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Motivation

. Considerable work has been devoted to the study of self-dual codes.

Iwan M. Duursma has written numerous papers on the matter (see
[D1]-|D6]) and the greater part of this project is centered on his ground
breaking work in the field. In 1999, Iwan M. Duursma defined the
zeta function for a linear code as a generating function of its Ham-
ming weight enumerator. The modest goal of this project is to go
through Duursma’s papers and evaluate its relevance for formally self-
dual codes. Duursma’s work in Fxtremal Weight Enumerators and Ul-
traspherical Polynomials will be extended to formally self-dual codes.
More specifically, the project expands Duursma’s work in this paper
to zeta functions of formally self-dual codes of Type IV. (In fact, Du-
ursma’s work extends to the even broader class of virtual self-dual
weight enumerators of Type IV. Theorems/9/and[11 below are extended
to the weight enumerator case. See the remark before Definition [12]in
§3/ for details.)



2. The final and more ambitious goal of the project is to study the for-
mulation for a Riemann hypothesis analog. The unsolved Riemann hy-
pothesis has been a mystery since Riemann’s work in the 1800’s. The
search for an analog for linear codes arose in the 1990’s. This hypoth-
esis deals with the nature of non-trivial zeros for zeta functions. The
main result of this project, which deals with the Riemann hypothesis
analog in a special case, is Theorem 16/ below.

3. Examples of Duursma Zeta functions of self-dual codes of small length
are computed in §4/ with the help of the mathematical software program
SAGE [S].

2 Introduction

Studying error correcting codes is necessary in advancing technology. The
safe and reliable transfer of information depends on coding theory. The prob-
lem of transferring dependable information is important and this research
project attempts to continue incremental progress in this field.

This project has value because the study of error correcting codes is rela-
tively new. Profound advancement can be made in this field and is necessary
for the transfer of reliable and safe information. The study of error cor-
recting codes, as conducted in this research project, is specifically related to
reliable communications. This is especially pertinent to Naval Reactors as
nuke power begins to rely more heavily on computer communications. The
need for such communication to be reliable is paramount. Error correcting
codes are vital to systems, such as nuclear reactors, that depend upon com-
puters and cannot be allowed to miscommunicate. More knowledge of this
topic is crucial to the overarching goals of the Navy. This is especially true if
the Navy continues with its plans for unmanned ships. The military depends
upon reliable, fault—tolerant communication and this research project aims
to continue research in the pertinent field of coding theory.

2.1 General Background

Let F = GF(q) denote a finite field with ¢ elements, where ¢ is a power of a
prime. A linear code is a subspace of F" for some n > 1. This integer n is
called the length of C. Let C be a linear code of length n over F. If ¢ = 2



then the code is called binary. Similarly, if ¢ = 3 then the code is called
ternary and if ¢ = 4 then the code is called quaternary. Throughout,
assume that F" has been given the standard basis e; = (1,0,...,0) € F",
e; = (0,1,0,...,0) € F*, ..., e, = (0,0,...,0,1) € F" and the usual dot
product. The dimension of C' is denoted k, so the number of elements of C'
is equal to g¢".

Another important parameter associated to the code is the number of
errors which it can, in principle, correct. The Hamming metric is useful for
quantifying such errors. For any two x,y € F", let d(x,y) denote the number
of coordinates where these two vectors differ:

d(z,y) = {0 <i<n | @ #y}l (1)

Define the weight wt of v € F” to be the number of non-zero entries of v.
Note, d(x,y) = wt(x — y) because the vector x — y has non-zero entries only
at locations where x and y differ. The smallest distance between distinct
codewords in a linear code C' is the minimum distance of C:

d = d(C) = mineec, ex0d(0, ¢) 2)

(for details see [HILL| Theorem 5.2). Call a linear code of length n, dimension
k, and minimum distance d an [n, k,d] code, or [n,k| code if we wish to
disregard the minimum distance. The Singleton Bound states that if an
[n, k,d] linear code over F exists, then k < n —d+ 1. An MDS Code, or
Maximum Distance Seperable, is one where the equality holds.

A linear code C' of length n and dimension k over F has a basis of k
vectors of length n. If those vectors are arranged as rows of a matrix G, call
the £ x n matrix G a generator matrix for C.

The dual code of C' is the vector space of all code words in F” which are
orthogonal to each codeword in C}

Ct={velF |v-c=0Vce CL
C is self-dual if C = C+.

Example 1 Let

10010101
G — 01010110
001100171
00001111



be the generator matriz of a code C. This is a binary self-dual [8,4,4] code.
In fact, this is an extremal Type II code (these terms will be defined below).

Example 2 Let

20121100000 2
02012110000 2
G- 00201211000 2
000201211Q00 2
0000201211202
0000O02O012T1T12

be the generator matriz of a code C'. This is a ternary self-dual [12, 6, 6] code.
In fact, this is an extremal Type III code (these terms will be defined below).

Example 3 Define the finite field of four elements as follows. Let z denote
a root of the quadratic polynomial 2> + z + 1 € GF(2)[z], where GF(2)[z]
denotes the polynomial ring in the indeterminate x. Let GF(4) = {0,1, z, 2+
1}. This set is a field of characteristic 2. Let

1
G=1|0
0

S = O
_— o O

1
z
z

W =W
— N W

be the generator matriz of a code C. This is a quaternary self-dual [6,3, 4]
code and is referred to as the hexacode. In fact, this is an extremal Type
IV code (these terms will be defined below). Note that this code is MDS.

The dual code of C' has parameters [n,n — k|]. Moreover, denote the
minimum distance of the dual code by d*. For future reference, note that
if C' = C* then (equating dimensions) k = n — k, forcing n to be even and
k =n/2. The genus of an [n, k, d]-code C' is defined by

Y C)=n+1—-Fk—d.

This measures how “far away the code is from being MDS”.

Lemma 4 [If C is a self-dual code then its genus satisfies v =n/2 + 1 —d.



proof: It suffices to show that k = n/2 if C = C*. But this was observed in
the discussion above. [
The (Hamming) weight enumerator polynomial Aq is defined by

Ac(z,y) = Z A"yt = a4 Aga™ Myt 4 Ay,
=0
where
A, ={ce C | wt(c) =i}
denotes the number of codewords of weight i. Let Wea(z) = Ac(1,2), so
therefore Ac(z,y) = 2"We(y/x). The support of C is the set supp(C) =
{i | Ai #0}. If Ac(x,y) = Ace(x,y) then C' is called a formally self-dual
code. The spectrum of C' is the list of coefficients of A¢:
spec(C) = [Ao, ..., Ay

Two codes are formally equivalent if they have the same spectrum.

2.2 MacWilliams Identity

The goal of this section is to prove the MacWilliams identity (for simplic-
ity, restricted to the binary case). This identity is necessary to verify the
functional equation (4) for the Duursma Zeta Function. Several lemmas are
needed to prove this identity. The proof given below follows Hill Ch. 13
[HILL].

Lemma 5 Let C be a binary linear [n, k] code.

1. Fizy € GF(2)"—C*. Asx ranges over the vector space C, the quantity
x -y takes the value 0 and 1 equally often.

2. The following identity holds:

. o2k yeCt
_1\¢y ) )
Z( 1 _{O y ¢ Ct.

ceC

proof: Part 1: Let A={x € C|z-y=0}and B={x € C |z -y=1}.
Let u be a codeword of C such that u-y =1. Let u+ A={u+a | a € A}
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Then u+ A C B, forifa € A, then (u+a)-y=a-y+u-y=0+1=1
Similarly w + B C A. Hence, |A| = |u+ A| < |B| = |u + B| < |A|. Thus,
Al = [B.

Part 2: If y € C*, then c-y =0 for all ¢ € C, and so Y (—1)°Y =
|C|-1 =2 Ify ¢ C* then by Part 1, as = ranges over the vector space C, the

quantity x -y takes the value 0 and 1 equally often, giving > . (—1)“Y = 0.
0

Lemma 6 For each x € GF(2)" the following polynomial identity holds:

Z Zwt(y)<_1)a:~y _ (1 . Z)Wt(a:)(l + Z)n—wt(;r)‘
yEGF(2)"

proof:
ZyeGF(Q)n ZWt(y)(_l)x'y = Zyle{(),l} ZyQE{O,l} T Zyne{m} ZUE Y (] )Taga ey
= Zyle{ﬂ,l} e Zyne{ﬂ,l} (H?:l Zyi(_l)xiyi)
=1l (Zje{o,l} 2 (—1)")
(1= )1 4 ),

since Y ey 2/(—=1)7 =1+2ifr=0,and =1~ z,if r =1. O

Theorem 7 (MacWilliams’ identity): If C is a linear code over any finite
field F of order q then

AC’L(Qzay) = ‘ClilAC(x + (q - 1)3/7'7; - y)

This is the general statement of the MacWilliams identity. This proof
will restrict to the binary case.

proof: Now, express the polynomial f(z) = 3" o> car@n 2V (—1)ev
in two ways.
On one hand, Lemma, 6/ implies

f(2) =3 ol —2)"O(1 4 2wt

=(1+2)"Y cc (L_L_i)Wt(C)

= (1 —+ Z)an(

) = A1+ 51— 2)
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On the other hand, reversing the order of summation gives
f(2) = earep 2 (Leec (1))
=) ot 2VW2k  (by Lemma (5, Part 2)
= 2"Wei(2).
Replace z by y/x in the above gives
Al +y/z,1—y/z) = 2" ACH (1, y/x).

Since this polynomial is homogeneous in degree n, multiplying both sides by
x™ gives the theorem in the binary case. [
If C = C*, then |C| = ¢*/2. Therefore, the MacWilliam’s Identity can

be rewritten in this case as

r+(q— 1)y Ty,

ViV

Aclz,y) = ¢ "PAc(z + (g — D)y, — y) = Ac(

where ¢ = 2.

3 Duursma Zeta Function

3.1 Definition

The following definition generalizes the idea of the weight enumerator poly-
nomial of a code.

Definition 8 A homogeneous polynomial F(x,y) = 2" + >, fiz" 'y’ of
degree n with complex coefficients is called a virtual weight enumer-
ator (or VWE) with support supp(F) = {i | f; # 0}. If F(z,y) =
"+ 30 fie™ 'yt with fy # 0 then call n the length of F' and d the min-
imum distance of F'. Such an F of even degree satisfying the invariance
condition

r+(g—1y Ty,

\/a Y ﬂ Y
is called a virtual self~dual weight enumerator (or VSDWE for short)
over F having genus.

F(z,y) = F(



Y(F)=n/2+1—4d.

If b > 1 is an integer and supp(F) C bZ then the VWE F is called b-
divisible.

An example of a virtual weight enumerator F'(z,y) is the Hamming weight
enumerator of a code A¢(z,y). In fact, in case F'(z,y) = Ac(x,y) the length
of F' is the length of the code C' and the minimum distance of F' is the
minimum distance of the code C. An example of a virtual self-dual weight
enumerator is the Hamming weight enumerator of a self-dual code.

It is amazing that the b-divisible virtual self-dual weight enumerators can
be classified.

Theorem 9 (Gleason-Pierce-Assmus-Mattson) Let F' be a b-divisible VS-
DWE over GF(q).
Then either

L ¢gq=0=2,
II. g=2,b=4,
I ¢ =0b=3,

V. g=4,b=2,
V. q is arbitrary, b= 2, and F(x,y) = (2> + (g — 1)y*)"/2.

For Assmus and Mattson‘s proof of this theorem, please see Sloane |Sl|.

Next, in order to carefully define the problem that this paper addresses,
the notion of Types of weight enumerators are introduced. Theorem 9/ moti-
vates the following definition.

Definition 10 If F' is a b-divisible VSDWE over [F then F' is called

Typel, if g=0=2, 2|n,
Type Il, if ¢=2, b=4, 8|n,
Type II1, if ¢ =0=3, 4|n,
Type IV, if g=4, b=2, 2|n.



The divisibility condition is extremely restricting and, for example, forces
the length n to be even. The next sections concentrate on Duursma zeta
functions for certain weight enumerators of Type IV.

Theorem 11 (Sloane-Mallows-Duursma) If F' is a b-divisible VSDWE with

length n and minimum distance d then

(n/8] +2, if Fis Type I,

n/24] + 4, if F is Type II,
n/12] + 3, if F is Type III,
[n/6] +2, if F is Type IV.

For a proof, see Duursma [D3].

An extremal b-divisible virtual self-dual weight enumerator is one for
which equality holds in the above theorem. The next section focuses on the
Type IV extremal case. With Theorems 9 and [11} the foundations of Du-
ursma’s paper [D3] extend from self-dual codes to virtual self-dual weight
enumerators. This is because the coding-theoretic versions of the Theorem
9 and used by Duursma, in fact hold for virtual self-dual weight enumer-
ators.

Definition 12 (Duursma [D1]) Assume F' is a virtual weight enumerator
polynomial of length n and minimum distance d. A polynomial P(T) of
degree n + 2 — d — d* for which

(T + (1 —=T)y)" F(z,y) —a"
(1-T)(1—4qT) q—1

is called a Duursma zeta polynomial of F'.

T4+ .

P(T) =+

Proposition 13 Ifd > 2 and d+ > 2 then there exists a unique Duurzma
zeta polynomial of degree < n — d.

proof: This is proven in the appendix to Chinen [C2|. Here is the rough

idea. Expand &Xtvd=D)"

o)D) I powers of T' to get

bo.0y"T° + (broxy™ '+ b1 1y™) T + (baox®y™ 2 + boxy" 1 + booy™)T? + ...
+(bn7d,0xn_dyd + bnfd,lxn_d_lyd—‘rl + ..+ bnfd,nfdyn)Tn_d T,



where b;; are coefficients which may depend on ¢g. The Duursma polynomial
is a polynomial of degree n + 2 — d — d*+. Provided d*+ > 2, the Duursma,
polynomial can be written as P(T) = ag+a;T+...+a,_ 4T % Now, rewrite
the terms of degree < n

(T +y(1=T))"
(1=T)(1—qT)

F(z,y) —a"
q—1

by means of the matrix equation B - ad = A given by

P(T)=..+ T4+ ..

bnfd.O bnfd.l o bnfd.nfd
n— An/(g—1
0 bn—d—l.O s bn—d—l.n—d—l aa d A /§%q . i)
0 0 bna20 . K I
0 ce 0 6070 %o Ad/(q B 1)

The diagonal entries of this matrix are binomial coefficients, hence are non-
zero. Therefore the matrix is invertible and the existence is established.
To establish uniqueness, suppose that

(T +y(1—=T))" B F(x,y)—a" ., 4

Ty PO =t =T
and

(T +y(1—=T))" B F(x,y)—a™, . 4

Ton iy B =t e T

hold. Subtracting these gives

(T +y(1=T))"
(1-7)(1—4qT)

This forces P, = P,. O

An example will be given in

The Duursma zeta function of F' is defined in terms of the zeta poly-
nomial by means of A.(1+ z,1— z)

(P1(T) — R(T)) = 0.

P(T)
A=) —qT) ®)

Z(T) =

In case of ambiguity denote this function by Zr. Define the Riemann hy-
pothesis to be the following statement: all (complex) zeros of Z(T') satisfy

10



|T'| = 1/,/q. This is the analog for linear codes of the still unsolved conjecture
regarding the Riemann zeta function.

The Duursma zeta function satisfies an analog of the functional equation
for the Riemann zeta function. But before stating the functional equation,

new notation is needed.
Define F* by F*+ = F o o, where

(1)

Then there is a functional equation relating Z and Z+ = Z,. (and hence
also P and P+ = Pp.). Note that even though F may not depend on ¢, F*
(and hence Z1) does.

Proposition 14 The Duursma zeta function satisfies the functional equa-

tion
ZNTIT " = 2 () ()
qT” " qT
Analogously, the zeta polynomial P = Pr satisfies the functional equation
1 L
PH(T) = P(—)¢°T"¢ 5
(T) = PR T o)

where g=n/2+1—d and g- =n/2+1—d*.
This paper concerns the zeros of the zeta function in the case where F' is

an extremal virtual b-divisible self-dual weight enumerator of type IV.

3.2 Extremal Virtual Self-Dual Weight Enumerators

Following Duursma [D3], define the ultraspherical polynomial C"(z) on
the interval (—1,1) by

Cll'(cosf) = Z ( ml—:k )( ng ) cos((k — £)0).
0<ktl<n
kE+l=n

The following theorem' is due to Duursma [D3], section 5.2.

'Be careful of serious typos in section 5.2 of Duursma, which are corrected below.

11



Theorem 15

m!? T+T1
Tmcvm—i—l
(3m)! m 2

Q(T%/2) = )

Where Q(T) = P(T)(1 + 2T') and P is the Duursma zeta polynomial of an
extremal Type 1V virtual self-dual weight enumerator of length n = 3m + 3
and minimum distance d = m + 3.

The main result is stated below.

Theorem 16 The Duursma zeta function of an extremal self-dual weight
enumerator of Type IV with length divisible by 3 satisfies the Riemann hy-
pothestis.

proof: It’s a known fact [Sz] that all the roots of ultraspherical polynomials
C7™ lie on the interval (—1,1). This polynomial is degree n and so there are
n such roots. In the theorem above, replacing T by €% gives

ml?

(3m)!

Q(e*/2) = e?mCm™ (cos 6).

Therefore, all the roots of the degree m polynomial @), hence the roots of P,
lie on the circle of radius 1/,/q = 1/2. According to Duursma [D3], §4.4, all
other Type IV extremal virtual self-dual weight enumerators have length of

the form 3m + 1 or 3m + 2. This verifies the Riemann hypothesis in the case
with length divisible by 3. [

4 Examples

The first example below computes a Duursma zeta function “by hand” in a
simple case.

Example 17 Consider the binary self-dual code C' of length n = 6, di-
mension k£ = 3, and minium distance d = 2. This is unique up to equiva-
lence and has weight enumerator W (z,y) = 2% + 3z%y* + 32%y* + y5. The
SAGE commands

SAGE

sage: (@
sage: T

var("q")
var("T")

12



sage: X var ("x")

sage: Yy var ("y")

sage: f1 = lanbda q,T,N sun([ sun([g”i for i in range(k+1)])*T"k for k in range(N)])
sage: f2 = lanbda x,y, T,n: sun([ binomal(n,j)*(x-y)*j*y*(n-j)*T"j for j in range(n+l)])
sage: a0, al, a2, a3,a4 = var("a0, al, a2, a3, a4")

sage: F = expand(f1(2,T,6)*f2(x,y, T, 6)*(a0+al*T+a2+T 2+a3xT 3+ad*T"4))

compute the first 6 terms (as a power series in 7") of the series WP (T)
when ¢ =2, n =6, k =3, and d = 2. Next, SAGE computes the coefficients
and read off the matrix B:

SAGE

sage: aa = (F.coeff("T"4")).coeffs("x")
sage: v = [expand(aa[i][0]/y~(6-i)) for i in range(5)]

sage: BO = [v[O].coeff("a%"%str(i)) for i in range(5)]
sage: Bl = [v[1].coeff("a%"%str(i)) for i in range(5)]
sage: B2 = [v[2].coeff("a%"%str(i)) for i in range(5)]
sage: B3 = [v[3].coeff("a%"%str(i)) for i in range(5)]
sage: B4 = [v[4].coeff("a%"¥%str(i)) for i in range(5)]

sage: BO.reverse(); Bl.reverse(); B2.reverse(); B3.reverse(); B4.reverse()
sage: B = matrix([BO, B1, B2, B3, B4])
sage: B

-3 4 -2 1
6 -12 12 0]
0 15 -15 15]
0 0 20 0]
0 0 0 15]

[eNeNoNoN

Note that the diagonal entries are binomial coefficients.
Finally, the vector A is determined by solving the equation B - d = A:

SAGE

sage: WIX6 = 3xx"N4xyN2+3x XN 2xyN4+yn6

sage: ¢ = [Wx6(1,y).coeff("y "%"%tr(i)) for i in range(2,7)]
sage: c.reverse()

sage: cc = vector(c)

sage: (BM(-1)*cc).list()

[4/5, 0, O, 0, 1/5]

This implies that the zeta polynomial of C'is given by P(T) = £ + 7.

The next example illustrates the computation of the Duursma zeta func-
tion for a quaternary code.

13



Example 18 The hexacode is an MDS code. In general, it is true that the

Duursma zeta function of any MDS code is P(T) = 1.
Here 1s a more interesting example. Let z denote the same element as
was defined in Example!3. Let

1 0 0 OO 0O 0 0 O 1 z+1 1 1 z 1 1 z+1 z
o 1 0 0 0 0 0 0 0 =z+1 =z+1 0 z 0 1 z z+1 z+1
0O 0 1 0 0 0 0 0 0 =z+1 1 0 z4+1 z41 z+4+1 z 0 z
0O 0 0 1 0 0 0 0 O 0 z+1 1 0 z+1 z+1 z+1 z z
G= 0O 0 0 0 1 0 0 0 o z 1 1 z4+1 z+41 1 1 z 1
0O 0 0 0 0O 1 0o 0 O z z+1 z41 z+41 0 1 z+1 0 z
0O 0 0 0 0O 0O 1 0 o0 0 z z+1 z+1 z+4+1 0 1 z+1 z
0O 0 0 0 0 0 0 1 0 =z+1 z 1 0 z 0 z4+1 z4+1 =z+1
0O 0 0 0 0 0 0 0 1 =z+4+1 1 1 z 1 1 z+1 1 z

be a generator matrix of a code C. This is an extremal Type IV code over
a field with four elements. According to SAGE , the zeta polynomial for this
code is P(T) = 214+ 28134 2724 1274 3. [t can be checked directly,

143 143 143 143 143
using SAGE , that this satisfies the Riemann hypothesis.
SAGE

sage: F.<z> = GF(4,"z"
sage: MS = MatrixSpace(F, 9, 18)
sage: G = M5([

..... [, 0, O, O, O, O, O, O, O, 1, z"2, 1, 1, z, 1, 1, z~2, z],\
..... [0, 2, O, O, O, O, O, O, O, z"2, zn2, O, z, O, 1, z, z*2, z"2],\
..... [0, O, 1, O, O, O, O, O, O, z"2, 1, 0O, z"2, z"2, z"2, z, 0O, z],\
..... [o, O, O, 1, O, O, O, O, O, O, z*2, 1, O, z"2, z"2, z"2, z, z],\
..... [0, O, O, O, 2, O, O, O, O, 2z, 1, 1, z"2, z"2, 1, 1, z, 1],\
..... [0, O, O, O, O, 1, O, O, O, 2z, z"2, z"2, z"2, O, 1, z"*2, 0O, z],\
..... [0, O, O, O, O, O, 2, O, O, O, z, z"2, z"2, z"2, O, 1, z"2, z],\
..... [0, 0,0 O, O, O, O, O, 1, O, z"2, z, 1, 0O, z, 0, z"2, z"2, z"2],\
..... [0, 0, 0, 0,0, 0,0, 0,1, z*2, 1, 1, z, 1, 1, z*2, 1, z]])

sage: C = Linear Code(GQ
sage: print C spectrum()
[1, 0o, O, O, O, O, O, O, 2754, O, 18360, 0, 77112, 0O, 110160, O, 50949, 0, 2808]
sage: R <T> = Pol ynom al R ng(CC,"T")

sage: P = C. sd_zeta_pol ynom al (4)

sage: P

48/ 143+ T4 + 48/ 143+«T"3 + 32/ 143xT"2 + 12/ 143+T + 3/ 143

sage: rts = R(P).roots()

sage: [abs(r[0]) for r in rts]

[ 0. 500000000000000, 0.500000000000000, 0.500000000000000, 0.500000000000000]

Background Information: SAGEis a computer algebra program whose
open source kernel is written in the Python programming language.

Acknowledgements: 1 thank the readers of this honors project for their
helpful suggestion that improved this presentation. The SAGE examples are
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due to my advisor. I also thank Prof. Philippe Gaborit for the generator
matrix of the last example and Prof. Thann Ward for the reference to Sloane

IS1).
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