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1 Motivation

1. Considerable work has been devoted to the study of self-dual odes.

Iwan M. Duursma has written numerous papers on the matter (see

[D1℄-[D6℄) and the greater part of this projet is entered on his ground

breaking work in the �eld. In 1999, Iwan M. Duursma de�ned the

zeta funtion for a linear ode as a generating funtion of its Ham-

ming weight enumerator. The modest goal of this projet is to go

through Duursma's papers and evaluate its relevane for formally self-

dual odes. Duursma's work in Extremal Weight Enumerators and Ul-

traspherial Polynomials will be extended to formally self-dual odes.

More spei�ally, the projet expands Duursma's work in this paper

to zeta funtions of formally self-dual odes of Type IV. (In fat, Du-

ursma's work extends to the even broader lass of virtual self-dual

weight enumerators of Type IV. Theorems 9 and 11 below are extended

to the weight enumerator ase. See the remark before De�nition 12 in

�3 for details.)
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2. The �nal and more ambitious goal of the projet is to study the for-

mulation for a Riemann hypothesis analog. The unsolved Riemann hy-

pothesis has been a mystery sine Riemann's work in the 1800's. The

searh for an analog for linear odes arose in the 1990's. This hypoth-

esis deals with the nature of non-trivial zeros for zeta funtions. The

main result of this projet, whih deals with the Riemann hypothesis

analog in a speial ase, is Theorem 16 below.

3. Examples of Duursma Zeta funtions of self-dual odes of small length

are omputed in �4 with the help of the mathematial software program

SAGE [S℄.

2 Introdution

Studying error orreting odes is neessary in advaning tehnology. The

safe and reliable transfer of information depends on oding theory. The prob-

lem of transferring dependable information is important and this researh

projet attempts to ontinue inremental progress in this �eld.

This projet has value beause the study of error orreting odes is rela-

tively new. Profound advanement an be made in this �eld and is neessary

for the transfer of reliable and safe information. The study of error or-

reting odes, as onduted in this researh projet, is spei�ally related to

reliable ommuniations. This is espeially pertinent to Naval Reators as

nuke power begins to rely more heavily on omputer ommuniations. The

need for suh ommuniation to be reliable is paramount. Error orreting

odes are vital to systems, suh as nulear reators, that depend upon om-

puters and annot be allowed to misommuniate. More knowledge of this

topi is ruial to the overarhing goals of the Navy. This is espeially true if

the Navy ontinues with its plans for unmanned ships. The military depends

upon reliable, fault�tolerant ommuniation and this researh projet aims

to ontinue researh in the pertinent �eld of oding theory.

2.1 General Bakground

Let F = GF (q) denote a �nite �eld with q elements, where q is a power of a

prime. A linear ode is a subspae of F
n for some n > 1. This integer n is

alled the length of C. Let C be a linear ode of length n over F. If q = 2
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then the ode is alled binary. Similarly, if q = 3 then the ode is alled

ternary and if q = 4 then the ode is alled quaternary. Throughout,

assume that F
n has been given the standard basis e1 = (1, 0, ..., 0) ∈ F

n,

e2 = (0, 1, 0, ..., 0) ∈ F
n, ..., en = (0, 0, ..., 0, 1) ∈ F

n and the usual dot

produt. The dimension of C is denoted k, so the number of elements of C
is equal to qk.

Another important parameter assoiated to the ode is the number of

errors whih it an, in priniple, orret. The Hamming metri is useful for

quantifying suh errors. For any two x, y ∈ F
n, let d(x, y) denote the number

of oordinates where these two vetors di�er:

d(x, y) = |{0 ≤ i ≤ n | xi 6= yi}|. (1)

De�ne the weight wt of v ∈ F
n to be the number of non-zero entries of v.

Note, d(x, y) = wt(x− y) beause the vetor x− y has non-zero entries only

at loations where x and y di�er. The smallest distane between distint

odewords in a linear ode C is the minimum distane of C:

d = d(C) = minc∈C, c 6=0d(0, c) (2)

(for details see [HILL℄ Theorem 5.2). Call a linear ode of length n, dimension

k, and minimum distane d an [n, k, d] ode, or [n, k] ode if we wish to

disregard the minimum distane. The Singleton Bound states that if an

[n, k, d] linear ode over F exists, then k ≤ n − d + 1. An MDS Code, or

Maximum Distane Seperable, is one where the equality holds.

A linear ode C of length n and dimension k over F has a basis of k
vetors of length n. If those vetors are arranged as rows of a matrix G, all

the k × n matrix G a generator matrix for C.

The dual ode of C is the vetor spae of all ode words in F
n whih are

orthogonal to eah odeword in C;

C⊥ = {v ∈ F
n | v · c = 0 ∀ c ∈ C}.

C is self-dual if C = C⊥.

Example 1 Let

G =









1 0 0 1 0 1 0 1
0 1 0 1 0 1 1 0
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
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be the generator matrix of a ode C. This is a binary self-dual [8, 4, 4] ode.
In fat, this is an extremal Type II ode (these terms will be de�ned below).

Example 2 Let

G =

















2 0 1 2 1 1 0 0 0 0 0 2
0 2 0 1 2 1 1 0 0 0 0 2
0 0 2 0 1 2 1 1 0 0 0 2
0 0 0 2 0 1 2 1 1 0 0 2
0 0 0 0 2 0 1 2 1 1 0 2
0 0 0 0 0 2 0 1 2 1 1 2

















be the generator matrix of a ode C. This is a ternary self-dual [12, 6, 6] ode.
In fat, this is an extremal Type III ode (these terms will be de�ned below).

Example 3 De�ne the �nite �eld of four elements as follows. Let z denote

a root of the quadrati polynomial x2 + x + 1 ∈ GF (2)[x], where GF (2)[x]
denotes the polynomial ring in the indeterminate x. Let GF (4) = {0, 1, z, z+
1}. This set is a �eld of harateristi 2. Let

G =





1 0 0 1 z z
0 1 0 z 1 z
0 0 1 z z 1





be the generator matrix of a ode C. This is a quaternary self-dual [6, 3, 4]
ode and is referred to as the hexaode. In fat, this is an extremal Type

IV ode (these terms will be de�ned below). Note that this ode is MDS.

The dual ode of C has parameters [n, n − k]. Moreover, denote the

minimum distane of the dual ode by d⊥. For future referene, note that

if C = C⊥ then (equating dimensions) k = n − k, foring n to be even and

k = n/2. The genus of an [n, k, d]-ode C is de�ned by

γ(C) = n + 1 − k − d.

This measures how �far away the ode is from being MDS�.

Lemma 4 If C is a self-dual ode then its genus satis�es γ = n/2 + 1 − d.
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proof: It su�es to show that k = n/2 if C = C⊥. But this was observed in

the disussion above. ¤

The (Hamming) weight enumerator polynomial AC is de�ned by

AC(x, y) =
n

∑

i=0

Aix
n−iyi = xn + Adx

n−dyd + · · · + Any
n,

where

Ai = |{c ∈ C | wt(c) = i}|
denotes the number of odewords of weight i. Let WC(z) = AC(1, z), so
therefore AC(x, y) = xnWC(y/x). The support of C is the set supp(C) =
{i | Ai 6= 0}. If AC(x, y) = AC⊥(x, y) then C is alled a formally self-dual

ode. The spetrum of C is the list of oe�ients of AC :

spec(C) = [A0, . . . , An].

Two odes are formally equivalent if they have the same spetrum.

2.2 MaWilliams Identity

The goal of this setion is to prove the MaWilliams identity (for simpli-

ity, restrited to the binary ase). This identity is neessary to verify the

funtional equation (4) for the Duursma Zeta Funtion. Several lemmas are

needed to prove this identity. The proof given below follows Hill Ch. 13

[HILL℄.

Lemma 5 Let C be a binary linear [n, k] ode.

1. Fix y ∈ GF (2)n−C⊥. As x ranges over the vetor spae C, the quantity

x · y takes the value 0 and 1 equally often.

2. The following identity holds:

∑

c∈C

(−1)c·y =

{

2k, y ∈ C⊥,
0 y /∈ C⊥.

proof: Part 1: Let A = {x ∈ C | x · y = 0} and B = {x ∈ C | x · y = 1}.
Let u be a odeword of C suh that u · y = 1. Let u + A = {u + a | a ∈ A}.
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Then u + A ⊂ B, for if a ∈ A, then (u + a) · y = a · y + u · y = 0 + 1 = 1.
Similarly u + B ⊂ A. Hene, |A| = |u + A| ≤ |B| = |u + B| ≤ |A|. Thus,

|A| = |B|.
Part 2: If y ∈ C⊥, then c · y = 0 for all c ∈ C, and so

∑

c∈C(−1)c·y =
|C|·1 = 2k. If y /∈ C⊥ then by Part 1, as x ranges over the vetor spae C, the

quantity x · y takes the value 0 and 1 equally often, giving
∑

c∈C(−1)c·y = 0.
¤

Lemma 6 For eah x ∈ GF (2)n the following polynomial identity holds:

∑

y∈GF (2)n

zwt(y)(−1)x·y = (1 − z)wt(x)(1 + z)n−wt(x).

proof:

∑

y∈GF (2)n zwt(y)(−1)x·y =
∑

y1∈{0,1}

∑

y2∈{0,1} · · ·
∑

yn∈{0,1} zy1+···+yn(−1)x1y1+···xnyn

=
∑

y1∈{0,1} · · ·
∑

yn∈{0,1}

(
∏n

i=1 zyi(−1)xiyi

)

=
∏n

i=1

(
∑

j∈{0,1} zj(−1)xij
)

= (1 − z)wt(x)(1 + z)n−wt(x),

sine
∑

j∈{0,1} zj(−1)rj = 1 + z, if r = 0, and = 1 − z, if r = 1. ¤

Theorem 7 (MaWilliams' identity): If C is a linear ode over any �nite

�eld F of order q then

AC⊥(x, y) = |C|−1AC(x + (q − 1)y, x − y).

This is the general statement of the MaWilliams identity. This proof

will restrit to the binary ase.

proof: Now, express the polynomial f(z) =
∑

c∈C

∑

y∈GF (2)n zwt(y)(−1)c·y

in two ways.

On one hand, Lemma 6 implies

f(z) =
∑

c∈C(1 − z)wt(c)(1 + z)n−wt(c)

= (1 + z)n
∑

c∈C

(

1−z
1+z

)wt(c)

= (1 + z)nWC

(

1−z
1+z

)

= Ac(1 + z, 1 − z)
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On the other hand, reversing the order of summation gives

f(z) =
∑

y∈GF (2)n zwt(y)
(
∑

c∈C(−1)c·y
)

=
∑

y∈C⊥ zwt(y)2k (by Lemma 5, Part 2)

= 2kWC⊥(z).

Replae z by y/x in the above gives

Ac(1 + y/x, 1 − y/x) = 2k · A(C
⊥)(1, y/x).

Sine this polynomial is homogeneous in degree n, multiplying both sides by

xn gives the theorem in the binary ase. ¤

If C = C⊥, then |C| = qn/2. Therefore, the MaWilliam's Identity an

be rewritten in this ase as

AC(x, y) = q−n/2AC(x + (q − 1)y, x − y) = AC(
x + (q − 1)y√

q
,
x − y√

q
),

where q = 2.

3 Duursma Zeta Funtion

3.1 De�nition

The following de�nition generalizes the idea of the weight enumerator poly-

nomial of a ode.

De�nition 8 A homogeneous polynomial F (x, y) = xn +
∑n

i=1 fix
n−iyi of

degree n with omplex oe�ients is alled a virtual weight enumer-

ator (or VWE) with support supp(F ) = {i | fi 6= 0}. If F (x, y) =
xn +

∑n
i=d fix

n−iyi with fd 6= 0 then all n the length of F and d the min-

imum distane of F . Suh an F of even degree satisfying the invariane

ondition

F (x, y) = F (
x + (q − 1)y√

q
,
x − y√

q
),

is alled a virtual self-dual weight enumerator (or VSDWE for short)

over F having genus.
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γ(F ) = n/2 + 1 − d.

If b > 1 is an integer and supp(F ) ⊂ bZ then the VWE F is alled b-
divisible.

An example of a virtual weight enumerator F (x, y) is the Hamming weight

enumerator of a ode AC(x, y). In fat, in ase F (x, y) = AC(x, y) the length
of F is the length of the ode C and the minimum distane of F is the

minimum distane of the ode C. An example of a virtual self-dual weight

enumerator is the Hamming weight enumerator of a self-dual ode.

It is amazing that the b-divisible virtual self-dual weight enumerators an

be lassi�ed.

Theorem 9 (Gleason-Piere-Assmus-Mattson) Let F be a b-divisible VS-

DWE over GF (q).
Then either

I. q = b = 2,

II. q = 2, b = 4,

III. q = b = 3,

IV. q = 4, b = 2,

V. q is arbitrary, b = 2, and F (x, y) = (x2 + (q − 1)y2)n/2.

For Assmus and Mattson`s proof of this theorem, please see Sloane [Sl℄.

Next, in order to arefully de�ne the problem that this paper addresses,

the notion of Types of weight enumerators are introdued. Theorem 9 moti-

vates the following de�nition.

De�nition 10 If F is a b-divisible VSDWE over F then F is alled















Type I, if q = b = 2, 2|n,
Type II, if q = 2, b = 4, 8|n,
Type III, if q = b = 3, 4|n,
Type IV, if q = 4, b = 2, 2|n.
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The divisibility ondition is extremely restriting and, for example, fores

the length n to be even. The next setions onentrate on Duursma zeta

funtions for ertain weight enumerators of Type IV.

Theorem 11 (Sloane-Mallows-Duursma) If F is a b-divisible VSDWE with

length n and minimum distane d then

d ≤















2[n/8] + 2, if F is Type I,
4[n/24] + 4, if F is Type II,
3[n/12] + 3, if F is Type III,
2[n/6] + 2, if F is Type IV.

For a proof, see Duursma [D3℄.

An extremal b-divisible virtual self-dual weight enumerator is one for

whih equality holds in the above theorem. The next setion fouses on the

Type IV extremal ase. With Theorems 9 and 11, the foundations of Du-

ursma's paper [D3℄ extend from self-dual odes to virtual self-dual weight

enumerators. This is beause the oding-theoreti versions of the Theorem

9 and 11, used by Duursma, in fat hold for virtual self-dual weight enumer-

ators.

De�nition 12 (Duursma [D1℄) Assume F is a virtual weight enumerator

polynomial of length n and minimum distane d. A polynomial P (T ) of

degree n + 2 − d − d⊥ for whih

(xT + (1 − T )y)n

(1 − T )(1 − qT )
P (T ) = · · · + F (x, y) − xn

q − 1
T n−d + . . . .

is alled a Duursma zeta polynomial of F .

Proposition 13 If d ≥ 2 and d⊥ ≥ 2 then there exists a unique Duurzma

zeta polynomial of degree ≤ n − d.

proof: This is proven in the appendix to Chinen [C2℄. Here is the rough

idea. Expand
(xT+y(1−T ))n

(1−T )(1−qT )
in powers of T to get

b0,0y
nT 0 + (b1,0xyn−1 + b1,1y

n)T 1 + (b2,0x
2yn−2 + b2,1xyn−1 + b2,2y

n)T 2 + ...
+(bn−d,0x

n−dyd + bn−d,1x
n−d−1yd+1 + ... + bn−d,n−dy

n)T n−d + ... ,
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where bij are oe�ients whih may depend on q. The Duursma polynomial

is a polynomial of degree n + 2 − d − d⊥. Provided d⊥ ≥ 2, the Duursma

polynomial an be written as P (T ) = a0 +a1T + ...+an−dT
n−d. Now, rewrite

the terms of degree ≤ n

(xT + y(1 − T ))n

(1 − T )(1 − qT )
P (T ) = ... +

F (x, y) − xn

q − 1
T n−d + ...

by means of the matrix equation B · ~a = ~A given by















bn−d.0 bn−d.1 . . . bn−d.n−d

0 bn−d−1.0 . . . bn−d−1.n−d−1

0 0 bn−d−2.0 . . .
...

. . .
...

0 . . . 0 b0,0

























an−d

an−d−1
...

a0











=











An/(q − 1)
An−1/(q − 1)

...

Ad/(q − 1)











.

The diagonal entries of this matrix are binomial oe�ients, hene are non-

zero. Therefore the matrix is invertible and the existene is established.

To establish uniqueness, suppose that

(xT + y(1 − T ))n

(1 − T )(1 − qT )
P1(T ) = ... +

F (x, y) − xn

q − 1
T n−d + ...

and
(xT + y(1 − T ))n

(1 − T )(1 − qT )
P2(T ) = ... +

F (x, y) − xn

q − 1
T n−d + ...

hold. Subtrating these gives

(xT + y(1 − T ))n

(1 − T )(1 − qT )
(P1(T ) − P2(T )) = 0.

This fores P1 = P2. ¤

An example will be given in �4.

The Duursma zeta funtion of F is de�ned in terms of the zeta poly-

nomial by means of Ac(1 + z, 1 − z)

Z(T ) =
P (T )

(1 − T )(1 − qT )
. (3)

In ase of ambiguity denote this funtion by ZF . De�ne the Riemann hy-

pothesis to be the following statement: all (omplex) zeros of Z(T ) satisfy
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|T | = 1/
√

q. This is the analog for linear odes of the still unsolved onjeture

regarding the Riemann zeta funtion.

The Duursma zeta funtion satis�es an analog of the funtional equation

for the Riemann zeta funtion. But before stating the funtional equation,

new notation is needed.

De�ne F⊥ by F⊥ = F ◦ σ, where

σ =
1√
q

(

1 q − 1
1 −1

)

Then there is a funtional equation relating Z and Z⊥ = ZF⊥ (and hene

also P and P⊥ = PF⊥). Note that even though F may not depend on q, F⊥

(and hene Z⊥) does.

Proposition 14 The Duursma zeta funtion satis�es the funtional equa-

tion

Z⊥(T )T 1−g⊥ = Z(
1

qT
)(

1

qT
)1−g. (4)

Analogously, the zeta polynomial P = PF satis�es the funtional equation

P⊥(T ) = P (
1

qT
)qgT g+g⊥ , (5)

where g = n/2 + 1 − d and g⊥ = n/2 + 1 − d⊥.

This paper onerns the zeros of the zeta funtion in the ase where F is

an extremal virtual b-divisible self-dual weight enumerator of type IV.

3.2 Extremal Virtual Self-Dual Weight Enumerators

Following Duursma [D3℄, de�ne the ultraspherial polynomial Cm
n (x) on

the interval (−1, 1) by

Cm
n (cos θ) =

∑

0 ≤ k, ℓ ≤ n
k + ℓ = n

( m + k
k

)( m + ℓ
ℓ

)

cos((k − ℓ)θ).

The following theorem1 is due to Duursma [D3℄, setion 5.2.

1Be areful of serious typos in setion 5.2 of Duursma, whih are orreted below.
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Theorem 15

Q(T 2/2) =
m!2

(3m)!
TmCm+1

m (
T + T−1

2
)

Where Q(T ) = P (T )(1 + 2T ) and P is the Duursma zeta polynomial of an

extremal Type IV virtual self-dual weight enumerator of length n = 3m + 3
and minimum distane d = m + 3.

The main result is stated below.

Theorem 16 The Duursma zeta funtion of an extremal self-dual weight

enumerator of Type IV with length divisible by 3 satis�es the Riemann hy-

pothesis.

proof: It's a known fat [Sz℄ that all the roots of ultraspherial polynomials

Cm
n lie on the interval (−1, 1). This polynomial is degree n and so there are

n suh roots. In the theorem above, replaing T by eiθ gives

Q(e2iθ/2) =
m!2

(3m)!
eiθmCm+1

m (cos θ).

Therefore, all the roots of the degree m polynomial Q, hene the roots of P ,

lie on the irle of radius 1/
√

q = 1/2. Aording to Duursma [D3℄, �4.4, all

other Type IV extremal virtual self-dual weight enumerators have length of

the form 3m + 1 or 3m + 2. This veri�es the Riemann hypothesis in the ase

with length divisible by 3. ¤

4 Examples

The �rst example below omputes a Duursma zeta funtion �by hand� in a

simple ase.

Example 17 Consider the binary self-dual ode C of length n = 6, di-

mension k = 3, and minium distane d = 2. This is unique up to equiva-

lene and has weight enumerator W (x, y) = x6 + 3x4y2 + 3x2y4 + y6. The

SAGE ommands

SAGE

sage: q = var("q")
sage: T = var("T")
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sage: x = var("x")
sage: y = var("y")
sage: f1 = lambda q,T,N: sum([ sum([q^i for i in range(k+1)])*T^k for k in range(N)])
sage: f2 = lambda x,y,T,n: sum([ binomial(n,j)*(x-y)^j*y^(n-j)*T^j for j in range(n+1)])
sage: a0,a1,a2,a3,a4 = var("a0,a1,a2,a3,a4")
sage: F = expand(f1(2,T,6)*f2(x,y,T,6)*(a0+a1*T+a2*T^2+a3*T^3+a4*T^4))

ompute the �rst 6 terms (as a power series in T ) of the series
(xT+y(1−T ))n

(1−T )(1−qT )
P (T )

when q = 2, n = 6, k = 3, and d = 2. Next, SAGE omputes the oe�ients

and read o� the matrix B:

SAGE

sage: aa = (F.coeff("T^4")).coeffs("x")
sage: v = [expand(aa[i][0]/y^(6-i)) for i in range(5)]
sage: B0 = [v[0].coeff("a%s"%str(i)) for i in range(5)]
sage: B1 = [v[1].coeff("a%s"%str(i)) for i in range(5)]
sage: B2 = [v[2].coeff("a%s"%str(i)) for i in range(5)]
sage: B3 = [v[3].coeff("a%s"%str(i)) for i in range(5)]
sage: B4 = [v[4].coeff("a%s"%str(i)) for i in range(5)]
sage: B0.reverse(); B1.reverse(); B2.reverse(); B3.reverse(); B4.reverse()
sage: B = matrix([B0,B1,B2,B3,B4])
sage: B

[ 1 -3 4 -2 1]
[ 0 6 -12 12 0]
[ 0 0 15 -15 15]
[ 0 0 0 20 0]
[ 0 0 0 0 15]

Note that the diagonal entries are binomial oe�ients.

Finally, the vetor ~A is determined by solving the equation B · ~a = ~A:

SAGE

sage: Wmx6 = 3*x^4*y^2+3*x^2*y^4+y^6
sage: c = [Wmx6(1,y).coeff("y^%s"%str(i)) for i in range(2,7)]
sage: c.reverse()
sage: cc = vector(c)
sage: (B^(-1)*cc).list()
[4/5, 0, 0, 0, 1/5]

This implies that the zeta polynomial of C is given by P (T ) = 1
5

+ 4
5
T 4.

The next example illustrates the omputation of the Duursma zeta fun-

tion for a quaternary ode.
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Example 18 The hexaode is an MDS ode. In general, it is true that the

Duursma zeta funtion of any MDS ode is P (T ) = 1.
Here is a more interesting example. Let z denote the same element as

was de�ned in Example 3. Let

G =

0

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0 1 z + 1 1 1 z 1 1 z + 1 z
0 1 0 0 0 0 0 0 0 z + 1 z + 1 0 z 0 1 z z + 1 z + 1
0 0 1 0 0 0 0 0 0 z + 1 1 0 z + 1 z + 1 z + 1 z 0 z
0 0 0 1 0 0 0 0 0 0 z + 1 1 0 z + 1 z + 1 z + 1 z z
0 0 0 0 1 0 0 0 0 z 1 1 z + 1 z + 1 1 1 z 1
0 0 0 0 0 1 0 0 0 z z + 1 z + 1 z + 1 0 1 z + 1 0 z
0 0 0 0 0 0 1 0 0 0 z z + 1 z + 1 z + 1 0 1 z + 1 z
0 0 0 0 0 0 0 1 0 z + 1 z 1 0 z 0 z + 1 z + 1 z + 1
0 0 0 0 0 0 0 0 1 z + 1 1 1 z 1 1 z + 1 1 z

1

C

C

C

C

C

C

C

C

C

C

C

A

be a generator matrix of a ode C. This is an extremal Type IV ode over

a �eld with four elements. Aording to SAGE , the zeta polynomial for this

ode is P (T ) = 48
143

T 4 + 48
143

T 3 + 32
143

T 2 + 12
143

T + 3
143

. It an be heked diretly,

using SAGE , that this satis�es the Riemann hypothesis.

SAGE

sage: F.<z> = GF(4,"z")
sage: MS = MatrixSpace(F, 9, 18)
sage: G = MS([
....: [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, z^2, 1, 1, z, 1, 1, z^2, z],\
....: [0, 1, 0, 0, 0, 0, 0, 0, 0, z^2, z^2, 0, z, 0, 1, z, z^2, z^2],\
....: [0, 0, 1, 0, 0, 0, 0, 0, 0, z^2, 1, 0, z^2, z^2, z^2, z, 0, z],\
....: [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, z^2, 1, 0, z^2, z^2, z^2, z, z],\
....: [0, 0, 0, 0, 1, 0, 0, 0, 0, z, 1, 1, z^2, z^2, 1, 1, z, 1],\
....: [0, 0, 0, 0, 0, 1, 0, 0, 0, z, z^2, z^2, z^2, 0, 1, z^2, 0, z],\
....: [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, z, z^2, z^2, z^2, 0, 1, z^2, z],\
....: [0, 0, 0, 0, 0, 0, 0, 1, 0, z^2, z, 1, 0, z, 0, z^2, z^2, z^2],\
....: [0, 0, 0, 0, 0, 0, 0, 0, 1, z^2, 1, 1, z, 1, 1, z^2, 1, z]])
sage: C = LinearCode(G)
sage: print C.spectrum()
[1, 0, 0, 0, 0, 0, 0, 0, 2754, 0, 18360, 0, 77112, 0, 110160, 0, 50949, 0, 2808]
sage: R.<T> = PolynomialRing(CC,"T")
sage: P = C.sd_zeta_polynomial(4)
sage: P
48/143*T^4 + 48/143*T^3 + 32/143*T^2 + 12/143*T + 3/143
sage: rts = R(P).roots()
sage: [abs(r[0]) for r in rts]
[0.500000000000000, 0.500000000000000, 0.500000000000000, 0.500000000000000]

Bakground Information: SAGE is a omputer algebra program whose

open soure kernel is written in the Python programming language.

Aknowledgements: I thank the readers of this honors projet for their

helpful suggestion that improved this presentation. The SAGE examples are
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