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1 Motivation

1. Considerable work has been devoted to the study of self-dual 
odes.

Iwan M. Duursma has written numerous papers on the matter (see

[D1℄-[D6℄) and the greater part of this proje
t is 
entered on his ground

breaking work in the �eld. In 1999, Iwan M. Duursma de�ned the

zeta fun
tion for a linear 
ode as a generating fun
tion of its Ham-

ming weight enumerator. The modest goal of this proje
t is to go

through Duursma's papers and evaluate its relevan
e for formally self-

dual 
odes. Duursma's work in Extremal Weight Enumerators and Ul-

traspheri
al Polynomials will be extended to formally self-dual 
odes.

More spe
i�
ally, the proje
t expands Duursma's work in this paper

to zeta fun
tions of formally self-dual 
odes of Type IV. (In fa
t, Du-

ursma's work extends to the even broader 
lass of virtual self-dual

weight enumerators of Type IV. Theorems 9 and 11 below are extended

to the weight enumerator 
ase. See the remark before De�nition 12 in

�3 for details.)
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2. The �nal and more ambitious goal of the proje
t is to study the for-

mulation for a Riemann hypothesis analog. The unsolved Riemann hy-

pothesis has been a mystery sin
e Riemann's work in the 1800's. The

sear
h for an analog for linear 
odes arose in the 1990's. This hypoth-

esis deals with the nature of non-trivial zeros for zeta fun
tions. The

main result of this proje
t, whi
h deals with the Riemann hypothesis

analog in a spe
ial 
ase, is Theorem 16 below.

3. Examples of Duursma Zeta fun
tions of self-dual 
odes of small length

are 
omputed in �4 with the help of the mathemati
al software program

SAGE [S℄.

2 Introdu
tion

Studying error 
orre
ting 
odes is ne
essary in advan
ing te
hnology. The

safe and reliable transfer of information depends on 
oding theory. The prob-

lem of transferring dependable information is important and this resear
h

proje
t attempts to 
ontinue in
remental progress in this �eld.

This proje
t has value be
ause the study of error 
orre
ting 
odes is rela-

tively new. Profound advan
ement 
an be made in this �eld and is ne
essary

for the transfer of reliable and safe information. The study of error 
or-

re
ting 
odes, as 
ondu
ted in this resear
h proje
t, is spe
i�
ally related to

reliable 
ommuni
ations. This is espe
ially pertinent to Naval Rea
tors as

nuke power begins to rely more heavily on 
omputer 
ommuni
ations. The

need for su
h 
ommuni
ation to be reliable is paramount. Error 
orre
ting


odes are vital to systems, su
h as nu
lear rea
tors, that depend upon 
om-

puters and 
annot be allowed to mis
ommuni
ate. More knowledge of this

topi
 is 
ru
ial to the overar
hing goals of the Navy. This is espe
ially true if

the Navy 
ontinues with its plans for unmanned ships. The military depends

upon reliable, fault�tolerant 
ommuni
ation and this resear
h proje
t aims

to 
ontinue resear
h in the pertinent �eld of 
oding theory.

2.1 General Ba
kground

Let F = GF (q) denote a �nite �eld with q elements, where q is a power of a

prime. A linear 
ode is a subspa
e of F
n for some n > 1. This integer n is


alled the length of C. Let C be a linear 
ode of length n over F. If q = 2
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then the 
ode is 
alled binary. Similarly, if q = 3 then the 
ode is 
alled

ternary and if q = 4 then the 
ode is 
alled quaternary. Throughout,

assume that F
n has been given the standard basis e1 = (1, 0, ..., 0) ∈ F

n,

e2 = (0, 1, 0, ..., 0) ∈ F
n, ..., en = (0, 0, ..., 0, 1) ∈ F

n and the usual dot

produ
t. The dimension of C is denoted k, so the number of elements of C
is equal to qk.

Another important parameter asso
iated to the 
ode is the number of

errors whi
h it 
an, in prin
iple, 
orre
t. The Hamming metri
 is useful for

quantifying su
h errors. For any two x, y ∈ F
n, let d(x, y) denote the number

of 
oordinates where these two ve
tors di�er:

d(x, y) = |{0 ≤ i ≤ n | xi 6= yi}|. (1)

De�ne the weight wt of v ∈ F
n to be the number of non-zero entries of v.

Note, d(x, y) = wt(x− y) be
ause the ve
tor x− y has non-zero entries only

at lo
ations where x and y di�er. The smallest distan
e between distin
t


odewords in a linear 
ode C is the minimum distan
e of C:

d = d(C) = minc∈C, c 6=0d(0, c) (2)

(for details see [HILL℄ Theorem 5.2). Call a linear 
ode of length n, dimension

k, and minimum distan
e d an [n, k, d] 
ode, or [n, k] 
ode if we wish to

disregard the minimum distan
e. The Singleton Bound states that if an

[n, k, d] linear 
ode over F exists, then k ≤ n − d + 1. An MDS Code, or

Maximum Distan
e Seperable, is one where the equality holds.

A linear 
ode C of length n and dimension k over F has a basis of k
ve
tors of length n. If those ve
tors are arranged as rows of a matrix G, 
all

the k × n matrix G a generator matrix for C.

The dual 
ode of C is the ve
tor spa
e of all 
ode words in F
n whi
h are

orthogonal to ea
h 
odeword in C;

C⊥ = {v ∈ F
n | v · c = 0 ∀ c ∈ C}.

C is self-dual if C = C⊥.

Example 1 Let

G =









1 0 0 1 0 1 0 1
0 1 0 1 0 1 1 0
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1








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be the generator matrix of a 
ode C. This is a binary self-dual [8, 4, 4] 
ode.
In fa
t, this is an extremal Type II 
ode (these terms will be de�ned below).

Example 2 Let

G =

















2 0 1 2 1 1 0 0 0 0 0 2
0 2 0 1 2 1 1 0 0 0 0 2
0 0 2 0 1 2 1 1 0 0 0 2
0 0 0 2 0 1 2 1 1 0 0 2
0 0 0 0 2 0 1 2 1 1 0 2
0 0 0 0 0 2 0 1 2 1 1 2

















be the generator matrix of a 
ode C. This is a ternary self-dual [12, 6, 6] 
ode.
In fa
t, this is an extremal Type III 
ode (these terms will be de�ned below).

Example 3 De�ne the �nite �eld of four elements as follows. Let z denote

a root of the quadrati
 polynomial x2 + x + 1 ∈ GF (2)[x], where GF (2)[x]
denotes the polynomial ring in the indeterminate x. Let GF (4) = {0, 1, z, z+
1}. This set is a �eld of 
hara
teristi
 2. Let

G =





1 0 0 1 z z
0 1 0 z 1 z
0 0 1 z z 1





be the generator matrix of a 
ode C. This is a quaternary self-dual [6, 3, 4]

ode and is referred to as the hexa
ode. In fa
t, this is an extremal Type

IV 
ode (these terms will be de�ned below). Note that this 
ode is MDS.

The dual 
ode of C has parameters [n, n − k]. Moreover, denote the

minimum distan
e of the dual 
ode by d⊥. For future referen
e, note that

if C = C⊥ then (equating dimensions) k = n − k, for
ing n to be even and

k = n/2. The genus of an [n, k, d]-
ode C is de�ned by

γ(C) = n + 1 − k − d.

This measures how �far away the 
ode is from being MDS�.

Lemma 4 If C is a self-dual 
ode then its genus satis�es γ = n/2 + 1 − d.
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proof: It su�
es to show that k = n/2 if C = C⊥. But this was observed in

the dis
ussion above. ¤

The (Hamming) weight enumerator polynomial AC is de�ned by

AC(x, y) =
n

∑

i=0

Aix
n−iyi = xn + Adx

n−dyd + · · · + Any
n,

where

Ai = |{c ∈ C | wt(c) = i}|
denotes the number of 
odewords of weight i. Let WC(z) = AC(1, z), so
therefore AC(x, y) = xnWC(y/x). The support of C is the set supp(C) =
{i | Ai 6= 0}. If AC(x, y) = AC⊥(x, y) then C is 
alled a formally self-dual


ode. The spe
trum of C is the list of 
oe�
ients of AC :

spec(C) = [A0, . . . , An].

Two 
odes are formally equivalent if they have the same spe
trum.

2.2 Ma
Williams Identity

The goal of this se
tion is to prove the Ma
Williams identity (for simpli
-

ity, restri
ted to the binary 
ase). This identity is ne
essary to verify the

fun
tional equation (4) for the Duursma Zeta Fun
tion. Several lemmas are

needed to prove this identity. The proof given below follows Hill Ch. 13

[HILL℄.

Lemma 5 Let C be a binary linear [n, k] 
ode.

1. Fix y ∈ GF (2)n−C⊥. As x ranges over the ve
tor spa
e C, the quantity

x · y takes the value 0 and 1 equally often.

2. The following identity holds:

∑

c∈C

(−1)c·y =

{

2k, y ∈ C⊥,
0 y /∈ C⊥.

proof: Part 1: Let A = {x ∈ C | x · y = 0} and B = {x ∈ C | x · y = 1}.
Let u be a 
odeword of C su
h that u · y = 1. Let u + A = {u + a | a ∈ A}.
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Then u + A ⊂ B, for if a ∈ A, then (u + a) · y = a · y + u · y = 0 + 1 = 1.
Similarly u + B ⊂ A. Hen
e, |A| = |u + A| ≤ |B| = |u + B| ≤ |A|. Thus,

|A| = |B|.
Part 2: If y ∈ C⊥, then c · y = 0 for all c ∈ C, and so

∑

c∈C(−1)c·y =
|C|·1 = 2k. If y /∈ C⊥ then by Part 1, as x ranges over the ve
tor spa
e C, the

quantity x · y takes the value 0 and 1 equally often, giving
∑

c∈C(−1)c·y = 0.
¤

Lemma 6 For ea
h x ∈ GF (2)n the following polynomial identity holds:

∑

y∈GF (2)n

zwt(y)(−1)x·y = (1 − z)wt(x)(1 + z)n−wt(x).

proof:

∑

y∈GF (2)n zwt(y)(−1)x·y =
∑

y1∈{0,1}

∑

y2∈{0,1} · · ·
∑

yn∈{0,1} zy1+···+yn(−1)x1y1+···xnyn

=
∑

y1∈{0,1} · · ·
∑

yn∈{0,1}

(
∏n

i=1 zyi(−1)xiyi

)

=
∏n

i=1

(
∑

j∈{0,1} zj(−1)xij
)

= (1 − z)wt(x)(1 + z)n−wt(x),

sin
e
∑

j∈{0,1} zj(−1)rj = 1 + z, if r = 0, and = 1 − z, if r = 1. ¤

Theorem 7 (Ma
Williams' identity): If C is a linear 
ode over any �nite

�eld F of order q then

AC⊥(x, y) = |C|−1AC(x + (q − 1)y, x − y).

This is the general statement of the Ma
Williams identity. This proof

will restri
t to the binary 
ase.

proof: Now, express the polynomial f(z) =
∑

c∈C

∑

y∈GF (2)n zwt(y)(−1)c·y

in two ways.

On one hand, Lemma 6 implies

f(z) =
∑

c∈C(1 − z)wt(c)(1 + z)n−wt(c)

= (1 + z)n
∑

c∈C

(

1−z
1+z

)wt(c)

= (1 + z)nWC

(

1−z
1+z

)

= Ac(1 + z, 1 − z)
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On the other hand, reversing the order of summation gives

f(z) =
∑

y∈GF (2)n zwt(y)
(
∑

c∈C(−1)c·y
)

=
∑

y∈C⊥ zwt(y)2k (by Lemma 5, Part 2)

= 2kWC⊥(z).

Repla
e z by y/x in the above gives

Ac(1 + y/x, 1 − y/x) = 2k · A(C
⊥)(1, y/x).

Sin
e this polynomial is homogeneous in degree n, multiplying both sides by

xn gives the theorem in the binary 
ase. ¤

If C = C⊥, then |C| = qn/2. Therefore, the Ma
William's Identity 
an

be rewritten in this 
ase as

AC(x, y) = q−n/2AC(x + (q − 1)y, x − y) = AC(
x + (q − 1)y√

q
,
x − y√

q
),

where q = 2.

3 Duursma Zeta Fun
tion

3.1 De�nition

The following de�nition generalizes the idea of the weight enumerator poly-

nomial of a 
ode.

De�nition 8 A homogeneous polynomial F (x, y) = xn +
∑n

i=1 fix
n−iyi of

degree n with 
omplex 
oe�
ients is 
alled a virtual weight enumer-

ator (or VWE) with support supp(F ) = {i | fi 6= 0}. If F (x, y) =
xn +

∑n
i=d fix

n−iyi with fd 6= 0 then 
all n the length of F and d the min-

imum distan
e of F . Su
h an F of even degree satisfying the invarian
e


ondition

F (x, y) = F (
x + (q − 1)y√

q
,
x − y√

q
),

is 
alled a virtual self-dual weight enumerator (or VSDWE for short)

over F having genus.
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γ(F ) = n/2 + 1 − d.

If b > 1 is an integer and supp(F ) ⊂ bZ then the VWE F is 
alled b-
divisible.

An example of a virtual weight enumerator F (x, y) is the Hamming weight

enumerator of a 
ode AC(x, y). In fa
t, in 
ase F (x, y) = AC(x, y) the length
of F is the length of the 
ode C and the minimum distan
e of F is the

minimum distan
e of the 
ode C. An example of a virtual self-dual weight

enumerator is the Hamming weight enumerator of a self-dual 
ode.

It is amazing that the b-divisible virtual self-dual weight enumerators 
an

be 
lassi�ed.

Theorem 9 (Gleason-Pier
e-Assmus-Mattson) Let F be a b-divisible VS-

DWE over GF (q).
Then either

I. q = b = 2,

II. q = 2, b = 4,

III. q = b = 3,

IV. q = 4, b = 2,

V. q is arbitrary, b = 2, and F (x, y) = (x2 + (q − 1)y2)n/2.

For Assmus and Mattson`s proof of this theorem, please see Sloane [Sl℄.

Next, in order to 
arefully de�ne the problem that this paper addresses,

the notion of Types of weight enumerators are introdu
ed. Theorem 9 moti-

vates the following de�nition.

De�nition 10 If F is a b-divisible VSDWE over F then F is 
alled















Type I, if q = b = 2, 2|n,
Type II, if q = 2, b = 4, 8|n,
Type III, if q = b = 3, 4|n,
Type IV, if q = 4, b = 2, 2|n.
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The divisibility 
ondition is extremely restri
ting and, for example, for
es

the length n to be even. The next se
tions 
on
entrate on Duursma zeta

fun
tions for 
ertain weight enumerators of Type IV.

Theorem 11 (Sloane-Mallows-Duursma) If F is a b-divisible VSDWE with

length n and minimum distan
e d then

d ≤















2[n/8] + 2, if F is Type I,
4[n/24] + 4, if F is Type II,
3[n/12] + 3, if F is Type III,
2[n/6] + 2, if F is Type IV.

For a proof, see Duursma [D3℄.

An extremal b-divisible virtual self-dual weight enumerator is one for

whi
h equality holds in the above theorem. The next se
tion fo
uses on the

Type IV extremal 
ase. With Theorems 9 and 11, the foundations of Du-

ursma's paper [D3℄ extend from self-dual 
odes to virtual self-dual weight

enumerators. This is be
ause the 
oding-theoreti
 versions of the Theorem

9 and 11, used by Duursma, in fa
t hold for virtual self-dual weight enumer-

ators.

De�nition 12 (Duursma [D1℄) Assume F is a virtual weight enumerator

polynomial of length n and minimum distan
e d. A polynomial P (T ) of

degree n + 2 − d − d⊥ for whi
h

(xT + (1 − T )y)n

(1 − T )(1 − qT )
P (T ) = · · · + F (x, y) − xn

q − 1
T n−d + . . . .

is 
alled a Duursma zeta polynomial of F .

Proposition 13 If d ≥ 2 and d⊥ ≥ 2 then there exists a unique Duurzma

zeta polynomial of degree ≤ n − d.

proof: This is proven in the appendix to Chinen [C2℄. Here is the rough

idea. Expand
(xT+y(1−T ))n

(1−T )(1−qT )
in powers of T to get

b0,0y
nT 0 + (b1,0xyn−1 + b1,1y

n)T 1 + (b2,0x
2yn−2 + b2,1xyn−1 + b2,2y

n)T 2 + ...
+(bn−d,0x

n−dyd + bn−d,1x
n−d−1yd+1 + ... + bn−d,n−dy

n)T n−d + ... ,

9



where bij are 
oe�
ients whi
h may depend on q. The Duursma polynomial

is a polynomial of degree n + 2 − d − d⊥. Provided d⊥ ≥ 2, the Duursma

polynomial 
an be written as P (T ) = a0 +a1T + ...+an−dT
n−d. Now, rewrite

the terms of degree ≤ n

(xT + y(1 − T ))n

(1 − T )(1 − qT )
P (T ) = ... +

F (x, y) − xn

q − 1
T n−d + ...

by means of the matrix equation B · ~a = ~A given by















bn−d.0 bn−d.1 . . . bn−d.n−d

0 bn−d−1.0 . . . bn−d−1.n−d−1

0 0 bn−d−2.0 . . .
...

. . .
...

0 . . . 0 b0,0

























an−d

an−d−1
...

a0











=











An/(q − 1)
An−1/(q − 1)

...

Ad/(q − 1)











.

The diagonal entries of this matrix are binomial 
oe�
ients, hen
e are non-

zero. Therefore the matrix is invertible and the existen
e is established.

To establish uniqueness, suppose that

(xT + y(1 − T ))n

(1 − T )(1 − qT )
P1(T ) = ... +

F (x, y) − xn

q − 1
T n−d + ...

and
(xT + y(1 − T ))n

(1 − T )(1 − qT )
P2(T ) = ... +

F (x, y) − xn

q − 1
T n−d + ...

hold. Subtra
ting these gives

(xT + y(1 − T ))n

(1 − T )(1 − qT )
(P1(T ) − P2(T )) = 0.

This for
es P1 = P2. ¤

An example will be given in �4.

The Duursma zeta fun
tion of F is de�ned in terms of the zeta poly-

nomial by means of Ac(1 + z, 1 − z)

Z(T ) =
P (T )

(1 − T )(1 − qT )
. (3)

In 
ase of ambiguity denote this fun
tion by ZF . De�ne the Riemann hy-

pothesis to be the following statement: all (
omplex) zeros of Z(T ) satisfy
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|T | = 1/
√

q. This is the analog for linear 
odes of the still unsolved 
onje
ture

regarding the Riemann zeta fun
tion.

The Duursma zeta fun
tion satis�es an analog of the fun
tional equation

for the Riemann zeta fun
tion. But before stating the fun
tional equation,

new notation is needed.

De�ne F⊥ by F⊥ = F ◦ σ, where

σ =
1√
q

(

1 q − 1
1 −1

)

Then there is a fun
tional equation relating Z and Z⊥ = ZF⊥ (and hen
e

also P and P⊥ = PF⊥). Note that even though F may not depend on q, F⊥

(and hen
e Z⊥) does.

Proposition 14 The Duursma zeta fun
tion satis�es the fun
tional equa-

tion

Z⊥(T )T 1−g⊥ = Z(
1

qT
)(

1

qT
)1−g. (4)

Analogously, the zeta polynomial P = PF satis�es the fun
tional equation

P⊥(T ) = P (
1

qT
)qgT g+g⊥ , (5)

where g = n/2 + 1 − d and g⊥ = n/2 + 1 − d⊥.

This paper 
on
erns the zeros of the zeta fun
tion in the 
ase where F is

an extremal virtual b-divisible self-dual weight enumerator of type IV.

3.2 Extremal Virtual Self-Dual Weight Enumerators

Following Duursma [D3℄, de�ne the ultraspheri
al polynomial Cm
n (x) on

the interval (−1, 1) by

Cm
n (cos θ) =

∑

0 ≤ k, ℓ ≤ n
k + ℓ = n

( m + k
k

)( m + ℓ
ℓ

)

cos((k − ℓ)θ).

The following theorem1 is due to Duursma [D3℄, se
tion 5.2.

1Be 
areful of serious typos in se
tion 5.2 of Duursma, whi
h are 
orre
ted below.
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Theorem 15

Q(T 2/2) =
m!2

(3m)!
TmCm+1

m (
T + T−1

2
)

Where Q(T ) = P (T )(1 + 2T ) and P is the Duursma zeta polynomial of an

extremal Type IV virtual self-dual weight enumerator of length n = 3m + 3
and minimum distan
e d = m + 3.

The main result is stated below.

Theorem 16 The Duursma zeta fun
tion of an extremal self-dual weight

enumerator of Type IV with length divisible by 3 satis�es the Riemann hy-

pothesis.

proof: It's a known fa
t [Sz℄ that all the roots of ultraspheri
al polynomials

Cm
n lie on the interval (−1, 1). This polynomial is degree n and so there are

n su
h roots. In the theorem above, repla
ing T by eiθ gives

Q(e2iθ/2) =
m!2

(3m)!
eiθmCm+1

m (cos θ).

Therefore, all the roots of the degree m polynomial Q, hen
e the roots of P ,

lie on the 
ir
le of radius 1/
√

q = 1/2. A

ording to Duursma [D3℄, �4.4, all

other Type IV extremal virtual self-dual weight enumerators have length of

the form 3m + 1 or 3m + 2. This veri�es the Riemann hypothesis in the 
ase

with length divisible by 3. ¤

4 Examples

The �rst example below 
omputes a Duursma zeta fun
tion �by hand� in a

simple 
ase.

Example 17 Consider the binary self-dual 
ode C of length n = 6, di-

mension k = 3, and minium distan
e d = 2. This is unique up to equiva-

len
e and has weight enumerator W (x, y) = x6 + 3x4y2 + 3x2y4 + y6. The

SAGE 
ommands

SAGE

sage: q = var("q")
sage: T = var("T")
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sage: x = var("x")
sage: y = var("y")
sage: f1 = lambda q,T,N: sum([ sum([q^i for i in range(k+1)])*T^k for k in range(N)])
sage: f2 = lambda x,y,T,n: sum([ binomial(n,j)*(x-y)^j*y^(n-j)*T^j for j in range(n+1)])
sage: a0,a1,a2,a3,a4 = var("a0,a1,a2,a3,a4")
sage: F = expand(f1(2,T,6)*f2(x,y,T,6)*(a0+a1*T+a2*T^2+a3*T^3+a4*T^4))


ompute the �rst 6 terms (as a power series in T ) of the series
(xT+y(1−T ))n

(1−T )(1−qT )
P (T )

when q = 2, n = 6, k = 3, and d = 2. Next, SAGE 
omputes the 
oe�
ients

and read o� the matrix B:

SAGE

sage: aa = (F.coeff("T^4")).coeffs("x")
sage: v = [expand(aa[i][0]/y^(6-i)) for i in range(5)]
sage: B0 = [v[0].coeff("a%s"%str(i)) for i in range(5)]
sage: B1 = [v[1].coeff("a%s"%str(i)) for i in range(5)]
sage: B2 = [v[2].coeff("a%s"%str(i)) for i in range(5)]
sage: B3 = [v[3].coeff("a%s"%str(i)) for i in range(5)]
sage: B4 = [v[4].coeff("a%s"%str(i)) for i in range(5)]
sage: B0.reverse(); B1.reverse(); B2.reverse(); B3.reverse(); B4.reverse()
sage: B = matrix([B0,B1,B2,B3,B4])
sage: B

[ 1 -3 4 -2 1]
[ 0 6 -12 12 0]
[ 0 0 15 -15 15]
[ 0 0 0 20 0]
[ 0 0 0 0 15]

Note that the diagonal entries are binomial 
oe�
ients.

Finally, the ve
tor ~A is determined by solving the equation B · ~a = ~A:

SAGE

sage: Wmx6 = 3*x^4*y^2+3*x^2*y^4+y^6
sage: c = [Wmx6(1,y).coeff("y^%s"%str(i)) for i in range(2,7)]
sage: c.reverse()
sage: cc = vector(c)
sage: (B^(-1)*cc).list()
[4/5, 0, 0, 0, 1/5]

This implies that the zeta polynomial of C is given by P (T ) = 1
5

+ 4
5
T 4.

The next example illustrates the 
omputation of the Duursma zeta fun
-

tion for a quaternary 
ode.
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Example 18 The hexa
ode is an MDS 
ode. In general, it is true that the

Duursma zeta fun
tion of any MDS 
ode is P (T ) = 1.
Here is a more interesting example. Let z denote the same element as

was de�ned in Example 3. Let

G =

0

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0 1 z + 1 1 1 z 1 1 z + 1 z
0 1 0 0 0 0 0 0 0 z + 1 z + 1 0 z 0 1 z z + 1 z + 1
0 0 1 0 0 0 0 0 0 z + 1 1 0 z + 1 z + 1 z + 1 z 0 z
0 0 0 1 0 0 0 0 0 0 z + 1 1 0 z + 1 z + 1 z + 1 z z
0 0 0 0 1 0 0 0 0 z 1 1 z + 1 z + 1 1 1 z 1
0 0 0 0 0 1 0 0 0 z z + 1 z + 1 z + 1 0 1 z + 1 0 z
0 0 0 0 0 0 1 0 0 0 z z + 1 z + 1 z + 1 0 1 z + 1 z
0 0 0 0 0 0 0 1 0 z + 1 z 1 0 z 0 z + 1 z + 1 z + 1
0 0 0 0 0 0 0 0 1 z + 1 1 1 z 1 1 z + 1 1 z

1

C

C

C

C

C

C

C

C

C

C

C

A

be a generator matrix of a 
ode C. This is an extremal Type IV 
ode over

a �eld with four elements. A

ording to SAGE , the zeta polynomial for this


ode is P (T ) = 48
143

T 4 + 48
143

T 3 + 32
143

T 2 + 12
143

T + 3
143

. It 
an be 
he
ked dire
tly,

using SAGE , that this satis�es the Riemann hypothesis.

SAGE

sage: F.<z> = GF(4,"z")
sage: MS = MatrixSpace(F, 9, 18)
sage: G = MS([
....: [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, z^2, 1, 1, z, 1, 1, z^2, z],\
....: [0, 1, 0, 0, 0, 0, 0, 0, 0, z^2, z^2, 0, z, 0, 1, z, z^2, z^2],\
....: [0, 0, 1, 0, 0, 0, 0, 0, 0, z^2, 1, 0, z^2, z^2, z^2, z, 0, z],\
....: [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, z^2, 1, 0, z^2, z^2, z^2, z, z],\
....: [0, 0, 0, 0, 1, 0, 0, 0, 0, z, 1, 1, z^2, z^2, 1, 1, z, 1],\
....: [0, 0, 0, 0, 0, 1, 0, 0, 0, z, z^2, z^2, z^2, 0, 1, z^2, 0, z],\
....: [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, z, z^2, z^2, z^2, 0, 1, z^2, z],\
....: [0, 0, 0, 0, 0, 0, 0, 1, 0, z^2, z, 1, 0, z, 0, z^2, z^2, z^2],\
....: [0, 0, 0, 0, 0, 0, 0, 0, 1, z^2, 1, 1, z, 1, 1, z^2, 1, z]])
sage: C = LinearCode(G)
sage: print C.spectrum()
[1, 0, 0, 0, 0, 0, 0, 0, 2754, 0, 18360, 0, 77112, 0, 110160, 0, 50949, 0, 2808]
sage: R.<T> = PolynomialRing(CC,"T")
sage: P = C.sd_zeta_polynomial(4)
sage: P
48/143*T^4 + 48/143*T^3 + 32/143*T^2 + 12/143*T + 3/143
sage: rts = R(P).roots()
sage: [abs(r[0]) for r in rts]
[0.500000000000000, 0.500000000000000, 0.500000000000000, 0.500000000000000]

Ba
kground Information: SAGE is a 
omputer algebra program whose

open sour
e kernel is written in the Python programming language.

A
knowledgements: I thank the readers of this honors proje
t for their

helpful suggestion that improved this presentation. The SAGE examples are
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