic Code Decoder in GUAVA.�
http://cadigweb.ew.usna.edu/%7Ewdj/mcgowan.

[13] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-correcting
Codes. North-Holland, 1983.

[14] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Ap-
plications Revised Edition. Cambridge University Press, Cambridge; 1994
pp235-239.

26

